
3
D O W N L O A D I N G  W E B  P A G E S

The most important thing a webbot does is 
move web pages from the Internet to your 

computer. Once the web page is on your com-
puter, your webbot can parse and manipulate it. 

This chapter will show you how to write simple PHP scripts that download 
web pages. More importantly, you’ll learn PHP’s limitations and how to over-
come them with PHP/CURL, a special binding of the cURL library that 
facilitates many advanced network features. cURL is used widely by many 
computer languages as a means to access network files with a number of 
protocols and options.

NOTE While web pages are the most common targets for webbots and spiders, the Web is not the 
only source of information for your webbots. Later chapters will explore methods for extract-
ing data from newsgroups, email, and FTP servers, as well. 

Prior to discovering PHP, I wrote webbots in a variety of languages, includ-
ing Visual Basic, Java, and Tcl/Tk. But due to its simple syntax, in-depth string 
parsing capabilities, networking functions, and portability, PHP proved ideal 
for webbot development. However, PHP is primarily a server language, and 
its chief purpose is to help webservers interpret incoming requests and send 



22 Chapter  3

the appropriate web pages in response. Since webbots don’t serve pages 
(they request them), this book supplements PHP built-in functions with 
PHP/CURL and a variety of libraries, developed specifically to help you 
learn to write webbots and spiders. 

Think About Files, Not Web Pages 
To most people, the Web appears as a collection of web pages. But in reality, 
the Web is collection of files that form those web pages. These files may 
exist on servers anywhere in the world, and they only create web pages when 
they are viewed together. Because browsers simplify the process of download-
ing and rendering the individual files that make up web pages, you need to 
know the nuts and bolts of how web pages are put together before you write 
your first webbot. 

When your browser requests a file, as shown in Figure 3-1, the webserver 
that fields the request sends your browser a default or index file, which maps the 
location of all the files that the web page needs and tells how to render the 
text and images that comprise that web page. 

Figure 3-1: When a browser requests a web page, it first receives an index file.

As a rule, this index file also contains references to the other files required to 
render the complete web page,1 as shown in Figure 3-2. These may include 
images, JavaScript, style sheets, or complex media files like Flash, QuickTime, 
or Windows Media files. The browser downloads each file separately, as it is 
referenced by the index file.

Figure 3-2: Downloading files, as they are referenced by the index file

1 Some very simple websites consist of only one file.

WebserverBrowser

Web page requested

Index file returned

Browser

Webserver

Webserver Webserver

Webserver

Webserver

Webserver

Webserver

Webserver
JavaScript file fetchStyle sheet fetches

Image fi
le f

etch
es



Download ing Web Pages 23

For example, if you request a web page with references to eight items your 
single web page actually executes nine separate file downloads (one for the 
web page and one for each file referenced by the web page). Usually, each 
file resides on the same server, but they could just as easily exist on separate 
domains, as shown in Figure 3-2.

Downloading Files with PHP’s Built-in Functions 

Before you can appreciate PHP/CURL, you’ll need to familiarize yourself 
with PHP’s built-in functions for downloading files from the Internet. 

Downloading Files with fopen() and fgets()

PHP includes two simple built-in functions for downloading files from a 
network—fopen() and fgets(). The fopen() function does two things. First, it 
creates a network socket, which represents the link between your webbot and 
the network resource you want to retrieve. Second, it implements the HTTP 
protocol, which defines how data is transferred. With those tasks completed, 
fgets() leverages the networking ability of your computer’s operating system 
to pull the file from the Internet.

Creating Your First Webbot Script

Let’s use PHP’s built-in functions to create your first webbot, which down-
loads a “Hello, world!” web page from this book’s companion website. The 
short script is shown in Listing 3-1.

# Define the file you want to download
$target      = "http://www.schrenk.com/nostarch/webbots/hello_world.html";
$file_handle = fopen($target, "r");

# Fetch the file
while (!feof($file_handle)) 
    echo fgets($file_handle, 4096);
fclose($file_handle);

Listing 3-1: Downloading a file from the Web with fopen() and fgets()

As shown in Listing 3-1, fopen() establishes a network connection to the 
target, or file you want to download. It references this connection with a file 
handle, or network link called $file_handle. The script then uses fopen() to 
fetch and echo the file in 4,096-byte chunks until it has downloaded and 
displayed the entire file. Finally, the script executes an fclose() to tell PHP 
that it’s finished with the network handle.

Before we can execute the example in Listing 3-1, we need to examine 
the two ways to execute a webbot: You can run a webbot either in a browser 
or in a command shell.2

2 See Chapter 23 for more information on executing webbots as scheduled events.



24 Chapter  3

Executing Webbots in Command Shells

If you have a choice, it is usually better to execute webbots from a shell or 
command line. Webbots generally don’t care about web page formatting, 
so they will display exactly what is returned from a webserver. Browsers, in 
contrast, will interpret HTML tags as instructions for rendering the web page. 
For example, Figure 3-3 shows what Listing 3-1 looks like when executed in 
a shell. 

Figure 3-3: Running a webbot script in a shell

Executing Webbots in Browsers

To run a webbot script in a browser, simply load the script on a webserver and 
execute it by loading its URL into the browser’s location bar as you would 
any other web page. Contrast Figure 3-3 with Figure 3-4, where the same 
script is run within a browser. The HTML tags are gone, as well as all of the 
structure of the returned file; the only things displayed are two lines of text. 
Running a webbot in a browser only shows a partial picture and often hides 
important information that a webbot needs.

NOTE To display HTML tags within a browser, surround the output with <xmp> and 
</xmp> tags.

Figure 3-4: Browser “rendering” the output of a webbot



Download ing Web Pages 25

Browser buffering is another complication you might run into if you try to 
execute a webbot in a browser. Buffering is useful when you’re viewing web 
pages because it allows a browser to wait until it has collected enough of a 
web page before it starts rendering or displaying the web page. However, 
browser buffering is troublesome for webbots because they frequently run 
for extended periods of time—much longer than it would take to download 
a typical web page. During prolonged webbot execution, status messages 
written by the webbot may not be displayed by the browser while it is buffering 
the display. 

I have one webbot that runs continuously; in fact, it once ran for seven 
months before stopping during a power outage. This webbot could never 
run effectively in a browser because browsers are designed to render web 
pages with files of finite length. Browsers assume short download periods and 
may buffer an entire web page before displaying anything—therefore, never 
displaying the output of your webbot. 

NOTE Browsers can still be very useful for creating interfaces that set up or control the actions 
of a webbot. They can also be useful for displaying the results of a webbot’s work. 

Downloading Files with file()

An alternative to fopen() and fgets() is the function file(), which downloads 
formatted files and places them into an array. This function differs from 
fopen() in two important ways: One way is that, unlike fopen(), it does not 
require you to create a file handle, because it creates all the network prep-
arations for you. The other difference is that it returns the downloaded file 
as an array, with each line of the downloaded file in a separate array element. 
The script in Listing 3-2 downloads the same web page used in Listing 3-1, 
but it uses the file() command.

<?
// Download the target file
$target = "http://www.schrenk.com/nostarch/webbots/hello_world.html";
$downloaded_page_array = file($target);

// Echo contents of file
for($xx=0; $xx<count($downloaded_page_array); $xx++)

echo $downloaded_page_array[$xx];
?>

Listing 3-2: Downloading files with file()

The file() function is particularly useful for downloading comma-separated 
value (CSV) files, in which each line of text represents a row of data with 
columnar formatting (as in an Excel spreadsheet). Loading files line-by-line 
into an array, however, is not particularly useful when downloading HTML 
files because the data in a web page is not defined by rows or columns; in a 
CSV file, however, rows and columns have specific meaning. 



26 Chapter  3

Introducing PHP/CURL

While PHP is capable when it comes to simple file downloads, most real-life 
applications require additional functionality to handle advanced issues such 
as form submission, authentication, redirection, and so on. These functions 
are difficult to facilitate with PHP’s built-in functions alone. Therefore, most 
of this book’s examples use PHP/CURL to download files. 

The open source cURL project is the product of Swedish developer 
Daniel Stenberg and a team of developers. The cURL library is available for 
use with nearly any computer language you can think of. When cURL is used 
with PHP, it’s known as PHP/CURL. 

The name cURL is either a blend of the words client and URL or an 
acronym for the words client URL Request Library—you decide. cURL does 
everything that PHP’s built-in networking functions do and a lot more. 
Appendix A expands on cURL’s features, but here’s a quick overview of the 
things PHP/CURL can do for you, a webbot developer.

Multiple Transfer Protocols

Unlike the built-in PHP network functions, cURL supports multiple transfer 
protocols, including FTP, FTPS, HTTP, HTTPS, Gopher, Telnet, and LDAP. 
Of these protocols, the most important is probably HTTPS, which allows 
webbots to download from encrypted websites that employ the Secure Sockets 
Layer (SSL) protocol. 

Form Submission

cURL provides easy ways for a webbot to emulate browser form submission 
to a server. cURL supports all of the standard methods, or form submission 
protocols, as you’ll learn in Chapter 5.

Basic Authentication

cURL allows webbots to enter password-protected websites that use basic 
authentication. You’ve encountered authentication if you’ve seen this 
familiar gray box, shown in Figure 3-5, asking for your username and 
password. PHP/CURL makes it easy to write webbots that enter and use 
password-protected websites. 

Figure 3-5: A basic authentication prompt



Download ing Web Pages 27

Cookies

Without cURL, it is difficult for webbots to read and write cookies, those small 
bits of data that websites use to create session variables that track your move-
ment. Websites also use cookies to manage shopping carts and authenticate 
users. cURL makes it easy for your webbot to interpret the cookies that web-
servers send it; it also simplifies the process of showing webservers all the 
cookies your webbot has written. Chapters 21 and 22 have much more to say 
on the subject of webbots and cookies.

Redirection

Redirection occurs when a web browser looks for a file in one place, but the 
server tells it that the file has moved and that it should download it from 
another location. For example, the website www.company.com may use redi-
rection to force browsers to go to www.company.com/spring_sale when a 
seasonal promotion is in place. Browsers handle redirections automatically, 
and cURL allows webbots to have the same functionality. 

Agent Name Spoofing

Every time a webserver receives a file request, it stores the requesting agent’s 
name in a log file called an access log file. This log file stores the time of access, 
the IP address of the requester, and the agent name, which identifies the type of 
program that requested the file. Generally, agent names identify the browser 
that the web surfer was using to view the website. 

Some agent names that a server log file may record are shown in List-
ing 3-3. The first four names are browsers; the last is the Google spider.

Mozilla/5.0 (Windows; U; Windows NT 5.1; rv:1.7.6) Gecko/20050225 Firefox/1.0.1
Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000) Opera 6.03 [en]
Mozilla/5.0 (compatible; Konqueror/3.1-rc3; i686 Linux; 20020515)
Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.1)
Googlebot/2.1 (+http://www.google.com/bot.html)

Listing 3-3: Agent names as seen in a file access log

A webbot using cURL can assume any appropriate (or inappropriate) 
agent name. For example, sometimes it is advantageous to identify your 
webbots, as Google does. Other times, it is better to make your webbot look 
like a browser. If you write webbots that use the LIB_http library (described 
later), your webbot’s agent name will be Test Webbot. If you download a file 
from a webserver with PHP’s fopen() or file() functions, your agent name will 
be the version of PHP installed on your computer.



28 Chapter  3

Referer Management

cURL allows webbot developers to change the referer, which is the reference 
that servers use to detect which link the web surfer clicked. Sometimes web-
servers use the referer to verify that file requests are coming from the correct 
place. For example, a website might enforce a rule that prevents downloading 
of images unless the referring web page is also on the same webserver. This 
prohibits people from bandwidth stealing, or writing web pages using images 
on someone else’s server. cURL allows a webbot to set the referer to an 
arbitrary value. 

Socket Management

cURL also gives webbots the ability to recognize when a webserver isn’t going 
to respond to a file request. This ability is vital because, without it, your webbot 
might hang (forever) waiting for a server response that will never happen. 
With cURL, you can specify how long a webbot will wait for a response from 
a server before it gives up and moves on.

Installing PHP/CURL

Since PHP/CURL is tightly integrated with PHP, installation should be 
unnecessary, or at worst, easy. You probably already have PHP/CURL on 
your computer; you just need to enable it in php.ini, the PHP configuration 
file. If you’re using Linux, FreeBSD, OS X, or another Unix-based operating 
system, you may have to recompile your copy of Apache/PHP to enjoy the 
benefits of PHP/CURL. Installing PHP/CURL is similar to installing any 
other PHP library. If you need help, you should reference the PHP website 
(http://www.php.net) for the instructions for your particular operating 
system and PHP version.

LIB_http

Since PHP/CURL is very flexible and has many configurations, it is often 
handy to use it within a wrapper function, which simplifies the complexities of 
a code library into something easier to understand. For your convenience, 
this book uses a library called LIB_http, which provides wrapper functions 
to the PHP/CURL features you’ll use most. The remainder of this chapter 
describes the basic functions of the LIB_http library.

LIB_http is a collection of PHP/CURL routines that simplify downloading 
files. It contains defaults and abstractions that facilitate downloading files, 
managing cookies, and completing online forms. The name of the library refers 
to the HTTP protocol used by the library. Some of the reasons for using this 
library will not be evident until we cover its more advanced features. Even 
simple file downloads, however, are made easier and more robust with LIB_http 



Download ing Web Pages 29

because of PHP/CURL. The most recent version of LIB_http is available at 
this book’s website.

Familiarizing Yourself with the Default Values

To simplify its use, LIB_http sets a series of default conditions for you, 
as described below:

� Your webbot’s agent name is Test Webbot.

� Your webbot will time out if a file transfer doesn’t complete within 
25 seconds.

� Your webbot will store cookies in the file c:\cookie.txt.

� Your webbot will automatically follow a maximum of four redirections, 
as directed by servers in HTTP headers.

� Your webbot will, if asked, tell the remote server that you do not have a 
local authentication certificate. (This is only important if you access a 
website employing SSL encryption, which is used to protect confidential 
information on e-commerce websites.)

These defaults are set at the beginning of the file. Feel free to change any of 
these settings to meet your specific needs.

Using LIB_http

The LIB_http library provides a set of wrapper functions that simplify compli-
cated PHP/CURL interfaces. Each of these interfaces calls a common routine, 
http(), which performs the specified task, using the values passed to it by the 
wrapper interfaces. All functions in LIB_http share a similar format: A target 
and referring URL are passed, and an array is returned, containing the 
contents of the requested file, transfer status, and error conditions. 

While LIB_http has many functions, we’ll restrict our discussion to simply 
fetching files from the Internet using HTTP. The remaining features are 
described as needed throughout the book.

http_get() 

The function http_get() downloads files with the GET method; it has many 
advantages over PHP’s built-in functions for downloading files from the Inter-
net. Not only is the interface simple, but this function offers all the previously 
described advantages of using PHP/CURL. The script in Listing 3-4 shows 
how files are downloaded with http_get().

# Usage: http_get()
array http_get (string target_url, string referring_url)

Listing 3-4: Using http_get()



30 Chapter  3

These are the inputs for the script in Listing 3-4:

target_url is the fully formed URL of the desired file

referring_url is the fully formed URL of the referer

These are the outputs for the script in Listing 3-4:

$array['FILE'] contains the contents of the requested file

$array['STATUS'] contains status information regarding the file transfer

$array['ERROR'] contains a textual description of any errors

http_get_withheader() 

When a web agent requests a file from the Web, the server returns the file 
contents, as discussed in the previous section, along with the HTTP header, 
which describes various properties related to a web page. Browsers and 
webbots rely on the HTTP header to determine what to do with the contents 
of the downloaded file. 

The data that is included in the HTTP header varies from application 
to application, but it may define cookies, the size of the downloaded file, 
redirections, encryption details, or authentication directives. Since the 
information in the HTTP header is critical to properly using a network file, 
LIB_http configures cURL to automatically handle the more common 
header directives. Listing 3-5 shows how this function is used.

# Usage: http_get_withheader()
array http_get_withheader (string target_url, string referring_url)

Listing 3-5: Using http_get()

These are the inputs for the script in Listing 3-5:

target_url is the fully formed URL of the desired file

referring_url is the fully formed URL of the referer

These are the outputs for the script in Listing 3-5:

$array['FILE'] contains the contents of the requested file, including the 
HTTP header

$array['STATUS'] contains status information about the file transfer

$array['ERROR'] contains a textual description of any errors

The example in Listing 3-6 uses the http_get_withheader() function to 
download a file and display the contents of the returned array.

# Include http library
include("LIB_http.php"); 



Download ing Web Pages 31

# Define the target and referer web pages
$target = "http://www.schrenk.com/publications.php";
$ref    = "http://www.schrenk.com";

# Request the header
$return_array = http_get_withheader($target, $ref); 

# Display the header
echo "FILE CONTENTS \n";
var_dump($return_array['FILE']); 

echo "ERRORS \n";
var_dump($return_array['ERROR']); 

echo "STATUS \n";
var_dump($return_array['STATUS']); 

Listing 3-6: Using http_get_withheader()

The script in Listing 3-6 downloads the page and displays the requested 
page, any errors, and a variety of status information related to the fetch 
and download. 

Listing 3-7 shows what is produced when the script in Listing 3-6 is exe-
cuted, with the array that includes the page header, error conditions, and 
status. Notice that the contents of the returned file are limited to only the 
HTTP header, because we requested only the header and not the entire 
page. Also, notice that the first line in a HTTP header is the HTTP code, 
which indicates the status of the request. An HTTP code of 200 tells us that 
the request was successful. The HTTP code also appears in the status array 
element.3 

FILE CONTENTS 
string(215) "HTTP/1.1 200 OK
Date: Sat, 08 Oct 2008 16:38:51 GMT
Server: Apache/2.0.53 (FreeBSD) mod_ssl/2.0.53 OpenSSL/0.9.7g PHP/4.4.0 
X-Powered-By: PHP/4.4.0
Content-Type: text/html; charset=ISO-8859-1

"
ERRORS
string(0) ""

STATUS
array(20) {
  ["url"]=>
  string(39) "http://www.schrenk.com/publications.php"
  ["content_type"]=>
  string(29) "text/html; charset=ISO-8859-1"
  ["http_code"]=>
  int(200)

3 A complete list of HTTP codes can be found in Appendix B.



32 Chapter  3

  ["header_size"]=>
  int(215)
  ["request_size"]=>
  int(200)
  ["filetime"]=>
  int(-1)
  ["ssl_verify_result"]=>
  int(0)
  ["redirect_count"]=>
  int(0)
  ["total_time"]=>
  float(0.683)
  ["namelookup_time"]=>
  float(0.005)
  ["connect_time"]=>
  float(0.101)
  ["pretransfer_time"]=>
  float(0.101)
  ["size_upload"]=>
  float(0)
  ["size_download"]=>
  float(0)
  ["speed_download"]=>
  float(0)
  ["speed_upload"]=>
  float(0)
  ["download_content_length"]=>
  float(0)
  ["upload_content_length"]=>
  float(0)
  ["starttransfer_time"]=>
  float(0.683)
  ["redirect_time"]=>
  float(0)
}

Listing 3-7: File contents, errors, and the download status array returned by LIB_http

The information returned in $array['STATUS'] is extraordinarily useful for 
learning how the fetch was conducted. Included in this array are values 
for download speed, access times, and file sizes—all valuable when writing 
diagnostic webbots that monitor the performance of a website.

Learning More About HTTP Headers

When a Content-Type line appears in an HTTP header, it defines the MIME, 
or the media type of file sent from the server. The MIME type tells the web 
agent what to do with the file. For example, the Content-Type in the previous 
example was text/html, which indicates that the file is a web page. Knowing if 



Download ing Web Pages 33

the file they just downloaded was an image or an HTML file helps browsers 
know if they should display the file as text or render an image. For example, 
the HTTP header information for a JPEG image is shown in Listing 3-8.

HTTP/1.1 200 OK 
Date: Mon, 23 Mar 2009 00:06:13 GMT 
Server: Apache/1.3.12 (Unix) mod_throttle/3.1.2 tomcat/1.0 PHP/4.0.3pl1 
Last-Modified: Wed, 23 Jul 2008 18:03:29 GMT 
ETag: "74db-9063-3d3eebf1" 
Accept-Ranges: bytes 
Content-Length: 36963 
Content-Type: image/jpeg

Listing 3-8: An HTTP header for an image file request

Examining LIB_http’s Source Code

Most webbots in this book will use the library LIB_http to download pages 
from the Internet. If you plan to explore any of the webbot examples that 
appear later in this book, you should obtain a copy of this library; the latest 
version is available for download at this book’s website. We’ll explore some of 
the defaults and functions of LIB_http here.

LIB_http Defaults

At the very beginning of the library is a set of defaults, as shown in Listing 3-9.

define("WEBBOT_NAME", "Test Webbot");       # How your webbot will appear in server logs
define("CURL_TIMEOUT", 25);                 # Time (seconds) to wait for network response
define("COOKIE_FILE", "c:\cookie.txt");     # Location of cookie file

Listing 3-9: LIB_http defaults

LIB_http Functions

The functions shown in Listing 3-10 are available within LIB_http. All of 
these functions return the array defined earlier, containing downloaded 
files, error messages, and the status of the file transfer. 

http_get($target, $ref)                              # Simple get request (w/o header)
http_get_withheader($target, $ref)                   # Simple get request (w/ header) 
http_get_form($target, $ref, $data_array)            # Form (method ="GET", w/o header)
http_get_form_withheader($target, $ref, $data_array) # Form (method ="GET", w/ header)
http_post_form($target, $ref, $data_array)           # Form (method ="POST", w/o header)
http_post_withheader($target, $ref, $data_array)     # Form (method ="POST", w/ header)
http_header($target, $ref)                           # Only returns header

Listing 3-10: LIB_http functions



34 Chapter  3

Final Thoughts

Some of these functions use an additional input parameter, $data_array, 
when form data is passed from the webbot to the webserver. These functions 
are listed below: 

� http_get_form()

� http_get_form_withheader()

� http_post_form()

� http_post_form_withheader()

If you don’t understand what all these functions do now, don’t worry. 
Their use will become familiar to you as you go through the examples that 
appear later in this book. Now might be a good time to thumb through 
Appendix A, which details the features of cURL that webbot developers are 
most apt to need.


