
5
B L I N K E N L I G H T S

Where we conclude that pretty can also be deadly,
and we learn to read from LEDs

The first part of this book focused on various problems
related to the design of the data entry point system.
Those problems were limited to deducing input by
observing seemingly unrelated behavioral patterns by a
user with local access to a system. But as information
moves farther down its path to the addressee and
leaves this system, its exposure broadens, and
problems become more tangible.

The second part of this book focuses on some of the problems that occur
while the data remains within reach, but just after it leaves the originating
system-—moments before it enters the Internet. The exposure discussed
here is limited to roughly the physical footprint of a local area network with
its direct surroundings. An attack at this level requires an observation point
that is local to the origin, but it does not require system-level access.

The specific problem discussed in this chapter is somewhat different from
those discussed previously: the exposure now manifests at the hardware level,
much like in TEMPEST, but is different. The beauty of this phenomenon, and
the ease of observing it with no specialized equipment, more than justify giving
it a closer look.

SOTW_03.book Page 65 Tuesday, March 8, 2005 3:25 PM

66 Chapter 5

The Art of Transmitting Data

The need for computers to communicate with other electronic devices has
been apparent since the beginning of practical computing, as has the difficulty
of achieving this task reliably and on a budget. We can control the machine’s
internal communication by providing generous and custom-fit interfaces
among all major components with a desired capacity, maintaining precise
signal characteristics, and using a common reference clock for all operations,
so that the recipient always knows when to listen, and the sender always knows
when to transmit data. But communication over longer distances or to devices
equipped with nonspecialized, cheap interfaces is a different challenge: the
computer is forced to communicate over a medium that usually does not allow
for the degree of freedom we have grown accustomed to working with on the
insides of a single machine.

In fact, the situation is quite the opposite. The customer expects simple,
convenient, practical, and cheap solutions, and requiring computers to be
connected through a $100, 3-inch, 100-wire cable didn’t seem like a winning
solution. Simplicity is a necessity. The core of any external communication
channel almost always relies on the serial transmission of subsequent bits that
only when reassembled and grouped together produce numeric values, text
strings, or other pieces of data native to the machine environment of the
sender or recipient. In the most seemingly trivial and obvious scenario, when
two machines or devices connected only by a pair of wires need to exchange
information, they do so by setting one of the wires to high or low voltage in
relation to the other (reference) line—or by using any other differing signals
or states, for that matter. They do so in order to send subsequent bits of data
at a given frequency—a frequency that must be kept reasonably close and in
sync on both devices.

Even in such a trivial design, a number of problems immediately arise.
First, the devices do not share a reference clock. Although both have internal
quartz-based clocks, no two affordable clocks are ever accurate enough to
maintain reliable and fast communications over an extended period of time
due to slight manufacturing imperfections, interference, and other physical
conditions. And serial communications demand precise synchronization.
The straightforward bit-encoding scheme, usually referred to as Non-Return to
Zero (NRZ), simply outputs one signal (voltage) for 0 and another signal for 1.
In such a system, it is easy to keep both endpoints synchronized when values
change on a regular basis—the system simply needs to detect a falling or rising
edge, use it as a rough reference, and adjust its own clock accordingly. But
given a longer sequence of 1s or 0s, it becomes difficult for the receiving side
to accurately determine how many bits are being sent. In fact, even a small
clock drift can cause problems, and there is no way to compensate for this
during the exchange of a constant sequence of bits.

SOTW_03.book Page 66 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 67

The obvious solution, to simply interleave the data with a separate,
distinguishable timing signal, is not always the most convenient and efficient
method; increased complexity and reduced throughput is often perceived as
a nuisance.

To effectively address this problem, many systems use a scheme called
Manchester encoding, also known as biphase code. The algorithm for Manchester
coding, shown along with NRZ in Figure 5-1, encodes data using signal
edges, as opposed to signal levels. The original, aforementioned NRZ
encoding uses an internal clock to measure voltage levels at a constant pace,
interpreting low voltage as binary 0 and high voltage as 1. Manchester
encoding, on the other hand, carries data in transitions from low to high
voltage or vice versa. In such a design, the signal is switched to high to denote
binary 1 and to low to indicate 0.*

Although such encoding does not require the clocks to be kept
synchronized, it is also not quite enough as it is: there is no way to encode
two binary 0s or 1s, because it is not possible to go from low to high voltage
twice without returning to low halfway down the road (and vice versa). To
allow this type of information to be encoded, transitions that occur shortly
after a falling or rising signal edge are ignored, thus allowing the system to
encode multiple occurrences of 0 and 1 by returning to the same voltage
midcycle. To manage the “blackout” period after a transition, a simple one-
shot interval clock is necessary.

Figure 5-1: Serial line transmission encodings—NRZ and biphase (Manchester)

The design of a serial line based on the self-synchronizing scheme
discussed above is often extended to provide full-duplex communications in
which both parties can talk at once, either by using two separate lines (transmit
and receive, Tx and Rx for short) or by using advanced echo detection and
cancellation tricks to differentiate between its own signal and the data sent
from the other side. Some mediums require or allow for more sophisticated
signaling schemes, for example sending more than just one bit in every cycle;

* Or the other way around, depending on the transmitter design.

0 1 1 1 0 ...

+5V

0V

NRZ:

Vo
lta

ge

Time (cycles)

0 1 1 1 0 ...

+5V

0V

Biphase:

Vo
lta

ge

Time (cycles)

SOTW_03.book Page 67 Tuesday, March 8, 2005 3:25 PM

68 Chapter 5

yet the principle of communications remains essentially the same, and
Manchester encoding over the lowest possible number of wires—often two—
is prevalent across the entire domain.

Equipped with a knowledge of the basics of “wire pair” serial commun-
ications, let’s take a peak at two prominent examples of serial communications
in the world of networking, see how they exchange data internally, and look at
how this information can leak to third parties without the user noticing.

From Your Email to Loud Noises . . . Back and Forth

The most popular long-distance computer communications device is, hands
down, a modem. Initially introduced in the 1950s for the maintenance and
control of certain types of military equipment at remote locations, the modem
brought the Internet to the masses. Although today often considered some-
what obsolete, the modem has given birth to many advanced technologies,
such as affordable high-speed DSL (Digital Subscriber Line) systems or cable
modems. These devices all use clever variations of the same set of techniques
to communicate over phone lines or other nondedicated analog media using
either audible or inaudible signals. The research invested in improving
modems also contributed to our understanding of numerous large-scale
design problems in electronics in general and computer and network design
in particular. Thus, an understanding of how modems work is key to exploring
other, perhaps more up-to-date, methods of long-distance data transmission.

The universality of the telephone line makes it a natural medium for
computers to use for communication. Phone lines can be found almost
anywhere, and phone systems provide excellent call-routing capabilities,
making it possible to reach just about any location with little if any effort.
There is a tiny caveat, though: phone lines were meant to carry the human
voice, transmitted as a waveform, within narrow-frequency response range
(usually not exceeding several kHz). Because these frequencies were
recorded as voltage changes over a pair of wires and relayed through a
number of analog repeaters and amplifiers, the standard of quality for the
transmission wasn’t particularly high. It had to be just good enough for
people to hear and understand each other, and because the human brain is
a superb signal filtering and processing system, occasional noise or sound-
level fluctuations were not much of a concern—not until much later on,
when customers grew a bit picky.

Computers, on the other hand, are generally engineered to exchange
binary information, which is encoded using fairly precise voltage levels over
well-designed, short lines with good signal characteristics and low
capacitance—an exact opposite of long-distance, poorly shielded telephone
lines with inadequate signal characteristics. Computers also need to talk
much faster and much more than humans usually do. As such, modem
designers had (huge understatement here) a difficult challenge to solve:
They had to determine a way to encode bits of data not only in a manner that
could be efficiently transmitted to a remote system over the wire (something

SOTW_03.book Page 68 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 69

that Manchester encoding made a bit easier), but also as audible signals that
could be accurately distinguished at the other end of the line regardless of
often entirely unpredictable voltage changes and other transmission artifacts.
They had to employ robust error-correction algorithms and variable
transmission speeds to compensate for poor line quality, occasional cross
talk, trucks going over a buried phone line, birds building a nest on a pole,
and so forth. The designers nodded, scratched their heads, and after
perhaps just 40 years brought us an affordable and fairly fast method for
computer-to-computer communication. Let’s take an abbreviated look at
how this developed and how the technology matured—yet essentially stayed
the same—over the decades that followed.

The history of commercial modem development and standardization
began in the 1960s when two standards, Bell 103/113 and V.21, were
conceived. Both standards provided an amazing (for the time) 300-baud
(bits per second) full-duplex connectivity using a technique called frequency
shift keying (FSK). FSK is a mysterious-sounding term that happens to stand
for a rather trivial signal-encoding scheme: it uses two different tones to
denote different values, one frequency for “low,” and another frequency for
“high.” The advantage of using audible frequencies over other types of
signaling is rather significant: this is the only type of signal that can be
relayed through the phone system fairly well—after all, this is what the system
was designed for. All other signals are more or less destined to be trashed
beyond recognition before reaching the other end of the wire, in the best-case
scenario, or being immediately filtered out by bandpass filters somewhere
down the line in the worst case.

In addition to FSK encoding, the aforementioned Bell 103/113 and V.21
standards split the frequency range that could be transmitted over phone
lines in two: one of the modems, the caller, used a frequency of 980 Hz to
encode low and 1,180 Hz to encode high. The other end, the answerer, used
the higher part of the spectrum: 1,650 Hz and 1,850 Hz, respectively. Why
split the frequency in this way? Because a phone line is essentially just a pair
of wires, which can be used for transmission by two devices simultaneously
(full duplex), but only if they are capable of dealing with the fact that their
respective transmissions would superimpose on each other. In full-duplex
communication, each device must be able to distinguish its own signal from
the data it’s receiving and filter it out. If it cannot do so successfully, each
device would have to pause while the other end is talking (simplex mode),
severely impairing the already sort of unimpressive throughput. By splitting
the frequency, the phone line is essentially made to carry what it sees as two
different “voices,” thus ensuring that simultaneous communication can
occur with no collisions.

It took 25 more years for modems to take another step in the right
direction. The next major set of standards, Bell 212A and V.22, took a big
leap forward and dropped frequency shift keying in favor of differential phase
shift keying (DPSK). Rather than change the frequency of a wave, DPSK shifts
its phase to signal different values.

SOTW_03.book Page 69 Tuesday, March 8, 2005 3:25 PM

70 Chapter 5

The phase shift technique essentially introduces a minimal time shift, or
delay, that causes the output audio signal to be slightly out of sync with the
original reference wave, while maintaining exactly the same shape (see
Figure 5-2).

Figure 5-2: Frequency shift versus phase shift

The value of the phase shift, also called the shift value, is expressed in
degrees (a reference to its effect on trigonometric functions: y = sin(x)
shifted by 90° is exactly the same as y = sin(90° + x). A shift value of 360°
denotes a shift by the entire wavelength, which simply puts the waves right
back in sync and has no effect on the waveform. The correspondence of
various phase shifts is shown in Figure 5-3, on the left.

Once both parties are synchronized and have a way to compare the
signal received over the cable with the expected waveform, the actual
encoded data can be easily retrieved. A differential circuit can compare two
signals, subtract them, and easily determine the exact phase shift of the
signal, by comparing it to a reference signal, as shown in Figure 5-3, on the
right.

The new standard also took advantage of a more advanced data-
encoding method. Instead of simply using two alternating signals to transmit
0s and 1s, as was the case previously, V.22 encodes whole dibits—slang for
pairs of bits. Encoding two bits at once can be achieved using four phase shift
values, with the amount of shift used to denote each of the possible values
chosen so that values are uniformly and possibly farthest spaced through the
entire 360° spectrum—and thus easily distinguishable from each other (see
Table 5-1).

Frequency changes (increases)

Frequency does not change, but is shifted
in comparison to the reference frequency

Phase shift encoding

“Low” Value

Frequency shift encoding

Reference
frequency
peaks

“High” Value

SOTW_03.book Page 70 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 71

Figure 5-3: Phase shifted signals (left) and a result of subtracting a reference waveform to
more easily distinguish between phases (right)

The use of dibits allowed for significantly faster transfer speed (1,200
baud) without the need to increase the physical rate with which the actual
signal was modulated. Twice as much information—twice as many bits—was
carried within every single beep.

NOTE Although it is theoretically possible to use such an extended alphabet—that is, compos-
ite signal units similar to dibits (that have more than two states and thus encode more
than one bit at once)—with FSK encoding as well, it is a bit more problematic to do so.
FSK signals must avoid subharmonics and other frequencies that are particularly
prone to distortion when sent through phone systems, thus severely limiting the set of
possible states. The advantage of DPSK over FSK is that it uses a fixed frequency that is
known to cause the fewest transmission problems and, hence, can be used more reliably
at higher transmission rates.

Table 5-1: Using phase shifts to encode two bits of data (dibit)

Dibit Phase Shift

00 90°
01 0°
10 180°
11 270°

Reference signal

Phase 0˚

Phase 90˚

Phase 180˚

Signal - reference

Signal - reference

Signal - reference

Flat signal–zeroed out
Subtraction

Subtraction

Subtraction

SOTW_03.book Page 71 Tuesday, March 8, 2005 3:25 PM

72 Chapter 5

In the next few years, the pace of research accelerated a bit, and a
number of new standards surfaced. The V.22bis standard took the concept of
wide alphabet signaling a bit further, combining DPSK with signal amplitude
(loudness) modulation to build a two-dimensional set of 16 possible values.
The transition from a measured signal to binary values was expressed using a
two-dimensional table. The value to which a signal corresponds is obtained
by first looking up the column, based on the measured phase-shift value, and
then the row is looked up based on the amplitude measurement. A simplified
but analogous two-by-four example is shown in Table 5-2.

To add to the confusion, this new approach was called quadrature
amplitude modulation (QAM). QAM once again made it possible to go from
1,200 to 2,400 bps without actually improving signal modulation speed, but
by extending the number of meanings a single atom of signal can have.

The next major evolutionary step was V.32. V.32 was the first design to
introduce a novel concept: instead of splitting frequencies, it used advanced
echo cancellation circuitry* to detect and subtract the signal transmitted by
the device itself from the data received over the wire. This technique allowed
both devices (sender and receiver) to use the entire frequency spectrum,
instead of just half of it, while still doing full-duplex.

Development continued, and the V.34 protocol soon appeared. Although
the rate at which the signal could safely alternate before introducing excessive
distortion did not noticeably change over the years, the standard was consider-
ably faster than its predecessors. V.34 achieves a throughput of 28,800 baud,
sometimes pushed a bit further by manufacturers to a unofficial speed of
33,600 baud (33.6 Kbps) by sending only about 2,500 to 3,500 signal samples
(alphabet symbols) per second; however, it combines four different
encoding schemes to build a four-dimensional structure with 1,664 possible
states, making it possible to send as many as 41 bits at once. As it turns out,
it’s not about raw speed but how you use what you’ve got.

It is widely believed that the V.34 standard and its derivatives approach
the theoretical limit for transmission of data via the voice-oriented telephone
system. Although this may seem an odd statement given the prevalence of 56
Kbps modems, there is a catch: 56 Kbps devices achieve this transmission rate
in a wholly different way than in analog solutions. Given that most phone
systems have migrated from analog to digital since modems were first

Table 5-2: Two-dimensional encoding of three bits using two distinct signal
parameters

Phase 0° Phase 90° Phase 180° Phase 270°

Low amplitude 000 (0) 001 (1) 010 (2) 011 (3)

High amplitude 100 (4) 101 (5) 110 (6) 111 (7)

* Echo cancellation circuits attempt to distinguish signals being sent by the device itself from
those coming from the other party, and to eliminate or significantly reduce the former. Various
types of such devices are commonly used not only in digital data transfer, but also to improve
phone call quality, eliminate microphone feedback during public events, and solve many other
everyday problems.

SOTW_03.book Page 72 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 73

developed, and because most dial-up providers can now interface their
systems directly with digital telecommunication systems, service providers
can return to the most obvious but, until recently, impossible solution:
changing line voltages instead of shifting frequencies when sending data to a
subscriber. Because the signal is carried as digital data from the beginning—
and can travel over buried copper lines only till the nearest telco facility—
there are virtually no signal quality problems, and the only limit is the voice-
carrying capacity designed into the phone system hardware. Working at 8,000
symbols per second, but operating with a considerably smaller alphabet
(usually about 128 symbols, or voltage levels), it is possible to send data to a
subscriber who is connected to a digital phone system with high-quality wire
using a 56 Kbps modem at a higher speed than usual. The upstream transfer is
still implemented the old-fashioned way, though, and is considerably slower; as
such, the modem is only partly 56 Kbps, and only when conditions permit.

The Day Today
Not much has changed since the conception of modem technology. As
transmission protocols advanced, so did the error-correction and fallback
mechanisms needed to ensure reliable transmission when your favorite
quadruped decides to chew the phone cable. A jungle of standards were
spawned: V.42 provided a basic CRC (cyclic redundancy check) implemen-
tation, MNP-1 to MNP-4 provided proprietary error-correction algorithms,
V.42bis and MNP-5 provided integrity checking combined with compression,
and so on. But the real revolution is yet to come.

Or is it? You might argue that DSL and cable modems are a revolutionary
technology that has changed the world. I am willing to argue: in fact, they are
quite similar to their older cousins, modems. The only significant difference
between the two is that the other endpoint—the server that handles all
connections—has moved from a distant city where the service provider is
located to the nearest local telco facility, and the connection to it can be made
directly using the copper wire coming from the customer’s residence or
business. Because that direct connection again does not go through any other
equipment, these devices can use high, inaudible frequencies and subtler
signals that would otherwise be distorted or not relayed at all over the
telephone network. In contrast, the good old modem was strictly limited to a
narrow range of audible frequencies and signals that the phone system was
intended to carry and that it could carry well. In many ways, DSL devices have
it much easier than the old modem.

As we see, designing a modem is actually quite a complex and difficult
task; that’s why it took us decades to advance from bulky and expensive 300-
baud devices to where we are now.1 Surprisingly, all these devices can talk to
one another, even to devices ten years older, even at the lowest speeds we
long forgot about. Too, all are usually aware of the standards known to date,
including the dozens of alternatives and forks of each. Doesn’t that make
modems even more a marvel of computer engineering?

But who pulls the strings?

SOTW_03.book Page 73 Tuesday, March 8, 2005 3:25 PM

74 Chapter 5

Sometimes, a Modem Is Just a Modem

Modem-to-modem communications is, of course, not where the story starts
or ends. The modem is just a piece of fairly inert middleware that’s hardly
even a good paperweight. For a modem to be of any use, it must be able to
communicate with a computer to receive commands and exchange data,
even when it’s only being used for something as feeble as random web
browsing. Internal modems have it easy: ISA (Integrated Systems Archi-
tecture), PCI (Peripheral Component Interconnect), PCMCIA (PC Memory
Card International Association), and some other dedicated buses provide
high-speed and fairly generous parallel interfaces that make the commun-
ication process almost trivial.

External modems (of the analog or DSL kind), however, have to do
things the hard way, with a serial link. Most analog modems use the well-
known serial protocol RS-232 (renamed in the ’90s to the much more
descriptive EIA/TIA-232-E2); many newer ones use USB (Universal Serial
Bus). As we get close to the information disclosure scenarios in those
devices, we want to get a glimpse of what happens to the data on its way
between the modem and the computer, too, because that plays a crucial
role in the attack.

Although external modems have to use inhumane means of commun-
icating not only with a remote system, but also with the local machine itself,
thanks to the proximity to the computer and the fact that interfaces such as
RS-232 are digital and were designed for use by computers to start with, this
stage is still much simpler than the phone line modulation and demodu-
lation for which bit modems became famous.

RS-232 uses a fairly straightforward implementation of bipolar encoding
for the data exchanged over two separate lines and backs this with a set of
NRZ control lines. To make life a bit more interesting, RS-232 comes with a
multitude of link or protocol features that make it fairly difficult to imple-
ment from scratch: its asynchronous nature, a wide array of possible settings
and speeds, and unusual voltage levels. But with all this, RS-232 still does not
even come close to a real challenge for an implementator who had dealt with
signal modulation over phone lines.

USB, on the other hand, attempts to standardize and unify the serial
interface. Although USB requires higher-end circuitry than RS-232 in
order to interface a computer with a device (because of, among other
things, a higher level of abstraction and higher supported transmission
speeds), the USB is universal (hence its name) and has fewer oddities
and legacy features.

Last but not least, a common method of communicating with local
devices is the use of Ethernet, a mechanism somewhat similar to, but
predating, USB. Let us look at Ethernet for a while now, and I am sure all
those communication protocols will eventually meet in one place.

SOTW_03.book Page 74 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 75

Collisions Under Control

Ethernet networks are, in essence, an advanced type of a multiparty serial link.3
An Ethernet network is composed of a number of computers connected by a
shared medium—nothing particularly complex, in its most basic form, just a
pair of fairly regular wires. When a device on the network uses the medium,
it applies a specific voltage to the wire, and all other connected systems can
interpret the data by measuring the voltages. A set of checks ensures that
devices do not try to use the link at the same time and that recovery is
smooth if an accident happens. Still, even considering this possibility, the
basic design is unbelievably trivial, compared with modems.

To work around the problem of two parties talking at once, a standard
named Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
is used as the core mechanism controlling all communication via Ethernet.
Before sending any data, every device connected to Ethernet follows a CSMA
procedure to see if another device is using the cable by checking the
modem’s electrical properties. If no other transmission is occurring, the
device enters the transmission phase and beams its data out to the masses.

In this phase, the data is sent on the wire as a sequence of bits using
bipolar encoding; the traffic contains a header with all the necessary sender
and recipient information and a proper checksum intended to protect the
integrity of the data in case of external or internal interference, quadruped
or not. A network interface that considers itself to be acting on behalf of a
recipient, presumably by comparing the observed destination address
provided in the packet with its unique MAC (hardware) address stored on
the card, should accept this traffic and verify the checksum. At the same
time, all other parties should ignore this frame; naturally, if they do not (and
almost every card can be instructed not to), the user can view or react to
traffic addressed to others. (You can see how Ethernet was designed in the
spirit of far-fetched trust and altruism—a noble but risky approach.)

It is possible (and not very unlikely) for two devices on an Ethernet
network to start sending at exactly the same moment, even though both
checked just microseconds or nanoseconds ago for another party transmitting.
And, if they do transmit at exactly the same moment, a disaster is bound to
happen. Two transmissions are mixed up and mangled, and the sent data
should fail the checksum test at the destination . . . or should it?

Although the use of a checksum implemented within the Ethernet frame
specification is typically sufficient to verify data transmission accuracy, it may
not be particularly effective if the link is saturated and hundreds or thou-
sands of collisions occur in a short period of time; it is just small enough to
accidentally come out correct from time to time. The law of probabilities tells
us that some damaged packets will—just by chance—have the same check-
sum as an original packet. Furthermore, even if we ignore the problem of
checksum deficiencies, we still want to stop collisions as soon as possible—by

SOTW_03.book Page 75 Tuesday, March 8, 2005 3:25 PM

76 Chapter 5

just letting collisions run rampant, you might find that you are no longer
able to ensure the timely retransmissions of mangled and dropped frames in
your network. After all, the sender sent it with no indication of a problem,
and the recipient did not receive anything even remotely resembling a useful
packet.

The solution comes with the latter part of the standard: collision
detection (CD). The specification calls for the sender to monitor the network
link while explaining their business to others. If another party is caught trying
to talk at the same time, that should be detected (again, with a simple
measurement of the electrical properties of the line), and the transmission
should be immediately aborted. The device should also send a special jam
code to ensure that both frames (the one being sent and the one that
interfered with it) will be unconditionally dropped, without even getting to
the checksum verification; the recipient should be able to spot the jam code
and stop the reception of data being processed. The device then idles for a
gradually increasing and preferably (initially) random period of time after
every attempt (called retransmission backoff), to minimize the likelihood of a
subsequent collision.

NOTE A fun fact: The jam code mechanism imposes an unusual requirement on the protocol.
All frames must have a minimum (!) length, with the value calculated such that it
allows the jam code to be generated and propagated to all machines before the transmis-
sion is completed. With very short frames, there may not be enough time to achieve this.
Hence, the sender is required to artificially pad all their outgoing transmissions.

Figure 5-4 shows the exact sequence of events in a typical collision
scenario. As you can see, Sender A hopes to send data to the recipient but
notices another transmission occurring, at which point they decide to wait
until that transmission stops. Sender A then prepares to send the data but,
unfortunately, Sender B does the same, and both conclude that it is safe to
send data at nearly the same time.

Both attempt to transmit, data gets mangled, and at that point both
detect the other transmission and quickly send a jam code to instruct the
recipient to disregard this frame. Finally, both senders back off for a random
amount of time and hopefully manage not to start simultaneously the next
time around.

Behind the Scenes: Wiring Soup and How We Dealt with It

Although not an example of a particularly scalable or elegant design, the
Ethernet protocol is amazingly powerful and easy to deploy; it enabled the
building of cheap peer-structure networks using coaxial cables just about
anywhere. As such, it has become a de facto standard, replacing many other
(and sometimes superior, but more expensive or proprietary) networking
architectures.

SOTW_03.book Page 76 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 77

Figure 5-4: The stages of a typical Ethernet conversation

Naturally, simple Ethernet over coaxial cable had its limits and dis-
advantages; it was essentially based on a long piece of wire with devices
hooked up to it at various locations, and with resistors on both ends, not
something you'd want to be responsible for maintaining in a large office. A
simple and difficult-to-debug mishap, such as a shorted terminal, could bring
the entire infrastructure down. A more advanced—but only marginally more
expensive—replacement was warmly welcomed.

Electronic multiport repeaters (hubs) made it possible to run wiring
without much effort using twisted pair wiring (Cat-3 and Cat-5 cables with
RJ-45 connectors). To use them, you simply plugged a piece of wire from
your machine into a black box, and all other devices connected to this black
box could communicate with it without much consideration of electrical
problems or the risk that a single cable failure would bring down the entire
network.

Hubs are, in essence, simple repeaters that broadcast all traffic received on
one port to all other ports. They make it possible to build easily reconfigurable
and more reliable star-type networks, but they do little else. As the network
grows, the cost of broadcasting every bit of information to all locations, and the
fact that only one party can talk at once across the entire network, makes it all
too evident that the simplicity of this design is its major weakness.

Switches turned out to be the solution. Switches are the next generation of
hubs. Equipped with a decent processor and some memory, they’re a more
expensive alternative to hubs that provide, under normal circumstances,

Sends data

Receives data

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT
...?

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT

Wants to send,
but detects
signal and waits

Also wants
to send

Activity gone,
prepares to send

Sends data

Collision!

Receives
mangled data

Sends data

Notices other
signal, sends
jam code

Receives jam
code, drops data
received so far

Notices other
signal, sends
jam code

Waits for a
random time

...

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT

SENDER A

SENDER B

RECIPIENT

Waits for a
random time

Still waits...

Retransmit time!
Sends again

Receives data

Signal gone,
sends

Receives

Back to idle

SENDER A

SENDER B

RECIPIENT

Wakes up, but
notices another
signal, waits

Still sends...

Still receives...

SOTW_03.book Page 77 Tuesday, March 8, 2005 3:25 PM

78 Chapter 5

additional high-level analysis of Ethernet frames. This analysis associates
hardware addresses with specific ports and optimizes frame routing by
delivering certain packets directly to the appropriate port (in unicast mode),
instead of broadcasting them to all parties (see Figure 5-5). This greatly
improves performance in more extensive networks.

NOTE Another fun fact: Real hubs are almost extinct nowadays. Almost all 10/100 Mb
devices marketed as hubs actually use basic switch chipsets; it is simply cheaper to
repackage the chip than to develop and maintain several variants.

Figure 5-5: Hubs versus switches in local networks

I’m guessing that at this point you’re asking yourself, Where the heck are
you going with all this? What do modems have to do with information
disclosure? What significance do serial links have in this context? How do
Ethernet networks fit in? And what the heck are blinkenlights?

Glad you asked. I am about to get there—to the last question, that is.

Blinkenlights in Communications

Historically, almost all refrigerator-sized computers were equipped with
numerous prominently exposed diagnostic interfaces. These included arrays
of tiny lights that displayed, among other things, certain arcane properties of
the internal state of a machine, such as internal registers or flags of the core
processing unit or an indication of whether the cat living underneath had
been fed today. As computers became more reliable and compact, and an
average user no longer had to understand the machine’s internals in order

Sender

abc

Recipient

abc

Bystander 1

?

Bystander 2

?

Sender

abc

Recipient

abc

Bystander 1

Hub
Switch

abc

Bystander 2

abc

SOTW_03.book Page 78 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 79

to use it efficiently, the lights started to disappear from many devices. Ever-
increasing clock speeds also contributed to the decline—most of the time it
was no longer possible for humans to get any meaningful information from
such a visual signal that would change thousands or millions of times every
second.

Yet, the lights prevailed in some applications; for example, almost all
networking devices feature light-emitting diodes (LEDs) on their front or
back panel. These provide link diagnostics, such as an indication of whether
a particular module or socket is functioning properly, a party is connected,
data is being transferred, and so on. The lights are not merely a diagnostic
tool either; their hypnotic patterns have strange appeal, and their mystery
plants seeds of uncertainty, fear, and respect in the hearts of lay people who
enter the realm of the server room.

The term blinkenlights or blinkenlichten has been used to describe the much-
adored institution of diagnostic LEDs on computer equipment ever since the
dark ages of computing, bathing the computer geek in the soothing green
light during those long, lonely nights spent at the terminal. It came from an
amusing prank note in mock German (itself a spoof of another, noncomputer
joke from WWII), displayed some time in the 1950s at IBM laboratories. The
note later propagated into a majority of server rooms and computer science
laboratories across the world and went like this (as quoted from Eric S.
Raymond’s Hacker’s Dictionary):

ACHTUNG!

ALLES LOOKENSPEEPERS!

Alles touristen und non−technischen

looken peepers! Das computermachine

ist nicht fuer gefingerpoken und

mittengrabben. Ist easy schnappen

der springenwerk, blowenfusen und

poppencorken mit spitzensparken.

Ist nicht fuer gewerken bei das

dumpkopfen. Das rubbernecken

sichtseeren keepen das cotton−pickenen

hans in das pockets muss; relaxen und

watchen das blinkenlichten.

Communications equipment is one of the last domains in which blinken-
lights prevail and prosper. But that’s not all. Almost all these devices use serial
lines for communications. And, for the sake of simplicity and aesthetics,
“activity” LEDs are sometimes wired almost directly, through a simple driver
circuit, to the transmit or receive line of the device. Curtain falls.

SOTW_03.book Page 79 Tuesday, March 8, 2005 3:25 PM

80 Chapter 5

The Implications of Aesthetics

It took decades for the problem to be discovered, and once it happened (in
2002), it struck us all as so obvious and trivial we wanted to bang our heads
on the keyboard a couple of times.

Joe Lughry and David A. Umphress, in a research paper titled “Informa-
tion Leakage from Optical Emanations,”4 discovered a new type of signal-
disclosure scenario in certain types of network equipment, most often
modems. They concluded that someone observing these lights could go
beyond simply watching the magic lights with the naked eye.

LEDs, unlike incandescent bulbs, usually have short rise and fall times,
meaning that they turn on and off almost instantly. That’s not surprising;
after all, high-end LEDs are used to control fiber-optic links and some other
optoelectronic communication channels. As such, the blinking of an LED
hooked up to a serial data transmission line can actually often mirror single
bits of the transmission as it occurs on the wire. Given a way to record this
activity at a sufficient speed, it should be possible to retrieve this information,
from at least as far as you can see the tiny blinking light on a device with the
naked eye (or with a telephoto lens).

This research caused some stir in the industry; it was eventually also both
downplayed and overhyped, and hence a great deal of confusion ensued, and
very little has changed. The paper resulted in many conflicting reports, but its
basic premise is simple and truly beautiful. The beauty of this technique is that
it is trivial to devise such a device to receive the signal: the equally cheap and
popular counterparts of LEDs—photodiodes and phototransistors—are easy
to acquire and equally easy to interface with the computer. And the exposure
zone, unlike most of the TEMPEST activity we discussed in Chapter 3, is not
merely the subject of urban legends and pure laboratory results, but can be
directly observed and measured.

In the course of their research, the authors performed a set of experi-
ments to verify that the signal could be successfully acquired from as far away
as 20 meters (just under 100 feet) without the need for additional digital signal
conditioning. And common sense suggests that this might actually be an
understatement, especially when good optics are used. (The authors used a
100 mm focal length, f/2.0 lens for the test, but a much better telephoto lens is
commonly available to many midrange SLR (single lens reflex) photography
amateurs. Those who are willing to part with their money can buy a superb-
quality lens with a focal length of as much as 1,200 mm.)

The paper takes a defensive stance in several cases, and a careful reader
might be tempted to conclude that some of the devices classified are not
vulnerable to the problem. In particular, some of the Ethernet devices may
exhibit a more subtle variant of the vulnerability, as you’ll see in the prevention
section later in this chapter. But first let’s peek at the problem with our own
(computerized) eyes, shall we?

SOTW_03.book Page 80 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 81

Building Your Own Spy Gear . . .

The simplicity of building a snooping device makes it quite tempting to do so.
This section contains several suggestions and rough schematics on how to
build and connect such a device to an ordinary computer. Although the circuit
is not particularly complex and does not require a master’s degree in soldering
and a printed board circuit design software, a minimum level of proficiency in
electronics is desirable, as is a dose of common sense. Although external
interfaces of today’s computers are fairly robust and foolproof, there is always
the risk of damaging equipment when attaching home-brew devices in a really
innovative way, in a brief moment of insanity. It’s happened to the best of us.

The baseline design is extremely trivial. It calls for a single phototransistor
(a component consisting of a transistor driven by a built-in photodiode), a
regular low-power NPN (Negative-Positive-Negative) transistor to amplify the
signal a bit further (not always necessary), and a set of potentiometers
(perhaps in the range of 10 kΩ just to have enough flexibility) to experimen-
tally pull down the voltage and control the circuit’s sensitivity and threshold
points. There are no particular requirements for the components, although
your mileage will vary depending on which ones you use. Be sure to select a
phototransistor that has a decent response in the visible light range, though all
cheap ones should work. (For reference, a green LED emits a wavelength of
approximately 520 nm.)

A sample circuit design is shown in Figure 5-6.

Figure 5-6: A simple receiver circuit

The circuit has an optimal running voltage of approximately 5V and a low
maximum current: a power supply capable of delivering perhaps 10 to 50 mA
is more than enough. A word of warning: If you use a supply capable of
delivering a higher voltage, you will risk damaging the port or the computer;
likewise, if you use a more powerful supply and do not prevent higher current
from flowing through the circuit.

NOTE Setting Rvar1 or Rvar2 to a very low resistance may short the circuit. If you want to
fiddle with the knobs mindlessly, it might be a good idea to add a fixed resistor to limit
the current drain.

Vcc

Rvar1

2N2222
or any similar NPN

BP 109
or similar

To computer
Rvar2

GND

SOTW_03.book Page 81 Tuesday, March 8, 2005 3:25 PM

82 Chapter 5

You must shield the phototransistor from external light sources—for
example, by enclosing it in an opaque tube. Because the phototransistor has
no focusing mechanism, it is not likely to pick up more distant signals (other
than ambient light). Thus, for initial tests, it is a good idea to cover it entirely
to simulate darkness and then put it by an LED to excite the circuit. You can
also connect another LED temporarily between the GND and the output line
to test the circuit. The test LED should light up when the sensor is directed at
a light source, but otherwise be fairly dark.

. . . And Using It with a Computer

If the circuit with a test LED hookup works so far, well done; you have built a
fancy TV remote tester. Because generic, cheap phototransistors are eager to
pick up infrared light, your creation should “translate” IR (infrared) into
visible light, but that’s about all the fun stuff it will do. To make it a bit more
useful, you need to interface the circuit with the computer. A good way to do
so is through a line printer interface, LPT, if your computer has one. Unfor-
tunately, this wonderful hardware hacker’s tool is being dropped from some
of the more compact and fancy designs.

Although initially designed to be unidirectional (for output only), the
LPT interface provides a number of status feedback lines, such as “paper
out,” “busy,” and “acknowledgment,” that were intended to provide a means
for the printer to complain about problems. You can easily read the data that
issues through this interface by accessing port 0x379 (the LPT1 status
register) on a PC-compatible system. By hooking the circuit to a parallel port,
you can easily transmit information back to the computer. Although you
might want to connect the circuit to a different interface, LPT is much faster
than, say, RS-232, and you won’t have to cope with any mundane protocols,
signaling schemes, or unusual voltage levels. Too, unlike USB and some
other current solutions, you do not need special controllers to implement a
fairly complex protocol to even be able to talk to your PC.

NOTE Although LPT also offers bi-directional operation modes (ECP or EPP), it is usually
pointless to attempt to use this functionality for such a simple task. In the unidirec-
tional mode, four bits are available for input, more than enough for this application;
switching to bi-directional modes such as EPP or ESP provides an extra four bits.

It is up to you to choose the status line to use. Table 5-3 shows a pin
layout of the DB25 connector used for a printer port. The rows shaded gray
can be used for input.

To interface the circuit with this port, you can simply connect the
ground reference point on the connector with the one used in your circuit
and then hook up the output line to any of the five pins. (Remember to
disconnect the LED used for diagnostics first.) Next, monitor the status port
as you first expose it to light and then cover the sensor. In either case, the
value read depends on how you hooked up the circuit; the exact value does
not matter, as long as the two values are different.

SOTW_03.book Page 82 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 83

Because chip logic requires somewhat different input levels than your
test LED diode, you might have to tweak the Rvar2 until you get distinct
readings from the port when you cover the sensor, and when you expose it to
light. To accomplish this, it is best to be able to monitor the port in real time
on the computer itself.

The way you can monitor the state of the port will depend on the
operating system and the programming language you are using. If you’re
using C, the function used to read the value off a port is inb(port), so in this
particular case you would issue inb(0x379) and check the return value. In
other languages, it is likely to have a similar name. (Try looking for in, inport,

Table 5-3: LPT pinout

LPT Port: DB25 Pinout (Standard Mode)

Pin Name Function

1 Strobe Control output bit 0

2 D0 Data output bit 0

3 D1 Data output bit 1

4 D2 Data output bit 2

5 D3 Data output bit 3

6 D4 Data output bit 4

7 D5 Data output bit 5

8 D6 Data output bit 6

9 D7 Data output bit 7

10 ACK Status input bit 2

11 Busy Status input bit 3

12 Paper Out Status input bit 1

13 Select In Status input bit 0

14 Autofeed Control output bit 1

15 Error Status input (unused)

16 Init Control output bit 2

17 Select Control output bit 3

18 GND Ground (0V)

19 GND Ground (0V)

20 GND Ground (0V)

21 GND Ground (0V)

22 GND Ground (0V)

23 GND Ground (0V)

24 GND Ground (0V)

25 GND Ground (0V)

SOTW_03.book Page 83 Tuesday, March 8, 2005 3:25 PM

84 Chapter 5

readport, and so forth.) Also, Windows users may find the built-in “debug”
utility and its “i” (port read) function quite handy.

NOTE On some systems, such as Linux, you might need to request that the system give you per-
mission to access a specific port first. Consult the documentation for iopl(3) or a simi-
lar call for more information.

At this point, you are ready to go. You can choose to point your probe at
any LED on a device, adjust the sensor based on its brightness, and start
reading alternating patterns of light and dark signals, as you discover how
they correspond to the exchanged information, if at all.

NOTE If you’re curious, you might try to examine the brightness of the indicator diode, not
only a binary representation of its state. It might turn out that even though a specific
LED is not intended to directly map a signal on the serial line to its blink patterns,
there is some analog cross talk between circuits, and the serial line signal will have some
influence on the brightness. A cheap analog-to-digital converter such as TLV571 from
Texas Instruments is just asking to be used this way.

You can use this approach to sample the frequency of less than 1 million
bits per second, which should suffice for capturing transmission on many
interfaces, but not necessarily on Ethernet ports (which transmit at least 10
million bits per second). Past this capture capacity, your LPT port will likely
reach its physical throughput limits, but do not despair: as long as the sensor
(phototransistor) can switch at the rate sufficient to capture communications
in question, you still have an option. Remember that LPT is a parallel port. To
reach faster capture speeds, such as the one needed for Ethernet, combine a
trivial clock, a counter circuit, and a set of sample-and-hold latches (such as
74LS377) to sequentially store data between the port read attempts on the
computer side. You can accumulate this information for a short period of time
and then, by using more than just one status pin (or by switching the port to bi-
directional mode), easily send several bits—samples—to the computer, in a
single burst, in one read cycle, thus improving the read rate four- or eightfold.

I’ll spare you a further, perhaps needless, excursion into the world of
electronics. If you want to toy with the idea of high-speed or analog sampling,
or perhaps just get your kicks from soldiering stuff together and hooking it to a
computer, you might want to take a look at my fairly comprehensive introduc-
tory tutorial under the thin disguise of a computer-controlled robot design
project. You should be able to find it at http://lcamtuf.coredump.cx/
robot.txt.

And now, for those with interests that lean more toward practical
security: a brief discussion of how to address the issue, short of covering all
LEDs in the office with duct tape.

SOTW_03.book Page 84 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 85

Preventing Blinkenlights Data Disclosure—and Why It Will Fail

The easiest solution to the problem, and one suggested by the original
research, is pulse stretching—a practice intended to distort the blinks on an
indicator by prolonging some of them, thus making any practical data
recovery seemingly not feasible. Pulse stretching circuits are a group of fairly
trivial devices that extend the duration of an encountered “high” input
signal for an additional period of time. Most basic pulse stretcher design
relies on a capacitor that charges in the presence of an input signal and then
discharges slowly. This capacitor is connected to a binary discriminator, which
is not a nickname for a vicious wrestling champion, but rather a device that
converts analog data into binary output by applying a particular threshold
(outputting a voltage for logical 1 for all input voltages above n, and 0 for all
input voltages below). In this case, it uses a certain capacitor charge level as
the discrimination point.

More advanced and reliable designs, including purely digital circuitry,
are also common, and all can be used in hubs and switches to make LEDs
nice to look at. Without them, the high-speed blinking at way more than 50
cycles per second (considered the limit on our ability to perceive flicker),
would usually result in our seeing the lights as dim but seemingly constant. A
discriminator causes the LED to be driven by 1 more often than by 0 by
extending the duration of each 1 pulse. This makes the LED light brighter
and blink less often. Figure 5-7 shows the behavior of such a pulse stretcher:
a single spike (single 1) is stretched to last three times as long, whereas all 0s
are left as they are.

Figure 5-7: Pulse stretcher behavior, 3x

0Input: 1 0

Cycles

0V

+5V

0 0

0Output: 1 0

Cycles

0V

+5V

0 0

SOTW_03.book Page 85 Tuesday, March 8, 2005 3:25 PM

86 Chapter 5

While their primary purpose is aesthetic, as I have mentioned, this
also seems to be a good way to solve the problem of light emissions infor-
mation disclosure, by letting the attacker deduce only certain general
properties of the traffic. Thus, at best, the attacker can figure out only
general properties of the traffic, such as when something is being sent
and when it is not.*

What seems to be a good solution, however, is not always. Consider
the following sample data and the corresponding serial line signal:

Assume the signal is processed using a 5x pulse stretcher that makes
every 1 last for five additional cycles. (The original paper suggests a safe limit
of 2x, but we’ll exaggerate to make a point.)

Although it might appear that almost all important information has
been lost when compared with the input signal we want to intercept, it is
possible to recover much of it by making four important observations:

� Obviously, all areas where the stretcher output is zero must have been
zero in the original signal.

� Each stretched run of 1s must have been triggered by 1 at the starting
location in the original stream.

� Each run of L 1s must have originally contained at least one 1 for every N
cycles, where N is the stretch factor for this circuit; otherwise, there
would be gaps in the run. The count of 1s in a block of data represented
under a single stretch of 1s in output is greater than or equal to L/N
rounded up.

� Every run ends after exactly N-1 zeros in the original stream. We know
that these zeros must have been preceded with 1; otherwise the run
would have ended sooner.

* This, technically speaking, is still an attack venue, per the discussion in Chapter 1, yet it is
considerably less effective and practical, for we only get a rough idea of what is going on, not
a copy of the data.

0
Data:

NRZ signal:

1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0

Level activated stretcher (5x):

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0

Original signal:

Data we can read out of LED after stretching:

SOTW_03.book Page 86 Tuesday, March 8, 2005 3:25 PM

Bl inken l ight s 87

By applying this knowledge to the previous example, we can reconstruct
most of the original data, as follows:

In the previous fairly realistic example, fewer than 9 out of 32 bits of data
were lost due to pulse stretching and cannot be conclusively reconstructed
(marked with question marks in the graphic). Thus, we recovered 99.999988%
of the potential search space. We must guess at the remaining data, which
(especially if the data snooped is regular English text, such as email) is rather
trivial to reconstruct compared to the starting point. The authors of the
research suggest that even N = 1.5 or N = 2 “on” time pulse stretching is
sufficient to obfuscate the data, but this is not necessarily so.

The previous reconstruction scheme works with stretches of 0s or 1s.
Some links use return-to-zero (RZ) encodings (such as the Manchester
scheme mentioned earlier), and because the signal is constantly alternating
there, the 2x stretching might indeed be sufficient to obfuscate all data.
However, this is only true if the LED is driven by a signal prior to initial
internal decoding to NRZ—which, in most situations, is not the case. In fact,
applying pulse stretching to RZ-encoded signal is often a silly idea in that the
LED would be on all the time; hence there seems to be no point in doing
that in the first place.

As noted previously, an additional problem stems from the quality of the
pulse stretcher and its susceptibility to interference from other internal
circuits: LED voltage fluctuations that result in slight brightness changes
during a “stretch” period might disclose some information. Capacitor-based
solutions, in particular, can fall into this category.

Thus, some systems, particularly Ethernet devices known to deploy pulse
stretching, can be partly vulnerable to attack, even though the original paper
discussed earlier concluded that there is no direct correlation between the
transmitted data and the behavior of an LED, based on the observation of a
recorded blinking pattern using an oscilloscope.

The optimal solution, particularly with other types of encoding, or when
pulse stretching is not desirable for some other reason (for example, if the
designer wants to avoid making the LED light appear constantly for the time
of a transmission) is to sample the line at a fairly low frequency (for example,
20 Hz) and latch it to a register that holds it until the next sample and that
also controls the LED.

And, now, back to plain English.

0

Stretcher output:

1 ? ? ? ? 1 0 0 0 0 0 1 ? ? ? ? ? 1 0 0 0 0 0 1 1 0 0 0 0 0 0

At least one “1” here

SOTW_03.book Page 87 Tuesday, March 8, 2005 3:25 PM

88 Chapter 5

Food for Thought

Other than network device LEDs, plenty of other, equally interesting light
emissions leak scenarios can be found, although the amount of information
disclosed can be significantly lower. For example, consider disk activity LEDs.
Of course, disk communication is not using serial signaling; instead, portions
of data, ranging from bytes to 32-bit words, are sent simultaneously using a
set of signal lines. And, although the LED is usually attached to indicate only
a state of a specific control line, it is still possible to deduce many aspects of
system activity by measuring seek times or the amount of data stored and
read. (Depending on what the LED is actually attached to, it may be possible
to measure either or both.) Although it’s unlikely that this information
would give an attacker any immediate advantage, certain induced I/O
activities can be combined with hard-disk drive LED observation to draw
interesting conclusions, although I am unaware of any research in this area.

Other potential attack venues involve many USB devices and other
proprietary interfaces. As mentioned earlier, USB is a serial bus, and some
USB appliances do have activity indicators.

Various other unusual and arcane information-disclosure venues have also
been proposed, partly researched or at least toyed with. These include measur-
ing the acoustic effects of recharging capacitors as the CPU consumes various
levels of power depending on the executed instruction5 or measuring a black
box device by analyzing its power consumption with the help of statistical
analysis.6 Once again, no truly comprehensive research has been done in the
area of disclosure channels other than classic EMF (electromagnetic field)
emanations—and it appears to be a good idea to investigate. Best of luck. :-)

SOTW_03.book Page 88 Tuesday, March 8, 2005 3:25 PM

