

C O N T E N T S I N D E T A I L

PREFACE xvii
Acknowledgments ... xix

1
SECURITY IN THE WORLD OF WEB APPLICATIONS 1
Information Security in a Nutshell .. 1

Flirting with Formal Solutions ... 2
Enter Risk Management... 4
Enlightenment Through Taxonomy .. 6
Toward Practical Approaches .. 7

A Brief History of the Web ... 8
Tales of the Stone Age: 1945 to 1994 ... 8
The First Browser Wars: 1995 to 1999 .. 10
The Boring Period: 2000 to 2003 .. 11
Web 2.0 and the Second Browser Wars: 2004 and Beyond 12

The Evolution of a Threat.. 14
The User as a Security Flaw... 14
The Cloud, or the Joys of Communal Living.. 15
Nonconvergence of Visions ... 15
Cross-Browser Interactions: Synergy in Failure ... 16
The Breakdown of the Client-Server Divide .. 17

PART I: ANATOMY OF THE WEB 21

2
IT STARTS WITH A URL 23
Uniform Resource Locator Structure.. 24

Scheme Name... 24
Indicator of a Hierarchical URL .. 25
Credentials to Access the Resource... 26
Server Address .. 26
Server Port .. 27
Hierarchical File Path.. 27
Query String.. 28
Fragment ID... 28
Putting It All Together Again .. 29

Reserved Characters and Percent Encoding .. 31
Handling of Non-US-ASCII Text.. 32

Common URL Schemes and Their Function.. 36
Browser-Supported, Document-Fetching Protocols ... 36
Protocols Claimed by Third-Party Applications and Plug-ins.............................. 36
Nonencapsulating Pseudo-Protocols.. 37
Encapsulating Pseudo-Protocols .. 37
Closing Note on Scheme Detection .. 38

tw_book.book Page ix Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

x Contents in Detai l

Resolution of Relative URLs ... 38
Security Engineering Cheat Sheet.. 40

When Constructing Brand-New URLs Based on User Input 40
When Designing URL Input Filters ... 40
When Decoding Parameters Received Through URLs 40

3
HYPERTEXT TRANSFER PROTOCOL 41
Basic Syntax of HTTP Traffic ... 42

The Consequences of Supporting HTTP/0.9 .. 44
Newline Handling Quirks.. 45
Proxy Requests... 46
Resolution of Duplicate or Conflicting Headers... 47
Semicolon-Delimited Header Values.. 48
Header Character Set and Encoding Schemes ... 49
Referer Header Behavior ... 51

HTTP Request Types ... 52
GET.. 52
POST.. 52
HEAD ... 53
OPTIONS.. 53
PUT .. 53
DELETE ... 53
TRACE .. 53
CONNECT ... 54
Other HTTP Methods .. 54

Server Response Codes.. 54
200–299: Success ... 54
300–399: Redirection and Other Status Messages... 55
400–499: Client-Side Error ... 55
500–599: Server-Side Error .. 56
Consistency of HTTP Code Signaling .. 56

Keepalive Sessions .. 56
Chunked Data Transfers ... 57
Caching Behavior ... 58
HTTP Cookie Semantics.. 60
HTTP Authentication... 62
Protocol-Level Encryption and Client Certificates .. 64

Extended Validation Certificates... 65
Error-Handling Rules ... 65

Security Engineering Cheat Sheet.. 67
When Handling User-Controlled Filenames in Content-Disposition Headers 67
When Putting User Data in HTTP Cookies.. 67
When Sending User-Controlled Location Headers .. 67
When Sending User-Controlled Redirect Headers... 67
When Constructing Other Types of User-Controlled Requests or Responses........ 67

tw_book.book Page x Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Contents in Detai l xi

4
HYPERTEXT MARKUP LANGUAGE 69
Basic Concepts Behind HTML Documents ... 70

Document Parsing Modes.. 71
The Battle over Semantics .. 72

Understanding HTML Parser Behavior .. 73
Interactions Between Multiple Tags ... 74
Explicit and Implicit Conditionals.. 75
HTML Parsing Survival Tips.. 76

Entity Encoding ... 76
HTTP/HTML Integration Semantics... 78
Hyperlinking and Content Inclusion ... 79

Plain Links ... 79
Forms and Form-Triggered Requests.. 80
Frames.. 82
Type-Specific Content Inclusion .. 82
A Note on Cross-Site Request Forgery... 84

Security Engineering Cheat Sheet.. 85
Good Engineering Hygiene for All HTML Documents 85
When Generating HTML Documents with Attacker-Controlled Bits 85
When Converting HTML to Plaintext ... 85
When Writing a Markup Filter for User Content ... 86

5
CASCADING STYLE SHEETS 87
Basic CSS Syntax.. 88

Property Definitions .. 89
@ Directives and XBL Bindings ... 89
Interactions with HTML.. 90

Parser Resynchronization Risks.. 90
Character Encoding... 91
Security Engineering Cheat Sheet.. 93

When Loading Remote Stylesheets ... 93
When Putting Attacker-Controlled Values into CSS ... 93
When Filtering User-Supplied CSS.. 93
When Allowing User-Specified Class Values on HTML Markup 93

6
BROWSER-SIDE SCRIPTS 95
Basic Characteristics of JavaScript... 96

Script Processing Model .. 97
Execution Ordering Control ... 100
Code and Object Inspection Capabilities .. 101
Modifying the Runtime Environment .. 102
JavaScript Object Notation and Other Data Serializations 104
E4X and Other Syntax Extensions... 106

tw_book.book Page xi Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

xii Contents in Detai l

Standard Object Hierarchy .. 107
The Document Object Model ... 109
Access to Other Documents ... 111

Script Character Encoding.. 112
Code Inclusion Modes and Nesting Risks ... 113
The Living Dead: Visual Basic ... 114
Security Engineering Cheat Sheet.. 115

When Loading Remote Scripts ... 115
When Parsing JSON Received from the Server .. 115
When Putting User-Supplied Data Inside JavaScript Blocks 115
When Interacting with Browser Objects on the Client Side 115
If You Want to Allow User-Controlled Scripts on Your Page 116

7
NON-HTML DOCUMENT TYPES 117
Plaintext Files .. 117
Bitmap Images .. 118
Audio and Video .. 119
XML-Based Documents ... 119

Generic XML View ... 120
Scalable Vector Graphics.. 121
Mathematical Markup Language.. 122
XML User Interface Language... 122
Wireless Markup Language... 123
RSS and Atom Feeds .. 123

A Note on Nonrenderable File Types .. 124
Security Engineering Cheat Sheet.. 125

When Hosting XML-Based Document Formats .. 125
On All Non-HTML Document Types... 125

8
CONTENT RENDERING WITH BROWSER PLUG-INS 127
Invoking a Plug-in.. 128

The Perils of Plug-in Content-Type Handling ... 129
Document Rendering Helpers.. 130
Plug-in-Based Application Frameworks ... 131

Adobe Flash .. 132
Microsoft Silverlight .. 134
Sun Java ... 134
XML Browser Applications (XBAP) .. 135

ActiveX Controls.. 136
Living with Other Plug-ins ... 137
Security Engineering Cheat Sheet.. 138

When Serving Plug-in-Handled Files ... 138
When Embedding Plug-in-Handled Files .. 138
If You Want to Write a New Browser Plug-in or ActiveX Component 138

tw_book.book Page xii Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Contents in Detai l xiii

PART II: BROWSER SECURITY FEATURES 139

9
CONTENT ISOLATION LOGIC 141
Same-Origin Policy for the Document Object Model .. 142

document.domain .. 143
postMessage(...) .. 144
Interactions with Browser Credentials.. 145

Same-Origin Policy for XMLHttpRequest ... 146
Same-Origin Policy for Web Storage... 148
Security Policy for Cookies ... 149

Impact of Cookies on the Same-Origin Policy.. 150
Problems with Domain Restrictions.. 151
The Unusual Danger of “localhost” ... 152
Cookies and “Legitimate” DNS Hijacking.. 153

Plug-in Security Rules ... 153
Adobe Flash .. 154
Microsoft Silverlight .. 157
Java ... 157

Coping with Ambiguous or Unexpected Origins ... 158
IP Addresses .. 158
Hostnames with Extra Periods .. 159
Non–Fully Qualified Hostnames ... 159
Local Files ... 159
Pseudo-URLs .. 161
Browser Extensions and UI .. 161

Other Uses of Origins .. 161
Security Engineering Cheat Sheet.. 162

Good Security Policy Hygiene for All Websites .. 162
When Relying on HTTP Cookies for Authentication 162
When Arranging Cross-Domain Communications in JavaScript 162
When Embedding Plug-in-Handled Active Content from Third Parties 162
When Hosting Your Own Plug-in-Executed Content....................................... 163
When Writing Browser Extensions ... 163

10
ORIGIN INHERITANCE 165
Origin Inheritance for about:blank .. 166
Inheritance for data: URLs... 167
Inheritance for javascript: and vbscript: URLs .. 169
A Note on Restricted Pseudo-URLs ... 170
Security Engineering Cheat Sheet.. 172

11
LIFE OUTSIDE SAME-ORIGIN RULES 173
Window and Frame Interactions ... 174

Changing the Location of Existing Documents .. 174
Unsolicited Framing.. 178

tw_book.book Page xiii Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

xiv Contents in Detai l

Cross-Domain Content Inclusion .. 181
A Note on Cross-Origin Subresources... 183

Privacy-Related Side Channels .. 184
Other SOP Loopholes and Their Uses .. 185
Security Engineering Cheat Sheet.. 186

Good Security Hygiene for All Websites ... 186
When Including Cross-Domain Resources .. 186
When Arranging Cross-Domain Communications in JavaScript 186

12
OTHER SECURITY BOUNDARIES 187
Navigation to Sensitive Schemes... 188
Access to Internal Networks.. 189
Prohibited Ports... 190
Limitations on Third-Party Cookies.. 192
Security Engineering Cheat Sheet.. 195

When Building Web Applications on Internal Networks................................ 195
When Launching Non-HTTP Services, Particularly on Nonstandard Ports 195
When Using Third-Party Cookies for Gadgets or Sandboxed Content 195

13
CONTENT RECOGNITION MECHANISMS 197
Document Type Detection Logic... 198

Malformed MIME Types .. 199
Special Content-Type Values.. 200
Unrecognized Content Type .. 202
Defensive Uses of Content-Disposition ... 203
Content Directives on Subresources .. 204
Downloaded Files and Other Non-HTTP Content ... 205

Character Set Handling ... 206
Byte Order Marks .. 208
Character Set Inheritance and Override .. 209
Markup-Controlled Charset on Subresources.. 209
Detection for Non-HTTP Files.. 210

Security Engineering Cheat Sheet.. 212
Good Security Practices for All Websites... 212
When Generating Documents with Partly Attacker-Controlled Contents 212
When Hosting User-Generated Files ... 212

14
DEALING WITH ROGUE SCRIPTS 213
Denial-of-Service Attacks .. 214

Execution Time and Memory Use Restrictions ... 215
Connection Limits ... 216
Pop-Up Filtering ... 217
Dialog Use Restrictions.. 218

Window-Positioning and Appearance Problems.. 219
Timing Attacks on User Interfaces .. 222

tw_book.book Page xiv Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Contents in Detai l xv

Security Engineering Cheat Sheet.. 224
When Permitting User-Created <iframe> Gadgets on Your Site...................... 224
When Building Security-Sensitive UIs .. 224

15
EXTRINSIC SITE PRIVILEGES 225
Browser- and Plug-in-Managed Site Permissions .. 226

Hardcoded Domains .. 227
Form-Based Password Managers... 227
Internet Explorer’s Zone Model ... 229

Mark of the Web and Zone.Identifier ... 231
Security Engineering Cheat Sheet.. 232

When Requesting Elevated Permissions from Within a Web Application 232
When Writing Plug-ins or Extensions That Recognize Privileged Origins.......... 232

PART III: A GLIMPSE OF THINGS TO COME 233

16
NEW AND UPCOMING SECURITY FEATURES 235
Security Model Extension Frameworks ... 236

Cross-Domain Requests ... 236
XDomainRequest .. 239
Other Uses of the Origin Header ... 240

Security Model Restriction Frameworks .. 241
Content Security Policy.. 242
Sandboxed Frames .. 245
Strict Transport Security... 248
Private Browsing Modes.. 249

Other Developments .. 250
In-Browser HTML Sanitizers.. 250
XSS Filtering .. 251

Security Engineering Cheat Sheet.. 253

17
OTHER BROWSER MECHANISMS OF NOTE 255
URL- and Protocol-Level Proposals .. 256
Content-Level Features.. 258
I/O Interfaces ... 259

18
COMMON WEB VULNERABILITIES 261
Vulnerabilities Specific to Web Applications... 262
Problems to Keep in Mind in Web Application Design... 263
Common Problems Unique to Server-Side Code .. 265

tw_book.book Page xv Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

xvi Contents in Detai l

EPILOGUE 267

NOTES 269

INDEX 273

tw_book.book Page xvi Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

H Y P E R T E X T T R A N S F E R
P R O T O C O L

The next essential concept we need to discuss is the
Hypertext Transfer Protocol (HTTP): the core trans-
fer mechanism of the Web and the preferred method
for exchanging URL-referenced documents between
servers and clients. Despite having hypertext in its
name, HTTP and the actual hypertext content (the
HTML language) often exist independent of each
other. That said, they are intertwined in sometimes
surprising ways.

The history of HTTP offers interesting insight into its authors’ ambitions
and the growing relevance of the Internet. Tim Berners-Lee’s earliest 1991
draft of the protocol (HTTP/0.91) was barely one and a half pages long, and
it failed to account for even the most intuitive future needs, such as extensi-
bility needed to transmit non-HTML data.

tw_book.book Page 41 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

42 Chapter 3

Five years and several iterations of the specification later, the first
official HTTP/1.0 standard (RFC 19452) tried to rectify many of these short-
comings in about 50 densely packed pages of text. Fast-forward to 1999, and
in HTTP/1.1 (RFC 26163), the seven credited authors attempted to antici-
pate almost every possible use of the protocol, creating an opus over 150
pages long. That’s not all: As of this writing, the current work on HTTPbis,4
essentially a replacement for the HTTP/1.1 specification, comes to 360 pages
or so. While much of the gradually accumulated content is irrelevant to the
modern Web, this progression makes it clear that the desire to tack on new
features far outweighs the desire to prune failed ones.

Today, all clients and servers support a not-entirely-accurate superset of
HTTP/1.0, and most can speak a reasonably complete dialect of HTTP/1.1,
with a couple of extensions bolted on. Despite the fact that there is no practi-
cal need to do so, several web servers, and all common browsers, also main-
tain backward compatibility with HTTP/0.9.

Basic Syntax of HTTP Traffic

At a glance, HTTP is a fairly simple, text-based protocol built on top of
TCP/IP.* Every HTTP session is initiated by establishing a TCP connection
to the server, typically to port 80, and then issuing a request that outlines the
requested URL. In response, the server returns the requested file and, in the
most rudimentary use case, tears down the TCP connection immediately
thereafter.

The original HTTP/0.9 protocol provided no room for any additional
metadata to be exchanged between the participating parties. The client
request always consisted of a single line, starting with GET, followed by the
URL path and query string, and ending with a single CRLF newline (ASCII
characters 0x0D 0x0A; servers were also advised to accept a lone LF). A
sample HTTP/0.9 request might have looked like this:

GET /fuzzy_bunnies.txt

In response to this message, the server would have immediately returned
the appropriate HTML payload. (The specification required servers to wrap
lines of the returned document at 80 characters, but this advice wasn’t really
followed.)

The HTTP/0.9 approach has a number of substantial deficiencies. For
example, it offers no way for browsers to communicate users’ language pref-
erences, supply a list of supported document types, and so on. It also gives
servers no way to tell a client that the requested file could not be found, that
it has moved to a different location, or that the returned file is not an HTML

* Transmission Control Protocol (TCP) is one of the core communications protocols of the Internet,
providing the transport layer to any application protocols built on top of it. TCP offers reason-
ably reliable, peer-acknowledged, ordered, session-based connectivity between networked hosts.
In most cases, the protocol is also fairly resilient against blind packet spoofing attacks attempted
by other, nonlocal hosts on the Internet.

tw_book.book Page 42 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 43

document to begin with. Finally, the scheme is not kind to server admin-
istrators: When the transmitted URL information is limited to only the path
and query strings, it is impossible for a server to host multiple websites,
distinguished by their hostnames, under one IP address—and unlike DNS
records, IP addresses don’t come cheap.

In order to fix these shortcomings (and to make room for future
tweaks), HTTP/1.0 and HTTP/1.1 standards embrace a slightly different
conversation format: The first line of a request is modified to include proto-
col version information, and it is followed by zero or more name: value pairs
(also known as headers), each occupying a separate line. Common request
headers included in such requests are User-Agent (browser version informa-
tion), Host (URL hostname), Accept (supported MIME document types*),
Accept-Language (supported language codes), and Referer (a misspelled field
indicating the originating page for the request, if known).

These headers are terminated with a single empty line, which may be
followed by any payload the client wishes to pass to the server (the length of
which must be explicitly specified with an additional Content-Length header).
The contents of the payload are opaque from the perspective of the protocol
itself; in HTML, this location is commonly used for submitting form data in
one of several possible formats, though this is in no way a requirement.

Overall, a simple HTTP/1.1 request may look like this:

POST /fuzzy_bunnies/bunny_dispenser.php HTTP/1.1
Host: www.fuzzybunnies.com
User-Agent: Bunny-Browser/1.7
Content-Type: text/plain
Content-Length: 17
Referer: http://www.fuzzybunnies.com/main.html

I REQUEST A BUNNY

The server is expected to respond to this query by opening with a line
that specifies the supported protocol version, a numerical status code (used
to indicate error conditions and other special circumstances), and an optional,
human-readable status message. A set of self-explanatory headers comes next,
ending with an empty line. The response continues with the contents of the
requested resource:

HTTP/1.1 200 OK
Server: Bunny-Server/0.9.2
Content-Type: text/plain
Connection: close

BUNNY WISH HAS BEEN GRANTED

* MIME type (aka Internet media type) is a simple, two-component value identifying the class and
format of any given computer file. The concept originated in RFC 2045 and RFC 2046, where it
served as a way to describe email attachments. The registry of official values (such as text/plain or
audio/mpeg) is currently maintained by IANA, but ad hoc types are fairly common.

tw_book.book Page 43 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

44 Chapter 3

RFC 2616 also permits the response to be compressed in transit using
one of three supported methods (gzip, compress, deflate), unless the client
explicitly opts out by providing a suitable Accept-Encoding header.

The Consequences of Supporting HTTP/0.9
Despite the improvements made in HTTP/1.0 and HTTP/1.1, the unwelcome
legacy of the “dumb” HTTP/0.9 protocol lives on, even if it is normally hid-
den from view. The specification for HTTP/1.0 is partly to blame for this,
because it requested that all future HTTP clients and servers support the
original, half-baked draft. Specifically, section 3.1 says:

HTTP/1.0 clients must . . . understand any valid response in the
format of HTTP/0.9 or HTTP/1.0.

In later years, RFC 2616 attempted to backtrack on this requirement
(section 19.6: “It is beyond the scope of a protocol specification to mandate
compliance with previous versions.”), but acting on the earlier advice, all
modern browsers continue to support the legacy protocol as well.

To understand why this pattern is dangerous, recall that HTTP/0.9 serv-
ers reply with nothing but the requested file. There is no indication that the
responding party actually understands HTTP and wishes to serve an HTML
document. With this in mind, let’s analyze what happens if the browser sends
an HTTP/1.1 request to an unsuspecting SMTP service running on port 25
of example.com:

GET /<html><body><h1>Hi! HTTP/1.1
Host: example.com:25
...

Because the SMTP server doesn’t understand what is going on, it’s likely
to respond this way:

220 example.com ESMTP
500 5.5.1 Invalid command: "GET /<html><body><h1>Hi! HTTP/1.1"
500 5.1.1 Invalid command: "Host: example.com:25"
...
421 4.4.1 Timeout

All browsers willing to follow the RFC are compelled to accept these
messages as the body of a valid HTTP/0.9 response and assume that the
returned document is, indeed, HTML. These browsers will interpret the
quoted attacker-controlled snippet appearing in one of the error messages
as if it comes from the owners of a legitimate website at example.com. This
profoundly interferes with the browser security model discussed in Part II
of this book and, therefore, is pretty bad.

tw_book.book Page 44 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 45

Newline Handling Quirks
Setting aside the radical changes between HTTP/0.9 and HTTP/1.0, several
other core syntax tweaks were made later in the game. Perhaps most notably,
contrary to the letter of earlier iterations, HTTP/1.1 asks clients not only to
honor newlines in the CRLF and LF format but also to recognize a lone CR
character. Although this recommendation is disregarded by the two most
popular web servers (IIS and Apache), it is followed on the client side by all
browsers except Firefox.

The resulting inconsistency makes it easier for application developers
to forget that not only LF but also CR characters must be stripped from any
attacker-controlled values that appear anywhere in HTTP headers. To illus-
trate the problem, consider the following server response, where a user-
supplied and insufficiently sanitized value appears in one of the headers,
as highlighted in bold:

HTTP/1.1 200 OK[CR][LF]
Set-Cookie: last_search_term=[CR][CR]<html><body><h1>Hi![CR][LF]
[CR][LF]
Action completed.

To Internet Explorer, this response may appear as:

HTTP/1.1 200 OK
Set-Cookie: last_search_term=

<html><body><h1>Hi!

Action completed.

In fact, the class of vulnerabilities related to HTTP header newline
smuggling—be it due to this inconsistency or just due to a failure to filter any
type of a newline—is common enough to have its own name: header injection
or response splitting.

Another little-known and potentially security-relevant tweak is support
for multiline headers, a change introduced in HTTP/1.1. According to the
standard, any header line that begins with a whitespace is treated as a contin-
uation of the previous one. For example:

X-Random-Comment: This is a very long string,
 so why not wrap it neatly?

Multiline headers are recognized in client-issued requests by IIS and
Apache, but they are not supported by Internet Explorer, Safari, or Opera.
Therefore, any implementation that relies on or simply permits this syntax
in any attacker-influenced setting may be in trouble. Thankfully, this is rare.

tw_book.book Page 45 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

46 Chapter 3

Proxy Requests
Proxies are used by many organizations and Internet service providers to
intercept, inspect, and forward HTTP requests on behalf of their users. This
may be done to improve performance (by allowing certain server responses
to be cached on a nearby system), to enforce network usage policies (for
example, to prevent access to porn), or to offer monitored and authenti-
cated access to otherwise separated network environments.

Conventional HTTP proxies depend on explicit browser support: The
application needs to be configured to make a modified request to the proxy
system, instead of attempting to talk to the intended destination. To request
an HTTP resource through such a proxy, the browser will normally send a
request like this:

GET http://www.fuzzybunnies.com/ HTTP/1.1
User-Agent: Bunny-Browser/1.7
Host: www.fuzzybunnies.com
...

The key difference between the above example and the usual syntax is
the presence of a fully qualified URL in the first line of the request (http://
www.fuzzybunnies.com/), instructing the proxy where to connect to on behalf
of the user. This information is somewhat redundant, given that the Host
header already specifies the hostname; the only reason for this overlap is that
the mechanisms evolved independent of each other. To avoid being fooled
by co-conspiring clients and servers, proxies should either correct any mis-
matching Host headers to match the request URL or associate cached con-
tent with a particular URL-Host pair and not just one of these values.

Many HTTP proxies also allow browsers to request non-HTTP resources,
such as FTP files or directories. In these cases, the proxy will wrap the response
in HTTP, and perhaps convert it to HTML if appropriate, before returning it
to the user.* That said, if the proxy does not understand the requested proto-
col, or if it is simply inappropriate for it to peek into the exchanged data (for
example, inside encrypted sessions), a different approach must be used. A
special type of a request, CONNECT, is reserved for this purpose but is not
further explained in the HTTP/1.1 RFC. The relevant request syntax is instead
outlined in a separate, draft-only specification from 1998.5 It looks like this:

CONNECT www.fuzzybunnies.com:1234 HTTP/1.1
User-Agent: Bunny-Browser/1.7
...

* In this case, some HTTP headers supplied by the client may be used internally by the proxy,
but they will not be transmitted to the non-HTTP endpoint, which creates some interesting, if
non-security-relevant, protocol ambiguities.

tw_book.book Page 46 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 47

If the proxy is willing and able to connect to the requested destination,
it acknowledges this request with a specific HTTP response code, and the role
of this protocol ends. At that point, the browser will begin sending and receiv-
ing raw binary data within the established TCP stream; the proxy, in turn, is
expected to forward the traffic between the two endpoints indiscriminately.

NOTE Hilariously, due to a subtle omission in the draft spec, many browsers have incorrectly
processed the nonencrypted, proxy-originating error responses returned during an
attempt to establish an encrypted connection. The affected implementations interpreted
such plaintext responses as though they originated from the destination server over a
secure channel. This glitch effectively eliminated all assurances associated with the use
of encrypted communications on the Web. It took over a decade to spot and correct
the flaw.6

Several other classes of lower-level proxies do not use HTTP to com-
municate directly with the browser but nevertheless inspect the exchanged
HTTP messages to cache content or enforce certain rules. The canonical
example of this is a transparent proxy that silently intercepts traffic at the
TCP/IP level. The approach taken by transparent proxies is unusually dan-
gerous: Any such proxy can look at the destination IP and the Host header
sent in the intercepted connection, but it has no way of immediately telling
if that destination IP is genuinely associated with the specified server name.
Unless an additional lookup and correlation is performed, co-conspiring cli-
ents and servers can have a field day with this behavior. Without these addi-
tional checks, the attacker simply needs to connect to his or her home server
and send a misleading Host: www.google.com header to have the response
cached for all other users as though genuinely coming from www.google.com.

Resolution of Duplicate or Conflicting Headers
Despite being relatively verbose, RFC 2616 does a poor job of explaining how
a compliant parser should resolve potential ambiguities and conflicts in the
request or response data. Section 19.2 of this RFC (“Tolerant Applications”)
recommends relaxed and error-tolerant parsing of certain fields in “unam-
biguous” cases, but the meaning of the term itself is, shall we say, not particu-
larly unambiguous.

For example, because of a lack of specification-level advice, roughly half
of all browsers will favor the first occurrence of a particular HTTP header,
and the rest will favor the last one, ensuring that almost every header injec-
tion vulnerability, no matter how constrained, is exploitable for at least some
percentage of targeted users. On the server side, the situation is similarly ran-
dom: Apache will honor the first Host header seen, while IIS will completely
reject a request with multiple instances of this field.

tw_book.book Page 47 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

48 Chapter 3

On a related note, the relevant RFCs contain no explicit prohibition
on mixing potentially conflicting HTTP/1.0 and HTTP/1.1 headers and no
requirement for HTTP/1.0 servers or clients to ignore all HTTP/1.1 syntax.
Because of this design, it is difficult to predict the outcome of indirect con-
flicts between HTTP/1.0 and HTTP/1.1 directives that are responsible for
the same thing, such as Expires and Cache-Control.

Finally, in some rare cases, header conflict resolution is outlined in the
spec very clearly, but the purpose of permitting such conflicts to arise in the
first place is much harder to understand. For example, HTTP/1.1 clients are
required to send the Host header on all requests, but servers (not just prox-
ies!) are also required to recognize absolute URLs in the first line of the
request, as opposed to the traditional path- and query-only method. This
rule permits a curiosity such as this:

GET http://www.fuzzybunnies.com/ HTTP/1.1
Host: www.bunnyoutlet.com

In this case, section 5.2 of RFC 2616 instructs clients to disregard the
nonfunctional (but still mandatory!) Host header, and many implementa-
tions follow this advice. The problem is that underlying applications are likely
to be unaware of this quirk and may instead make somewhat important deci-
sions based on the inspected header value.

NOTE When complaining about the omissions in the HTTP RFCs, it is important to recognize
that the alternatives can be just as problematic. In several scenarios outlined in that
RFC, the desire to explicitly mandate the handling of certain corner cases led to patently
absurd outcomes. One such example is the advice on parsing dates in certain HTTP
headers, at the request of section 3.3 in RFC 1945. The resulting implementation (the
prtime.c file in the Firefox codebase7) consists of close to 2,000 lines of extremely con-
fusing and unreadable C code just to decipher the specified date, time, and time zone in
a sufficiently fault-tolerant way (for uses such as deciding cache content expiration).

Semicolon-Delimited Header Values
Several HTTP headers, such as Cache-Control or Content-Disposition, use a
semicolon-delimited syntax to cram several separate name=value pairs into a
single line. The reason for allowing this nested notation is unclear, but it is
probably driven by the belief that it will be a more efficient or a more intuitive
approach that using several separate headers that would always have to go
hand in hand.

Some use cases outlined in RFC 2616 permit quoted-string as the right-
hand parameter in such pairs. Quoted-string is a syntax in which a sequence of
arbitrary printable characters is surrounded by double quotes, which act as
delimiters. Naturally, the quote mark itself cannot appear inside the string,
but—importantly—a semicolon or a whitespace may, permitting many other-
wise problematic values to be sent as is.

tw_book.book Page 48 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 49

Unfortunately for developers, Internet Explorer does not cope with
the quoted-string syntax particularly well, effectively rendering this encoding
scheme useless. The browser will parse the following line (which is meant to
indicate that the response is a downloadable file rather than an inline docu-
ment) in an unexpected way:

Content-Disposition: attachment; filename="evil_file.exe;.txt"

In Microsoft’s implementation, the filename will be truncated at the
semicolon character and will appear to be evil_file.exe. This behavior creates a
potential hazard to any application that relies on examining or appending a
“safe” filename extension to an attacker-controlled filename and otherwise
correctly checks for the quote character and newlines in this string.

NOTE An additional quoted-pair mechanism is provided to allow quotes (and any other char-
acters) to be used safely in the string when prefixed by a backslash. This mechanism
appears to be specified incorrectly, however, and not supported by any major browser
except for Opera. For quoted-pair to work properly, stray “\” characters would need to
be banned from the quoted-string, which isn’t the case in RFC 2616. Quoted-pair
also permits any CHAR-type token to be quoted, including newlines, which is incom-
patible with other HTTP-parsing rules.

It is also worth noting that when duplicate semicolon-delimited fields are
found in a single HTTP header, their order of precedence is not defined by
the RFC. In the case of filename= in Content-Disposition, all mainstream browsers
use the first occurrence. But there is little consistency elsewhere. For example,
when extracting the URL= value from the Refresh header (used to force reload-
ing the page after a specified amount of time), Internet Explorer 6 will fall
back to the last instance, yet all other browsers will prefer the first one. And
when handling Content-Type, Internet Explorer, Safari, and Opera will use the
first charset= value, while Firefox and Chrome will rely on the last.

NOTE Food for thought: A fascinating but largely non-security-related survey of dozens
of inconsistencies associated with the handling of just a single HTTP header—
Content-Disposition—can be found on a page maintained by Julian Reschke:
http://greenbytes.de/tech/tc2231/.

Header Character Set and Encoding Schemes
Like the documents that laid the groundwork for URL handling, all subse-
quent HTTP specs have largely avoided the topic of dealing with non-US-
ASCII characters inside header values. There are several plausible scenarios
where non-English text may legitimately appear in this context (for example,
the filename in Content-Disposition), but when it comes to this, the expected
browser behavior is essentially undefined.

tw_book.book Page 49 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

50 Chapter 3

Originally, RFC 1945 permitted the TEXT token (a primitive broadly
used to define the syntax of other fields) to contain 8-bit characters, provid-
ing the following definition:

OCTET = <any 8-bit sequence of data>
 CTL = <any US-ASCII control character
 (octets 0 - 31) and DEL (127)>
 TEXT = <any OCTET except CTLs,
 but including LWS>

The RFC followed up with cryptic advice: When non-US-ASCII charac-
ters are encountered in a TEXT field, clients and servers may interpret them
as ISO-8859-1, the standard Western European code page, but they don’t
have to. Later, RFC 2616 copied and pasted the same specification of TEXT
tokens but added a note that non-ISO-8859-1 strings must be encoded using
a format outlined in RFC 2047,8 originally created for email communications.
Fair enough; in this simple scheme, the encoded string opens with a “=?” pre-
fix, followed by a character-set name, a “?q?” or “?b?” encoding-type indicator
(quoted-printable* or base64,† respectively), and lastly the encoded string itself.
The sequence ends with a “?=” terminator. An example of this may be:

Content-Disposition: attachment; filename="=?utf-8?q?Hi=21.txt?="

NOTE The RFC should also have stated that any spurious “=?...?=” patterns must never be
allowed as is in the relevant headers, in order to avoid unintended decoding of values
that were not really encoded to begin with.

Sadly, the support for this RFC 2047 encoding is spotty. It is recognized
in some headers by Firefox and Chrome, but other browsers are less cooper-
ative. Internet Explorer chooses to recognize URL-style percent encoding in
the Content-Disposition field instead (a habit also picked up by Chrome) and
defaults to UTF-8 in this case. Firefox and Opera, on the other hand, prefer
supporting a peculiar percent-encoded syntax proposed in RFC 2231,9 a
striking deviation from how HTTP syntax is supposed to look:

Content-Disposition: attachment; filename*=utf-8'en-us'Hi%21.txt

Astute readers may notice that there is no single encoding scheme sup-
ported by all browsers at once. This situation prompts some web application
developers to resort to using raw high-bit values in the HTTP headers, typi-
cally interpreted as UTF-8, but doing so is somewhat unsafe. In Firefox, for
example, a long-standing glitch causes UTF-8 text to be mangled when put

* Quoted-printable is a simple encoding scheme that replaces any nonprintable or otherwise illegal
characters with the equal sign (=) followed by a 2-digit hexadecimal representation of the 8-bit
character value to be encoded. Any stray equal signs in the input text must be replaced with
“=3D” as well.
† Base64 is a non-human-readable encoding that encodes arbitrary 8-bit input using a 6-bit alpha-
bet of case-sensitive alphanumerics, “+”, and “/”. Every 3 bytes of input map to 4 bytes of output.
If the input does not end at a 3-byte boundary, this is indicated by appending one or two equal
signs at the end of the output string.

tw_book.book Page 50 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 51

in the Cookie header, permitting attacker-injected cookie delimiters to mate-
rialize in unexpected places.10 In other words, there are no easy and robust
solutions to this mess.

When discussing character encodings, the problem of handling of the
NUL character (0x00) probably deserves a mention. This character, used as a
string terminator in many programming languages, is technically prohibited
from appearing in HTTP headers (except for the aforementioned, dysfunc-
tional quoted-pair syntax), but as you may recall, parsers are encouraged to be
tolerant. When this character is allowed to go through, it is likely to have
unexpected side effects. For example, Content-Disposition headers are trun-
cated at NUL by Internet Explorer, Firefox, and Chrome but not by Opera
or Safari.

Referer Header Behavior
As mentioned earlier in this chapter, HTTP requests may include a Referer
header. This header contains the URL of a document that triggered the cur-
rent navigation in some way. It is meant to help with certain troubleshooting
tasks and to promote the growth of the Web by emphasizing cross-references
between related web pages.

Unfortunately, the header may also reveal some information about user
browsing habits to certain unfriendly parties, and it may leak sensitive infor-
mation that is encoded in the URL query parameters on the referring page.
Due to these concerns, and the subsequent poor advice on how to mitigate
them, the header is often misused for security or policy enforcement pur-
poses, but it is not up to the task. The main problem is that there is no way
to differentiate between a client that is not providing the header because of
user privacy preferences, one that is not providing it because of the type of
navigation taking place, and one that is deliberately tricked into hiding this
information by a malicious referring site.

Normally, this header is included in most HTTP requests (and preserved
across HTTP-level redirects), except in the following scenarios:

 After organically entering a new URL into the address bar or opening a
bookmarked page.

 When the navigation originates from a pseudo-URL document, such as
data: or javascript:.

 When the request is a result of redirection controlled by the Refresh
header (but not a Location-based one).

 Whenever the referring site is encrypted but the requested page isn’t.
According to RFC 2616 section 15.1.2, this is done for privacy reasons, but
it does not make a lot of sense. The Referer string is still disclosed to third
parties when one navigates from one encrypted domain to an unrelated
encrypted one, and rest assured, the use of encryption is not synonymous
with trustworthiness.

 If the user decides to block or spoof the header by tweaking browser set-
tings or installing a privacy-oriented plug-in.

tw_book.book Page 51 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

52 Chapter 3

As should be apparent, four out of five of these conditions can be pur-
posefully induced by any rogue site.

HTTP Request Types
The original HTTP/0.9 draft provided a single method (or “verb”) for
requesting a document: GET. The subsequent proposals experimented
with an increasingly bizarre set of methods to permit interactions other
than retrieving a document or running a script, including such curiosities
as SHOWMETHOD, CHECKOUT, or—why not—SPACEJUMP.11

Most of these thought experiments have been abandoned in HTTP/1.1,
which settles on a more manageable set of eight methods. Only the first two
request types—GET and POST—are of any significance to most of the mod-
ern Web.

GET
The GET method is meant to signify information retrieval. In practice, it
is used for almost all client-server interactions in the course of a normal
browsing session. Regular GET requests carry no browser-supplied payloads,
although they are not strictly prohibited from doing so.

The expectation is that GET requests should not have, to quote the RFC,
“significance of taking an action other than retrieval” (that is, they should
make no persistent changes to the state of the application). This requirement
is increasingly meaningless in modern web applications, where the applica-
tion state is often not even managed entirely on the server side; consequently,
the advice is widely ignored by application developers.*

NOTE In HTTP/1.1, clients may ask the server for any set of possibly noncontiguous or over-
lapping fragments of the target document by specifying the Range header on GET
(and, less commonly, on some other types of requests). The server is not obliged to comply,
but where the mechanism is available, browsers may use it to resume aborted downloads.

POST
The POST method is meant for submitting information (chiefly HTML
forms) to the server for processing. Because POST actions may have persis-
tent side effects, many browsers ask the user to confirm before reloading any
content retrieved with POST, but for the most part, GET and POST are used
in a quasi-interchangeable manner.

POST requests are commonly accompanied by a payload, the length of
which is indicated by the Content-Length header. In the case of plain HTML,
the payload may consist of URL-encoded or MIME-encoded form data (a for-
mat detailed in Chapter 4), although again, the syntax is not constrained at
the HTTP level in any special way.

* There is an anecdotal (and perhaps even true) tale of an unfortunate webmaster by the name
of John Breckman. According to the story, John’s website has been accidentally deleted by a
search engine–indexing robot. The robot simply unwittingly discovered an unauthenticated,
GET-based administrative interface that John had built for his site . . . and happily followed every
“delete” link it could find.

tw_book.book Page 52 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 53

HEAD
HEAD is a rarely used request type that is essentially identical to GET but
that returns only the HTTP headers, and not the actual payload, for the
requested content. Browsers generally do not issue HEAD requests on their
own, but the method is sometimes employed by search engine bots and other
automated tools, for example, to probe for the existence of a file or to check
its modification time.

OPTIONS
OPTIONS is a metarequest that returns the set of supported methods for a
particular URL (or “*”, meaning the server in general) in a response header.
The OPTIONS method is almost never used in practice, except for server
fingerprinting; because of its limited value, the returned information may
not be very accurate.

NOTE For the sake of completeness, we need to note that OPTIONS requests are also a corner-
stone of a proposed cross-domain request authorization scheme, and as such, they may
gain some prominence soon. We will revisit this scheme, and explore many other upcom-
ing browser security features, in Chapter 16.

PUT
A PUT request is meant to allow files to be uploaded to the server at the
specified target URL. Because browsers do not support PUT, intentional file-
upload capabilities are almost always implemented through POST to a server-
side script, rather than with this theoretically more elegant approach.

That said, some nonweb HTTP clients and servers may use PUT for their
own purposes. Just as interestingly, some web servers may be misconfigured
to process PUT requests indiscriminately, creating an obvious security risk.

DELETE
DELETE is a self-explanatory method that complements PUT (and that is
equally uncommon in practice).

TRACE
TRACE is a form of “ping” request that returns information about all the
proxy hops involved in processing a request and echoes the original request
as well. TRACE requests are not issued by web browsers and are seldom used
for legitimate purposes. TRACE’s primary use is for security testing, where it
may reveal interesting details about the internal architecture of HTTP serv-
ers in a remote network. Precisely for this reason, the method is often dis-
abled by server administrators.

tw_book.book Page 53 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

54 Chapter 3

CONNECT
The CONNECT method is reserved for establishing non-HTTP connections
through HTTP proxies. It is not meant to be issued directly to servers. If the
support for CONNECT request is enabled accidentally on a particular server,
it may pose a security risk by offering an attacker a way to tunnel TCP traffic
into an otherwise protected network.

Other HTTP Methods
A number of other request methods may be employed by other nonbrowser
applications or browser extensions; the most popular set of HTTP extensions
may be WebDAV, an authoring and version-control protocol described in
RFC 4918.12

Further, the XMLHttpRequest API nominally allows client-side JavaScript
to make requests with almost arbitrary methods to the originating server—
although this last functionality is heavily restricted in certain browsers (we
will look into this in Chapter 9).

Server Response Codes

Section 10 of RFC 2616 lists nearly 50 status codes that a server may choose
from when constructing a response. About 15 of these are used in real life,
and the rest are used to indicate increasingly bizarre or unlikely states, such
as “402 Payment Required” or “415 Unsupported Media Type.” Most of the
RFC-listed states do not map cleanly to the behavior of modern web applica-
tions; the only reason for their existence is that somebody hoped they even-
tually would.

A few codes are worth memorizing because they are common or carry
special meaning, as discussed below.

200–299: Success
This range of status codes is used to indicate a successful completion of a
request:

200 OK This is a normal response to a successful GET or POST. The
browser will display the subsequently returned payload to the user or
will process it in some other context-specific way.

204 No Content This code is sometimes used to indicate a successful
request to which no verbose response is expected. A 204 response aborts
navigation to the URL that triggered it and keeps the user on the origi-
nating page.

206 Partial Content This code is like 200, except that it is returned by
servers in response to range requests. The browser must already have a
portion of the document (or it would not have issued a range request)
and will normally inspect the Content-Range response header to reassem-
ble the document before further processing it.

tw_book.book Page 54 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 55

300–399: Redirection and Other Status Messages
These codes are used to communicate a variety of states that do not indicate
an error but that require special handling on the browser end:

301 Moved Permanently, 302 Found, 303 See Other This response
instructs the browser to retry the request at a new location, specified in
the Location response header. Despite the distinctions made in the RFC,
when encountering any of these response codes, all modern browsers
replace POST with GET, remove the payload, and then resubmit the
request automatically.

NOTE Redirect messages may contain a payload, but if they do, this message will
not be shown to the user unless the redirection is not possible (for example,
because of a missing or unsupported Location value). In fact, in some
browsers, display of the message may be suppressed even in that scenario.

304 Not Modified This nonredirect response instructs the client that
the requested document hasn’t been modified in relation to the copy the
client already has. This response is seen after conditional requests with
headers such as If-Modified-Since, which are issued to revalidate the browser
document cache. The response body is not shown to the user. (If the
server responds this way to an unconditional request, the result will be
browser-specific and may be hilarious; for example, Opera will pop up
a nonfunctional download prompt.)

307 Temporary Redirect Similar to 302, but unlike with other modes
of redirection, browsers will not downgrade POST to GET when follow-
ing a 307 redirect. This code is not commonly used in web applications,
and some browsers do not behave very consistently when handling it.

400–499: Client-Side Error
This range of codes is used to indicate error conditions caused by the behav-
ior of the client:

400 Bad Request (and related messages) The server is unable or unwill-
ing to process the request for some unspecified reason. The response pay-
load will usually explain the problem to some extent and will be typically
handled by the browser just like a 200 response.

More specific variants, such as “411 Length Required,” “405 Method
Not Allowed,” or “414 Request-URI Too Long,” also exist. It’s anyone’s
guess as to why not specifying Content-Length when required has a dedi-
cated 411 response code but not specifying Host deserves only a generic
400 one.

401 Unauthorized This code means that the user needs to provide
protocol-level HTTP authentication credentials in order to access the
resource. The browser will usually prompt the user for login information
next, and it will present a response body only if the authentication pro-
cess is unsuccessful. This mechanism will be explained in more detail
shortly, in “HTTP Authentication” on page 62.

tw_book.book Page 55 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

56 Chapter 3

403 Forbidden The requested URL exists but can’t be accessed for
reasons other than incorrect HTTP authentication. Reasons may involve
insufficient filesystem permissions, a configuration rule that prevents
this request from being processed, or insufficient credentials of some
sort (e.g., invalid cookies or an unrecognized source IP address). The
response will usually be shown to the user.

404 Not Found The requested URL does not exist. The response body
is typically shown to the user.

500–599: Server-Side Error
This is a class of error messages returned in response to server-side problems:

500 Internal Server Error, 503 Service Unavailable, and so on The server
is experiencing a problem that prevents it from fulfilling the request. This
may be a transient condition, a result of misconfiguration, or simply the
effect of requesting an unexpected location. The response is normally
shown to the user.

Consistency of HTTP Code Signaling
Because there is no immediately observable difference between returning
most 2xx, 4xx, and 5xx codes, these values are not selected with any special
zeal. In particular, web applications are notorious for returning “200 OK”
even when an application error has occurred and is communicated on the
resulting page. (This is one of the many factors that make automated testing
of web applications much harder than it needs to be.)

On rare occasions, new and not necessarily appropriate HTTP codes are
invented for specific uses. Some of these are standardized, such as a couple
of messages introduced in the WebDAV RFC.13 Others, such as Microsoft’s
Microsoft Exchange “449 Retry With” status, are not.

Keepalive Sessions

Originally, HTTP sessions were meant to happen in one shot: Make one
request for each TCP connection, rinse, and repeat. The overhead of repeat-
edly completing a three-step TCP handshake (and forking off a new process
in the traditional Unix server design model) soon proved to be a bottleneck,
so HTTP/1.1 standardized the idea of keepalive sessions instead.

The existing protocol already gave the server an understanding of where
the client request ended (an empty line, optionally followed by Content-Length
bytes of data), but to continue using the existing connection, the client also
needed to know the same about the returned document; the termination of
a connection could no longer serve as an indicator. Therefore, keepalive ses-
sions require the response to include a Content-Length header too, always speci-
fying the amount of data to follow. Once this many payload bytes are received,
the client knows it is okay to send a second request and begin waiting for
another response.

tw_book.book Page 56 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 57

Although very beneficial from a performance standpoint, the way this
mechanism is designed exacerbates the impact of HTTP request and response-
splitting bugs. It is deceptively easy for the client and the server to get out of
sync on which response belongs to which request. To illustrate, let’s consider
a server that thinks it is sending a single HTTP response, structured as follows:

HTTP/1.1 200 OK[CR][LF]
Set-Cookie: term=[CR]Content-Length: 0[CR][CR]HTTP/1.1 200 OK[CR]Gotcha: Yup[CR][LF]
Content-Length: 17[CR][LF]
[CR][LF]
Action completed.

The client, on the other hand, may see two responses and associate the
first one with its most current request and the second one with the yet-to-be-
issued query* (which may even be addressed to a different hostname on the
same IP):

HTTP/1.1 200 OK
Set-Cookie: term=
Content-Length: 0

HTTP/1.1 200 OK
Gotcha: Yup
Content-Length: 17

Action completed.

If this response is seen by a caching HTTP proxy, the incorrect result
may also be cached globally and returned to other users, which is really bad
news. A much safer design for keepalive sessions would involve specifying the
length of both the headers and the payload up front or using a randomly gen-
erated and unpredictable boundary to delimit every response. Regrettably,
the design does neither.

Keepalive connections are the default in HTTP/1.1 unless they are
explicitly turned off (Connection: close) and are supported by many HTTP/1.0
servers when enabled with a Connection: keep-alive header. Both servers and
browsers can limit the number of concurrent requests serviced per connec-
tion and can specify the maximum amount of time an idle connection is kept
around.

Chunked Data Transfers

The significant limitation of Content-Length-based keepalive sessions is
the need for the server to know in advance the exact size of the returned
response. This is a pretty simple task when dealing with static files, as the

* In principle, clients could be designed to sink any unsolicited server response data before
issuing any subsequent requests in a keepalive session, limiting the impact of the attack. This
proposal is undermined by the practice of HTTP pipelining, however; for performance reasons,
some clients are designed to dump multiple requests at once, without waiting for a complete
response in between.

tw_book.book Page 57 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

58 Chapter 3

information is already available in the filesystem. When serving dynamically
generated data, the problem is more complicated, as the output must be
cached in its entirety before it is sent to the client. The challenge becomes
insurmountable if the payload is very large or is produced gradually (think
live video streaming). In these cases, precaching to compute payload size is
simply out of the question.

In response to this challenge, RFC 2616 section 3.6.1 gives servers the
ability to use Transfer-Encoding: chunked, a scheme in which the payload is sent
in portions as it becomes available. The length of every portion of the docu-
ment is declared up front using a hexadecimal integer occupying a separate
line, but the total length of the document is indeterminate until a final zero-
length chunk is seen.

A sample chunked response may look like this:

HTTP/1.1 200 OK
Transfer-Encoding: chunked
...

5
Hello
6
world!
0

There are no significant downsides to supporting chunked data trans-
fers, other than the possibility of pathologically large chunks causing integer
overflows in the browser code or needing to resolve mismatches between
Content-Length and chunk length. (The specification gives precedence to
chunk length, although any attempts to handle this situation gracefully appear
to be ill-advised.) All the popular browsers deal with these conditions prop-
erly, but new implementations need to watch their backs.

Caching Behavior

For reasons of performance and bandwidth conservation, HTTP clients
and some intermediaries are eager to cache HTTP responses for later reuse.
This must have seemed like a simple task in the early days of the Web, but it
is increasingly fraught with peril as the Web encompasses ever more sensi-
tive, user-specific information and as this information is updated more and
more frequently.

RFC 2616 section 13.4 states that GET requests responded to with a range
of HTTP codes (most notably, “200 OK” and “301 Moved Permanently”) may
be implicitly cached in the absence of any other server-provided directives.
Such a response may be stored in the cache indefinitely, and may be reused
for any future requests involving the same request method and destination
URL, even if other parameters (such as Cookie headers) differ. There is a pro-
hibition against caching requests that use HTTP authentication (see “HTTP
Authentication” on page 62), but other authentication methods, such as
cookies, are not recognized in the spec.

tw_book.book Page 58 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 59

When a response is cached, the implementation may opt to revalidate it
before reuse, but doing so is not required most of the time. Revalidation is
achieved by request with a special conditional header, such as If-Modified-Since
(followed by a date recorded on the previously cached response) or If-None-
Match (followed by an opaque ETag header value that the server returned
with an earlier copy). The server may respond with a “304 Not Modified”
code or return a newer copy of the resource.

NOTE The Date/If-Modified-Since and ETag/If-None-Match header pairs, when cou-
pled with Cache-Control: private, offer a convenient and entirely unintended way
for websites to store long-lived, unique tokens in the browser.14 The same can also be
achieved by depositing a unique token inside a cacheable JavaScript file and returning
“304 Not Modified” to all future conditional requests to the token-generating location.
Unlike purpose-built mechanisms such as HTTP cookies (discussed in the next section),
users have very little control over what information is stored in the browser cache,
under what circumstances, and for how long.

Implicit caching is highly problematic, and therefore, servers almost
always should resort to using explicit HTTP-caching directives. To assist with
this, HTTP/1.0 provides an Expires header that specifies the date by which
the cached copy should be discarded; if this value is equal to the Date header
provided by the server, the response is noncacheable. Beyond that simple
rule, the connection between Expires and Date is unspecified: It is not clear
whether Expires should be compared to the system clock on the caching sys-
tem (which is problematic if the client and server clocks are not in sync) or
evaluated based on the Expires – Date delta (which is more robust, but which
may stop working if Date is accidentally omitted). Firefox and Opera use the
latter interpretation, while other browsers prefer the former one. In most
browsers, an invalid Expires value also inhibits caching, but depending on it
is a risky bet.

HTTP/1.0 clients can also include a Pragma: no-cache request header,
which may be interpreted by the proxy as an instruction to obtain a new
copy of the requested resource, instead of returning an existing one. Some
HTTP/1.0 proxies also recognize a nonstandard Pragma: no-cache response
header as an instruction not to make a copy of the document.

In contrast, HTTP/1.1 embraces a far more substantial approach to
caching directives, introducing a new Cache-Control header. The header takes
values such as public (the document is cacheable publicly), private (proxies
are not permitted to cache), no-cache (which is a bit confusing—the response
may be cached but should not be reused for future requests),* and no-store
(absolutely no caching at all). Public and private caching directives may be
accompanied with a qualifier such as max-age, specifying the maximum time
an old copy should be kept, or must-revalidate, requesting a conditional
request to be made before content reuse.

* The RFC is a bit hazy in this regard, but it appears that the intent is to permit the cached
document to be used for purposes such as operating the “back” and “forward” navigation
buttons in a browser but not when a proper page load is requested. Firefox follows this
approach, while all other browsers consider no-cache and no-store to be roughly equivalent.

tw_book.book Page 59 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

60 Chapter 3

Unfortunately, it is typically necessary for servers to return both HTTP/1.0
and HTTP/1.1 caching directives, because certain types of legacy commer-
cial proxies do not understand Cache-Control correctly. In order to reliably
prevent caching over HTTP, it may be necessary to use the following set of
response headers:

Expires: [current date]
Date: [current date]
Pragma: no-cache
Cache-Control: no-cache, no-store

When these caching directives disagree, the behavior is difficult to pre-
dict: Some browsers will favor HTTP/1.1 directives and give precedence to
no-cache, even if it is mistakenly followed by public; others don’t.

Another risk of HTTP caching is associated with unsafe networks, such
as public Wi-Fi networks, which allow an attacker to intercept requests to cer-
tain URLs and return modified, long-cacheable contents on requests to the
victim. If such a poisoned browser cache is then reused on a trusted network,
the injected content will unexpectedly resurface. Perversely, the victim does
not even have to visit the targeted application: A reference to a carefully cho-
sen sensitive domain can be injected by the attacker into some other context.
There are no good solutions to this problem yet; purging your browser cache
after visiting Starbucks may be a very good idea.

HTTP Cookie Semantics

HTTP cookies are not a part of RFC 2616, but they are one of the more
important protocol extensions used on the Web. The cookie mechanism
allows servers to store short, opaque name=value pairs in the browser by send-
ing a Set-Cookie response header and to receive them back on future requests
via the client-supplied Cookie parameter. Cookies are by far the most popular
way to maintain sessions and authenticate user requests; they are one of the
four canonical forms of ambient authority* on the Web (the other forms being
built-in HTTP authentication, IP checking, and client certificates).

Originally implemented in Netscape by Lou Montulli around 1994,
and described in a brief four-page draft document,15 the mechanism has not
been outlined in a proper standard in the last 17 years. In 1997, RFC 210916
attempted to document the status quo, but somewhat inexplicably, it also pro-
posed a number of sweeping changes that, to this day, make this specification
substantially incompatible with the actual behavior of any modern browser.
Another ambitious effort—Cookie2—made an appearance in RFC 2965,17 but
a decade later, it still has virtually no browser-level support, a situation that is

* Ambient authority is a form of access control based on a global and persistent property of the
requesting entity, rather than any explicit form of authorization that would be valid only for a
specific action. A user-identifying cookie included indiscriminately on every outgoing request to
a remote site, without any consideration for why this request is being made, falls into that
category.

tw_book.book Page 60 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 61

unlikely to change. A new effort to write a reasonably accurate cookie specifi-
cation—RFC 626518—was wrapped up shortly before the publication of this
book, finally ending this specification-related misery.

Because of the prolonged absence of any real standards, the actual
implementations evolved in very interesting and sometimes incompatible
ways. In practice, new cookies can be set using Set-Cookie headers followed
by a single name=value pair and a number of optional semicolon-delimited
parameters defining the scope and lifetime of the cookie.

Expires Specifies the expiration date for a cookie in a format similar to
that used for Date or Expires HTTP headers. If a cookie is served without
an explicit expiration date, it is typically kept in memory for the duration
of a browser session (which, especially on portable computers with sus-
pend functionality, can easily span several weeks). Definite-expiry cook-
ies may be routinely saved to disk and persist across sessions, unless a
user’s privacy settings explicitly prevent this possibility.

Max-age This alternative, RFC-suggested expiration mechanism is not
supported in Internet Explorer and therefore is not used in practice.

Domain This parameter allows the cookie to be scoped to a domain
broader than the hostname that returned the Set-Cookie header. The
exact rules and security consequences of this scoping mechanism are
explored in Chapter 9.

NOTE Contrary to what is implied in RFC 2109, it is not possible to scope
cookies to a specific hostname when using this parameter. For example,
domain=example.com will always match www.example.com as well.
Omitting domain is the only way to create host-scoped cookies, but even
this approach is not working as expected in Internet Explorer.

Path Allows the cookie to be scoped to a particular request path prefix.
This is not a viable security mechanism for the reasons explained in
Chapter 9, but it may be used for convenience, to prevent identically
named cookies used in various parts of the application from colliding
with each other.

Secure attribute Prevents the resulting cookie from being sent over
nonencrypted connections.

HttpOnly attribute Removes the ability to read the cookie through the
document.cookie API in JavaScript. This is a Microsoft extension, although
it is now supported by all mainstream browsers.

When making future requests to a domain for which valid cookies are
found in the cookie jar, browsers will combine all applicable name=value pairs
into a single, semicolon-delimited Cookie header, without any additional meta-
data, and return them to the server. If too many cookies need to be sent on a
particular request, server-enforced header size limits will be exceeded, and
the request may fail; there is no method for recovering from this condition,
other than manually purging the cookie jar.

tw_book.book Page 61 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

62 Chapter 3

Curiously, there is no explicit method for HTTP servers to delete unneeded
cookies. However, every cookie is uniquely identified by a name-domain-path
tuple (the secure and httponly attributes are ignored), which permits an old
cookie of a known scope to be simply overwritten. Furthermore, if the over-
writing cookie has an expires date in the past, it will be immediately dropped,
effectively giving a contrived way to purge the data.

Although RFC 2109 requires multiple comma-separated cookies to be
accepted within a single Set-Cookie header, this approach is dangerous and is
no longer supported by any browser. Firefox allows multiple cookies to be
set in a single step via the document.cookie JavaScript API, but inexplicably, it
requires newlines as delimiters instead. No browser uses commas as Cookie
delimiters, and recognizing them on the server side should be considered
unsafe.

Another important difference between the spec and reality is that cookie
values are supposed to use the quoted-string format outlined in HTTP specs
(see “Semicolon-Delimited Header Values” on page 48), but only Firefox
and Opera recognize this syntax in practice. Reliance on quoted-string values
is therefore unsafe, and so is allowing stray quote characters in attacker-
controlled cookies.

Cookies are not guaranteed to be particularly reliable. User agents enforce
modest settings on the number and size of cookies permitted per domain
and, as a misguided privacy feature, may also restrict their lifetime. Because
equally reliable user tracking may be achieved by other means, such as the
ETag/If-None-Match behavior outlined in the previous section, the efforts to
restrict cookie-based tracking probably do more harm than good.

HTTP Authentication

HTTP authentication, as specified in RFC 2617,19 is the original credential-
handling mechanism envisioned for web applications, one that is now almost
completely extinct. The reasons for this outcome might have been the inflex-
ibility of the associated browser-level UIs, the difficulty of accommodating
more sophisticated non-password-based authentication schemes, or perhaps
the inability to exercise control over how long credentials are cached and
what other domains they are shared with.

In any case, the basic scheme is fairly simple. It begins with the browser
making an unauthenticated request, to which the server responds with a “401
Unauthorized” code.* The server must also include a WWW-Authenticate
HTTP header, specifying the requested authentication method, the realm
string (an arbitrary identifier to which the entered credentials should be
bound), and other method-specific parameters, if applicable.

* The terms authentication and authorization appear to be used interchangeably in this RFC, but
they have a distinctive meaning elsewhere in information security. Authentication is commonly
used to refer to the process of proving your identity, whereas authorization is the process of
determining whether your previously established credentials permit you to carry out a specific
privileged action.

tw_book.book Page 62 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 63

The client is expected to obtain the credentials in one way or the other,
encode them in the Authorization header, and retry the original request with
this header included. According to the specification, for performance rea-
sons, the same Authorization header may also be included on subsequent
requests to the same server path prefix without the need for a second WWW-
Authenticate challenge. It is also permissible to reuse the same credentials in
response to any WWW-Authenticate challenges elsewhere on the server, if the
realm string and the authentication method match.

In practice, this advice is not followed very closely: Other than Safari and
Chrome, most browsers ignore the realm string or take a relaxed approach to
path matching. On the flip side, all browsers scope cached credentials not
only to the destination server but also to a specific protocol and port, a prac-
tice that offers some security benefits.

The two credential-passing methods specified in the original RFC are
known as basic and digest. The first one essentially sends the passwords in
plaintext, encoded as base64. The other computes a one-time cryptographic
hash that protects the password from being viewed in plaintext and prevents
the Authorization header from being replayed later. Unfortunately, modern
browsers support both methods and do not distinguish between them in any
clear way. As a result, attackers can simply replace the word digest with basic in
the initial request to obtain a clean, plaintext password as soon as the user
completes the authentication dialog. Surprisingly, section 4.8 of the RFC pre-
dicted this risk and offered some helpful yet ultimately ignored advice:

User agents should consider measures such as presenting a visual
indication at the time of the credentials request of what authentica-
tion scheme is to be used, or remembering the strongest authenti-
cation scheme ever requested by a server and produce a warning
message before using a weaker one. It might also be a good idea
for the user agent to be configured to demand Digest authentica-
tion in general, or from specific sites.

In addition to these two RFC-specified authentication schemes, some
browsers also support less-common methods, such as Microsoft’s NTLM and
Negotiate, used for seamless authentication with Windows domain credentials.20

Although HTTP authentication is seldom encountered on the Internet,
it still casts a long shadow over certain types of web applications. For example,
when an external, attacker-supplied image is included in a thread on a mes-
sage board, and the server hosting that image suddenly decides to return
“401 Unauthorized” on some requests, users viewing the thread will be pre-
sented out of the blue with a somewhat cryptic password prompt. After double-
checking the address bar, many will probably confuse the prompt for a request
to enter their forum credentials, and these will be immediately relayed to the
attacker’s image-hosting server. Oops.

tw_book.book Page 63 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

64 Chapter 3

Protocol-Level Encryption and Client Certificates

As should now be evident, all information in HTTP sessions is exchanged in
plaintext over the network. In the 1990s, this would not have been a big deal:
Sure, plaintext exposed your browsing choices to nosy ISPs, and perhaps to
another naughty user on your office network or an overzealous government
agency, but that seemed no worse than the behavior of SMTP, DNS, or any
other commonly used application protocol. Alas, the growing popularity of
the Web as a commerce platform has aggravated the risk, and substantial net-
work security regression caused by the emergence of inherently unsafe pub-
lic wireless networks put another nail in that coffin.

After several less successful hacks, a straightforward solution to this
problem was proposed in RFC 2818:21 Why not encapsulate normal HTTP
requests within an existing, multipurpose Transport Layer Security (TLS, aka
SSL) mechanism developed several years earlier? This transport method lever-
ages public key cryptography* to establish a confidential, authenticated com-
munication channel between the two endpoints, without requiring any
HTTP-level tweaks.

In order to allow web servers to prove their identity, every HTTPS-enabled
web browser ships with a hefty set of public keys belonging to a variety of
certificate authorities. Certificate authorities are organizations that are trusted
by browser vendors to cryptographically attest that a particular public key
belongs to a particular site, hopefully after validating the identity of the per-
son who requests such attestation and after verifying his claim to the domain
in question.

The set of trusted organizations is diverse, arbitrary, and not particularly
well documented, which often prompts valid criticisms. But in the end, the
system usually does the job reasonably well. Only a handful of bloopers have
been documented so far (including a recent high-profile compromise of a
company named Comodo22), and no cases of widespread abuse of CA privi-
leges are on the record.

As to the actual implementation, when establishing a new HTTPS con-
nection, the browser receives a signed public key from the server, verifies the
signature (which can’t be forged without having access to the CA’s private
key), checks that the signed cn (common name) or subjectAltName fields in
the certificate indicate that this certificate is issued for the server the browser
wants to talk to, and confirms that the key is not listed on a public revocation
list (for example, due to being compromised or obtained fraudulently). If
everything checks out, the browser can proceed by encrypting messages to
the server with that public key and be certain that only that specific party will
be able to decrypt them.

Normally, the client remains anonymous: It generates a temporary encryp-
tion key, but that process does not prove the client’s identity. Such a proof
can be arranged, though. Client certificates are embraced internally by cer-
tain organizations and are adopted on a national level in several countries

* Public key cryptography relies on asymmetrical encryption algorithms to create a pair of keys: a
private one, kept secret by the owner and required to decrypt messages, and a public one,
broadcast to the world and useful only to encrypt traffic to that recipient, not to decrypt it.

tw_book.book Page 64 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 65

around the world (e.g., for e-government services). Since the usual purpose
of a client certificate is to provide some information about the real-world
identity of the user, browsers usually prompt before sending them to newly
encountered sites, for privacy reasons; beyond that, the certificate may act as
yet another form of ambient authority.

It is worth noting that although HTTPS as such is a sound scheme that
resists both passive and active attackers, it does very little to hide the evidence
of access to a priori public information. It does not mask the rough HTTP
request and response sizes, traffic directions, and timing patterns in a typical
browsing session, thus making it possible for unsophisticated, passive attack-
ers to figure out, for example, which embarrassing page on Wikipedia is being
viewed by the victim over an encrypted channel. In fact, in one extreme case,
Microsoft researchers illustrated the use of such packet profiling to recon-
struct user keystrokes in an online application.23

Extended Validation Certificates
In the early days of HTTPS, many public certificate authorities relied on
fairly pedantic and cumbersome user identity and domain ownership checks
before they would sign a certificate. Unfortunately, in pursuit of convenience
and in the interest of lowering prices, some now require little more than a
valid credit card and the ability to put a file on the destination server in order
to complete the verification process. This approach renders most of the cer-
tificate fields other than cn and subjectAltName untrustworthy.

To address this problem, a new type of certificate, tagged using a special
flag, is being marketed today at a significantly higher price: Extended Validation
SSL (EV SSL). These certificates are expected not only to prove domain own-
ership but also more reliably attest to the identity of the requesting party,
following a manual verification process. EV SSL is recognized by all modern
browsers by making portion of the address bar blue or green. Although hav-
ing this tier of certificates is valuable, the idea of coupling a higher-priced
certificate with an indicator that vaguely implies a “higher level of security”
is often criticized as a cleverly disguised money-making scheme.

Error-Handling Rules
In an ideal world, HTTPS connections that involve a suspicious certificate
error, such as a grossly mismatched hostname or an unrecognized certifica-
tion authority, should simply result in a failure to establish the connection.
Less-suspicious errors, such as a recently expired certificate or a hostname
mismatch, perhaps could be accompanied by just a gentle warning.

Unfortunately, most browsers have indiscriminately delegated the
responsibility for understanding the problem to the user, trying hard (and
ultimately failing) to explain cryptography in layman’s terms and requiring
the user to make a binary decision: Do you actually want to see this page or
not? (Figure 3-1 shows one such prompt.)

tw_book.book Page 65 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

66 Chapter 3

Figure 3-1: An example certificate warning dialog
in the still-popular Internet Explorer 6

The language and appearance of SSL warnings has evolved through the
years toward increasingly dumbed-down (but still problematic) explanations
of the problem and more complicated actions required to bypass the warn-
ing. This trend may be misguided: Studies show that over 50 percent of even
the most frightening and disruptive warnings are clicked through.24 It is easy
to blame the users, but ultimately, we may be asking them the wrong questions
and offering exactly the wrong choices. Simply, if it is believed that clicking
through the warning is advantageous in some cases, offering to open the
page in a clearly labeled “sandbox” mode, where the harm is limited, would
be a more sensible solution. And if there is no such belief, any override capa-
bilities should be eliminated entirely (a goal sought by Strict Transport Security,
an experimental mechanism that will be discussed in Chapter 16).

tw_book.book Page 66 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

Hyper tex t T rans fer Pro tocol 67

Security Engineering Cheat Sheet

When Handling User-Controlled Filenames in Content-Disposition Headers

 If you do not need non-Latin characters: Strip or substitute any characters except for alpha-
numerics, “.”, “-”, and “_”. To protect your users against potentially harmful or deceptive
filenames, you may also want to confirm that at least the first character is alphanumeric
and substitute all but the rightmost period with something else (e.g., an underscore).

Keep in mind that allowing quotes, semicolons, backslashes, and control characters
(0x00–0x1F) will introduce vulnerabilities.

 If you need non-Latin names: You must use RFC 2047, RFC 2231, or URL-style percent
encoding in a browser-dependent manner. Make sure to filter out control characters
(0x00–0x1F) and escape any semicolons, backslashes, and quotes.

When Putting User Data in HTTP Cookies

 Percent-encode everything except for alphanumerics. Better yet, use base64. Stray quote
characters, control characters (0x00–0x1F), high-bit characters (0x80–0xFF), commas,
semicolons, and backslashes may allow new cookie values to be injected or the meaning
and scope of existing cookies to be altered.

When Sending User-Controlled Location Headers

 Consult the cheat sheet in Chapter 2. Parse and normalize the URL, and confirm that the
scheme is on a whitelist of permissible values and that you are comfortable redirecting
to the specified host.

Make sure that any control and high-bit characters are escaped properly. Use Puny-
code for hostnames and percent-encoding for the remainder of the URL.

When Sending User-Controlled Redirect Headers

 Follow the advice provided for Location. Note that semicolons are unsafe in this header
and cannot be escaped reliably, but they also happen to have a special meaning in some
URLs. Your choice is to reject such URLs altogether or to percent-encode the “;” charac-
ter, thereby violating the RFC-mandated syntax rules.

When Constructing Other Types of User-Controlled Requests or Responses

 Examine the syntax and potential side effects of the header in question. In general, be
mindful of control and high-bit characters, commas, quotes, backslashes, and semicolons;
other characters or strings may be of concern on a case-by-case basis. Escape or substitute
these values as appropriate.

 When building a new HTTP client, server, or proxy: Do not create a new implementation
unless you absolutely have to. If you can’t help it, read this chapter thoroughly and aim to
mimic an existing mainstream implementation closely. If possible, ignore the RFC-provided
advice about fault tolerance and bail out if you encounter any syntax ambiguities.

tw_book.book Page 67 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

tw_book.book Page 68 Tuesday, October 18, 2011 10:07 AM

The Tangled Web
© 2011 by Michal Zalewski

