
I D E A S  F O R  W E B B O T  P R O J E C T S

It’s often more difficult to find applications 
for new technology than it is to learn the 

technology itself. Therefore, this chapter 
focuses on encouraging you to generate ideas for 

things that you can do with webbots. We’ll explore how webbots capitalize on 
browser limitations, and we’ll see a few examples of what people are currently 
doing with webbots. We’ll wrap up by throwing out some wild ideas that might 
help you expand your expectations of what can be done online.

Inspiration from Browser Limitations

A useful method for generating ideas for webbot projects is to study what 
cannot be done by simply pointing a browser at a typical website. You know 
that browsers, used in traditional ways, cannot automate your Internet 
experience. For example, they have these limitations:

 Browsers cannot aggregate and filter information for relevance.

 Browsers cannot interpret what they find online.

 Browsers cannot act on your behalf.

webbots2e.book  Page 15  Thursday, February 16, 2012  11:59 AM



16 Chapter 2

However, a browser may leverage the power of a webbot to do many things 
that it could not do alone. Let’s look at some real-life examples of how browser 
limitations were leveraged into actual webbot projects. 

Webbots That Aggregate and Filter Information for Relevance

TrackRates.com (http://www.trackrates.com, shown in Figure 2-1) is a website 
that deploys an army of webbots to aggregate and filter hotel room prices 
from travel websites. By identifying room prices for specific hotels for specific 
dates, it determines the actual market value for rooms up to three months 
into the future. This information helps hotel managers intelligently price 
rooms by specifically knowing what the competition is charging for similar 
rooms. TrackRates.com also reveals market trends by performing statistical 
analysis on room prices, and it tries to determine periods of high demand by 
indicating dates on which hotels have booked all of their rooms.

Figure 2-1: TrackRates.com 

I wrote TrackRates.com to help hotel managers analyze local markets 
and provide facts for setting room prices. Without the TrackRates.com webbot, 
hotel managers either need to guess what their rooms are worth, rely on less 
current information about their local hotel market, or go through the arduous 
task of manually collecting this data. 

webbots2e.book  Page 16  Thursday, February 16, 2012  11:59 AM

http://trackrates.com


Ideas for  Webbot Projec ts 17

Webbots That Interpret What They Find Online

WebSiteOptimization.com (http://www.websiteoptimization.com) uses a webbot 
to help web developers create websites that use resources effectively. This 
webbot accepts a web page’s URL (as shown in Figure 2-2) and analyzes how 
each graphic, CSS, and JavaScript file is used by the web page. In the interest 
of full disclosure, I should mention that I wrote the backend for this web 
page analyzer.

Figure 2-2: A website-analyzing webbot

The WebSiteOptimization.com webbot analyzes the data it collects and 
offers suggestions for optimizing website performance. Without this tool, 
developers would have to manually parse through their HTML code to 
determine which files are required by web pages, how much bandwidth they 
are using, and how the organization of the web page affects its performance.

Webbots That Act on Your Behalf

Pokerbots, webbots that play online poker, are a response to the recent growth 
in online gambling sites, particularly gaming sites with live poker rooms. 
While the action in these pokers sites is live, not all the players are. Some 
online poker players are webbots, like Poker Robot, shown in Figure 2-3.

Webbots designed to play online poker not only know the rules of Texas 
hold ’em but use predetermined business rules to expertly read how others 
play. They use this information to hold, fold, or bet appropriately. Reportedly, 
these automated players can very effectively pick the pockets of new and 
inexperienced poker players. Some collusion webbots even allow one virtual 

webbots2e.book  Page 17  Thursday, February 16, 2012  11:59 AM



18 Chapter 2

player to play multiple hands at the same table, while making it look like a sepa-
rate person is playing each hand. Imagine playing against a group of people who 
not only know each other’s cards, but hold, fold, and bet against you as a team! 

Figure 2-3: An example pokerbot

Obviously, such webbots that play expert poker (and cheat) provide a 
tremendous advantage. Nobody knows exactly how prevalent pokerbots 
are, but they have created a market for anti-pokerbot software.

A Few Crazy Ideas to Get You Started

One of the goals of this book is to encourage you to write new and experi-
mental webbots of your own design. A way to jumpstart this process is to 
brainstorm and generate some ideas for potential projects. I’ve taken this 
opportunity to list a few ideas to get you started. These ideas are not here 
necessarily because they have commercial value. Instead, they should act as 
inspiration for your own webbots and what you want to accomplish online.

When designing a webbot, remember that the more specifically you can 
define the task, the more useful your webbot will be. What can you do with a 
webbot? Let’s look at a few scenarios.

Help Out a Busy Executive

Suppose you’re a busy executive type and you like to start your day reading 
your online industry publication. Time is limited, however, and you only let 
yourself read industry news until you’ve finished your first cup of coffee. 
Therefore, you don’t want to be bothered with stories that you’ve read before 
or that you know are not relevant to your business. You ask your developer 

webbots2e.book  Page 18  Thursday, February 16, 2012  11:59 AM



Ideas for  Webbot Projec ts 19

to create a specialized webbot that consolidates articles from your favorite 
industry news sources and only displays links to stories that it has not shown 
you before. 

The webbot could ignore articles that contain certain key phrases you 
previously entered in an exclusion list 1 and highlight articles that contain 
references to you or your competitors. With such an application, you could 
quickly scan what’s happening in your industry and only spend time reading 
relevant articles. You might even have more time to enjoy your coffee. 

Save Money by Automating Tasks

It’s possible to design a webbot that automatically buys inventory for a store, 
given a predetermined set of buying criteria. For example, assume you own a 
store that sells used travel gear. Some of your sources for inventory are online 
auction websites.2 Say you are interested in bidding on under-priced Tumi 
suitcases during the closing minute of their auctions. If you don’t use a webbot 
of some sort, you will have to use a web browser to check each auction site 
periodically. 

Without a webbot, it can be expensive to use the Internet in a business 
setting, because repetitive tasks (like procuring inventory) are time consum-
ing without automation. Additionally, the more mundane the task, the greater 
the opportunity for human error. Checking online auctions for products to 
resell could easily consume one or two hours a day—up to 25 percent of a 
40-hour work week. At that rate, someone with an annual salary of $80,000 
would cost a company $20,000 a year to procure inventory (without a webbot). 
That cost does not include the cost of opportunities lost while the employee 
manually monitors auction sites. In scenarios like this, it’s easy to see how prod-
uct acquisition with a webbot saves a lot of money—even for a small business 
with small requirements. Additionally, a webbot may uncover bargains missed 
by someone manually searching the auction site.

Protect Intellectual Property

You can write a webbot to protect your online intellectual property. For 
example, suppose you spent many hours writing a JavaScript program. It has 
commercial value, and you license the script for others to use for a fee. You’ve 
been selling the program for a few months and have learned that some people 
are downloading and using your program without paying for it. You write a 
webbot to find websites that are using your JavaScript program without your 
permission. This webbot searches the Internet and makes a list of URLs that 
reference your JavaScript file. In a separate step, the webbot does a whois 
lookup on the domain to determine the owner from the domain registrar.3 

1 An exclusion list is a list of keywords or phrases that are ignored by a webbot.
2 Some online auctions actually provide to1ols to help you write webbots that manage auctions. 
If you’re interested in automating online auctions, check out eBay’s Developers Program 
(http://developer.ebay.com).
3 whois is a service that returns information about the owner of a website. You can do the 
equivalent of a whois from a shell script or from an online service. 

webbots2e.book  Page 19  Thursday, February 16, 2012  11:59 AM



20 Chapter 2

If the domain is not one of your registered users, the webbot compiles contact 
information from the domain registrar so you can contact the parties who 
are using unlicensed copies of your code.

Monitor Opportunities
You can also write webbots that alert you when particular opportunities arise. 
For example, let’s say that you have an interest in acquiring a Jack Russell 
Terrier.4 Instead of devoting part of each day to searching for your new dog, 
you decide to write a webbot to search for you and notify you when it finds a 
dog meeting your requirements. Your webbot performs a daily search of the 
websites of local animal shelters and dog rescue organizations. It parses the 
contents of the sites, looking for your dog. When the webbot finds a Jack 
Russell Terrier, it sends you an email notification describing the dog and its 
location. The webbot also records this specific dog in its database, so it doesn’t 
send additional notifications for the same dog in the future. This is a fairly 
common webbot task, which could be modified to automatically discover job 
listings, sports scores, or any other timely information.

Verify Access Rights on a Website
Webbots may prevent the potentially nightmarish situation that exists for any 
web developer who mistakenly gives one user access to another user’s data. 
To avoid this situation, you could commission a webbot to verify that all users 
receive the correct access to your site. This webbot logs in to the site with 
every viable username and password. While acting on each user’s behalf, the 
webbot accesses every available page and compares those pages to a list of 
appropriate pages for each user. If the webbot finds a user is inadvertently 
able to access something he or she shouldn’t, that account is temporarily 
suspended until the problem is fixed. Every morning before you arrive at 
your office, the webbot emails a report of any irregularities it found the 
night before.

Create an Online Clipping Service
Suppose you’re very vain, and you’d like a webbot to send an email to your 
mother every time a major news service mentions your name. However, since 
you’re not vain enough to check all the main news websites on a regular 
basis, you write a webbot that accomplishes the task for you. This webbot 
accesses a collection of websites, including CNN, Forbes, and Fortune. 
You design your webbot to look only for articles that mention your name, and 
you employ an exclusion list to ignore all articles that contain words or phrases 
like shakedown, corruption, or money laundering. When the webbot finds an 
appropriate article, it automatically sends your mother an email with a link to 
the article. Your webbot also blind copies you on all emails it sends so you 
know what she’s talking about when she calls.

4 I actually met my dog online.

webbots2e.book  Page 20  Thursday, February 16, 2012  11:59 AM



Ideas for  Webbot Projec ts 21

Plot Unauthorized Wi-Fi Networks 
You could write a webbot that aids in maintaining network security on a large 
corporate campus. For example, suppose that you recently discovered that 
you have a problem with employees attaching unauthorized wireless access 
points to your network. Since these unauthorized access points occur inside 
your firewalls and proxies, you recognize that these unauthorized Wi-Fi net-
works pose a security risk that you need to control. Therefore, in addition to 
a new security policy, you decide to create a webbot that automatically finds 
and records the location of all wireless networks on your corporate campus. 

You notice that your mail room uses a small metal cart to deliver mail. 
Because this cart reaches every corner of the corporate campus on a daily 
basis, you seek and obtain permission to attach a small laptop computer with 
a webbot and Global Positioning System (GPS) card to the cart. As your 
webbot hitches a ride through the campus, it looks for open wireless network 
connections. When it finds a wireless network, it uses the open network to send 
its GPS location to a special website. This website logs the GPS coordinates, 
IP address, and date of uplink in a database. If you did your homework 
correctly, in a few days your webbot should create a map of all open Wi-Fi 
networks, authorized and unauthorized, in your entire corporate campus.

Track Web Technologies

You could write webbots that use web page headers, the information that servers 
send to browsers so they may correctly render websites, to maintain a list of 
web technologies used by major corporations. Headers typically indicate the 
type of webserver (and often the operating system) that websites use, as shown 
in Figure 2-4.

C:\>curl --head http://www.chrysler.com

Server: IBM_HTTP_Server/2
Date: Sun, 04 Dec 2011 20:28:47 GMT
Connection: keep-alive

Figure 2-4: A web page header showing server technology

Your webbot starts by accessing the headers of each website from a list 
that you keep in a database. It then parses web technology information from 
the header. Finally, the webbot stores that information in a database that is 
used by a graphing program to plot how server technology choices change 
over time.

Allow Incompatible Systems to Communicate

In addition to creating human-readable output, you could design a webbot 
that only talks to other computers. For example, let’s say that you want to 
synchronize two databases, one on a local private network and one that’s 
behind a public website. In this case, synchronization (ensuring that both 

webbots2e.book  Page 21  Thursday, February 16, 2012  11:59 AM



22 Chapter 2

databases contain the same information) is difficult because the systems use 
different technologies with incompatible synchronization techniques. Given 
the circumstances, you could write a webbot that runs on your private network 
and, for example, analyzes the public database through a password-protected 
web service every morning. The webbot uses the Internet as a common protocol 
between these databases, analyzes data on both systems, and exchanges the 
appropriate data to synchronize the two databases. 

Final Thoughts

Studying browser limitations is one way to uncover ideas for new webbot 
designs. You’ve seen some real-world examples of webbots in use and read 
some descriptions of conceptual webbot designs. But, enough with theory—
let’s head to the lab!

The next five chapters describe the basics of webbot development: down-
loading pages, parsing data, emulating form submission, and managing large 
amounts of data. Once you master these concepts, you can move on to actual 
webbot projects.

webbots2e.book  Page 22  Thursday, February 16, 2012  11:59 AM



D O W N L O A D I N G  W E B  P A G E S

The most important thing a webbot does is 
move web pages from the Internet to your 

computer. Once the web page is on your com-
puter, your webbot can parse and manipulate it. 

This chapter will show you how to write simple PHP scripts that download 
web pages. More importantly, you’ll learn PHP’s limitations and how to over-
come them with PHP/CURL, a special binding of the cURL library that 
facilitates many advanced network features. cURL is used widely by many 
computer languages as a means to access network files with a number of 
protocols and options.

NOTE While web pages are the most common targets for webbots and spiders, the Web is not the 
only source of information for your webbots. Later chapters will explore methods for extract-
ing data from newsgroups, email, and FTP servers, as well. 

Prior to discovering PHP, I wrote webbots in a variety of languages, includ-
ing Visual Basic, Java, and Tcl/Tk. But due to its simple syntax, in-depth string 
parsing capabilities, networking functions, and portability, PHP proved ideal 
for webbot development. However, PHP is primarily a server language, and 
its chief purpose is to help webservers interpret incoming requests and send 

webbots2e.book  Page 23  Thursday, February 16, 2012  11:59 AM



24 Chapter 3

the appropriate web pages in response. Since webbots don’t serve pages 
(they request them), this book supplements PHP built-in functions with 
PHP/CURL and a variety of libraries, developed specifically to help you 
learn to write webbots and spiders. 

Think About Files, Not Web Pages 
To most people, the Web appears as a collection of web pages. But in reality, 
the Web is collection of files that form those web pages. These files may 
exist on servers anywhere in the world, and they only create web pages when 
they are viewed together. Because browsers simplify the process of download-
ing and rendering the individual files that make up web pages, you need to 
know the nuts and bolts of how web pages are put together before you write 
your first webbot. 

When your browser requests a file, as shown in Figure 3-1, the webserver 
that fields the request sends your browser a default or index file, which maps the 
location of all the files that the web page needs and tells how to render the 
text and images that comprise that web page. 

Figure 3-1: When a browser requests a web page, it first receives an index file.

As a rule, this index file also contains references to the other files required to 
render the complete web page,1 as shown in Figure 3-2. These may include 
images, JavaScript, style sheets, or complex media files like Flash, QuickTime, 
or Windows Media files. The browser downloads each file separately, as it is 
referenced by the index file.

Figure 3-2: Downloading files, as they are referenced by the index file

1 Some very simple websites consist of only one file.

WebserverBrowser

Web page requested

Index file returned

Browser

Webserver

Webserver Webserver

Webserver

Webserver

Webserver

Webserver

Webserver
JavaScript file fetchStyle sheet fetches

Image fi
le f

etch
es

webbots2e.book  Page 24  Thursday, February 16, 2012  11:59 AM



Downloading Web Pages 25

For example, if you request a web page with references to eight items your 
single web page actually executes nine separate file downloads (one for the 
web page and one for each file referenced by the web page). Usually, each 
file resides on the same server, but they could just as easily exist on separate 
domains, as shown in Figure 3-2.

Downloading Files with PHP’s Built-in Functions 

Before you can appreciate PHP/CURL, you’ll need to familiarize yourself 
with PHP’s built-in functions for downloading files from the Internet. 

Downloading Files with fopen() and fgets()

PHP includes two simple built-in functions for downloading files from a 
network—fopen() and fgets(). The fopen() function does two things. First, it 
creates a network socket, which represents the link between your webbot and 
the network resource you want to retrieve. Second, it implements the HTTP 
protocol, which defines how data is transferred. With those tasks completed, 
fgets() leverages the networking ability of your computer’s operating system 
to pull the file from the Internet.

Creating Your First Webbot Script

Let’s use PHP’s built-in functions to create your first webbot, which down-
loads a “Hello, world!” web page from this book’s companion website. The 
short script is shown in Listing 3-1.

# Define the file you want to download
$target = "http://www.WebbotsSpidersScreenScrapers.com/hello_world.html";
$file_handle = fopen($target, "r");

# Fetch the file
while (!feof($file_handle)) 
    echo fgets($file_handle, 4096);
fclose($file_handle);

Listing 3-1: Downloading a file from the Web with fopen() and fgets()

As shown in Listing 3-1, fopen() establishes a network connection to the 
target, or file you want to download. It references this connection with a file 
handle, or network link called $file_handle. The script then uses fopen() to 
fetch and echo the file in 4,096-byte chunks until it has downloaded and 
displayed the entire file. Finally, the script executes an fclose() to tell PHP 
that it’s finished with the network handle.

Before we can execute the example in Listing 3-1, we need to examine 
the two ways to execute a webbot: You can run a webbot either in a browser 
or in a command shell.2

2 See Chapter 22 for more information on executing webbots as scheduled events.

webbots2e.book  Page 25  Thursday, February 16, 2012  11:59 AM



26 Chapter 3

Executing Webbots in Command Shells

If you have a choice, it is usually better to execute webbots from a shell or 
command line. Webbots generally don’t care about web page formatting, 
so they will display exactly what is returned from a webserver. Browsers, in 
contrast, will interpret HTML tags as instructions for rendering the web page. 
For example, Figure 3-3 shows what Listing 3-1 looks like when executed in 
a shell. 

C:\>php script_3_1.php
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
        <title>Hello, world!</title>
</head>

<body>
Congratulations! If you can read this, <br>
you successfully downloaded this file.
</body>
</html>

Figure 3-3: Running a webbot script in a shell

Executing Webbots in Browsers

To run a webbot script in a browser, simply load the script on a webserver and 
execute it by loading its URL into the browser’s location bar as you would 
any other web page. Contrast Figure 3-3 with Figure 3-4, where the same 
script is run within a browser. The HTML tags are gone, as well as all of the 
structure of the returned file; the only things displayed are two lines of text. 
Running a webbot in a browser only shows a partial picture and often hides 
important information that a webbot needs.

NOTE To display HTML tags within a browser, surround the output with <xmp> and 
</xmp> tags.

Figure 3-4: Browser “rendering” the output of a webbot

webbots2e.book  Page 26  Thursday, February 16, 2012  11:59 AM



Downloading Web Pages 27

Browser buffering is another complication you might run into if you try to 
execute a webbot in a browser. Buffering is useful when you’re viewing web 
pages because it allows a browser to wait until it has collected enough of a 
web page before it starts rendering or displaying the web page. However, 
browser buffering is troublesome for webbots because they frequently run 
for extended periods of time—much longer than it would take to download 
a typical web page. During prolonged webbot execution, status messages 
written by the webbot may not be displayed by the browser while it is buffering 
the display. 

I have one webbot that runs continuously; in fact, it once ran for seven 
months before stopping during a power outage. This webbot could never 
run effectively in a browser because browsers are designed to render web 
pages with files of finite length. Browsers assume short download periods and 
may buffer an entire web page before displaying anything—therefore, never 
displaying the output of your webbot. 

NOTE Browsers can still be very useful for creating interfaces that set up or control the actions 
of a webbot. They can also be useful for displaying the results of a webbot’s work. 

Downloading Files with file()

An alternative to fopen() and fgets() is the function file(), which downloads 
formatted files and places them into an array. This function differs from 
fopen() in two important ways: One way is that, unlike fopen(), it does not 
require you to create a file handle, because it creates all the network prep-
arations for you. The other difference is that it returns the downloaded file 
as an array, with each line of the downloaded file in a separate array element. 
The script in Listing 3-2 downloads the same web page used in Listing 3-1, 
but it uses the file() command.

<?
// Download the target file
$target = "http://www.WebbotsSpidersScreenScrapers.com/hello_world.html";
$downloaded_page_array = file($target);

// Echo contents of file
for($xx=0; $xx<count($downloaded_page_array); $xx++)

echo $downloaded_page_array[$xx];
?>

Listing 3-2: Downloading files with file()

The file() function is particularly useful for downloading comma-separated 
value (CSV) files, in which each line of text represents a row of data with 
columnar formatting (as in an Excel spreadsheet). Loading files line-by-line 
into an array, however, is not particularly useful when downloading HTML 
files because the data in a web page is not defined by rows or columns; in a 
CSV file, however, rows and columns have specific meaning. 

webbots2e.book  Page 27  Thursday, February 16, 2012  11:59 AM



28 Chapter 3

Introducing PHP/CURL

While PHP is capable when it comes to simple file downloads, most real-life 
applications require additional functionality to handle advanced issues such 
as form submission, authentication, redirection, and so on. These functions 
are difficult to facilitate with PHP’s built-in functions alone. Forunately, every 
PHP install should include a library called PHP/CURL, which automatically 
takes care of these advanced topics. Most of this book’s examples exploit the 
benefit of PHP/CURL’s ability to download files. 

The open source cURL project is the product of Swedish developer 
Daniel Stenberg and a team of developers. The cURL library is available for 
use with nearly any computer language you can think of. When cURL is used 
with PHP, it’s known as PHP/CURL. 

The name cURL is either a blend of the words client and URL or an 
acronym for the words client URL Request Library—you decide. cURL does 
everything that PHP’s built-in networking functions do and a lot more. 
Appendix A expands on PHP/CURL’s features, but here’s a quick overview 
of the things PHP/CURL can do for you, a webbot developer.

Multiple Transfer Protocols
Unlike the built-in PHP network functions, PHP/CURL supports multiple 
transfer protocols, including FTP, FTPS, HTTP, HTTPS, Gopher, Telnet, and 
LDAP. Of these protocols, the most important is probably HTTPS, which 
allows webbots to download from encrypted websites that employ the Secure 
Sockets Layer (SSL) protocol. 

Form Submission
PHP/CURL provides easy ways for a webbot to emulate browser form sub-
mission to a server. PHP/CURL supports all of the standard methods, or 
form submission protocols, as you’ll learn in Chapter 6.

Basic Authentication
PHP/CURL allows webbots to enter password-protected websites that use 
basic authentication. You’ve encountered authentication if you’ve seen 
this familiar gray box, shown in Figure 3-5, asking for your username and 
password. PHP/CURL makes it easy to write webbots that enter and use 
password-protected websites. 

Figure 3-5: A basic authentication prompt

webbots2e.book  Page 28  Thursday, February 16, 2012  11:59 AM



Downloading Web Pages 29

Cookies

Without PHP/CURL, it is difficult for webbots to read and write cookies, those 
small bits of data that websites use to create session variables that track your 
movement. Websites also use cookies to manage shopping carts and authen-
ticate users. PHP/CURL makes it easy for your webbot to interpret the cookies 
that webservers send it; it also simplifies the process of showing webservers 
all the cookies your webbot has written. Chapters 20 and 21 have much more 
to say on the subject of webbots and cookies.

Redirection

Redirection occurs when a web browser looks for a file in one place, but 
the server tells it that the file has moved and that it should download it 
from another location. For example, the website www.company.com may use 
redirection to force browsers to go to www.company.com/spring_sale when a 
seasonal promotion is in place. Browsers handle redirections automatically, 
and PHP/CURL allows webbots to have the same functionality. 

Agent Name Spoofing

Every time a webserver receives a file request, it stores the requesting agent’s 
name in a log file called an access log file. This log file stores the time of access, 
the IP address of the requester, and the agent name, which identifies the type of 
program that requested the file. Generally, agent names identify the browser 
that the web surfer was using to view the website. 

Some agent names that a server log file may record are shown in List-
ing 3-3. The first four names are browsers; the last is the Google spider.

Mozilla/5.0 (Windows NT 6.1;) Gecko/20100921 Firefox/4.0b7pre
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1;)
Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.25 Chrome/12.0.706.0 
Googlebot/2.1 (+http://www.google.com/bot.html)

Listing 3-3: Agent names as seen in a file access log3

A webbot using PHP/CURL can assume any appropriate (or inappro-
priate) agent name. For example, sometimes it is advantageous to identify 
your webbots, as Google does. Other times, it is better to make your webbot 
look like a browser. If you write webbots that use the LIB_http library (described 
later), your webbot’s agent name will be Test Webbot. If you download a file 
from a webserver with PHP’s fopen() or file() functions, your agent name will 
be the version of PHP installed on your computer.

3 A more complete list of known user agent names is found at http://www.useragentstring.com/
pages/useragentstring.php.

webbots2e.book  Page 29  Thursday, February 16, 2012  11:59 AM



30 Chapter 3

Referer Management

PHP/CURL allows webbot developers to change the referer, which is the ref-
erence that servers use to detect which link the web surfer clicked. Some-
times webservers use the referer to verify that file requests are coming from 
the correct place. For example, a website might enforce a rule that prevents 
downloading of images unless the referring web page is also on the same 
webserver. This prohibits people from bandwidth stealing, or writing web pages 
using images on someone else’s server. PHP/CURL allows a webbot to set 
the referer to an arbitrary value. 

Socket Management

PHP/CURL also gives webbots the ability to recognize when a webserver isn’t 
going to respond to a file request. This ability is vital because, without it, your 
webbot might hang (forever) waiting for a server response that will never 
happen. With PHP/CURL, you can specify how long a webbot will wait for 
a response from a server before it gives up and moves on.

Installing PHP/CURL

Since PHP/CURL is tightly integrated with PHP, installation should be 
unnecessary, or at worst, easy. You probably already have PHP/CURL on 
your computer; you just need to enable it in php.ini, the PHP configuration 
file. If you’re using Linux, FreeBSD, OS X, or another Unix-based operating 
system, you may have to recompile your copy of Apache/PHP to enjoy the 
benefits of PHP/CURL. Installing PHP/CURL is similar to installing any 
other PHP library. If you need help, you should reference the PHP website 
(http://www.php.net) for the instructions for your particular operating 
system and PHP version.

LIB_http

Since PHP/CURL is very flexible and has many configurations, it is often 
handy to use it within a wrapper function, which simplifies the complexities of 
a code library into something easier to understand. For your convenience, 
this book uses a library called LIB_http, which provides wrapper functions 
to the PHP/CURL features you’ll use most. The remainder of this chapter 
describes the basic functions of the LIB_http library.

LIB_http is a collection of PHP/CURL routines that simplify downloading 
files. It contains defaults and abstractions that facilitate downloading files, 
managing cookies, and completing online forms. The name of the library refers 
to the HTTP protocol used by the library. Some of the reasons for using this 
library will not be evident until we cover its more advanced features. Even 
simple file downloads, however, are made easier and more robust with LIB_http 
because of PHP/CURL. The most recent version of LIB_http is available at 
this book’s website.

webbots2e.book  Page 30  Thursday, February 16, 2012  11:59 AM



Downloading Web Pages 31

Familiarizing Yourself with the Default Values

To simplify its use, LIB_http sets a series of default conditions for you, 
as described below:

 Your webbot’s agent name is Test Webbot.

 Your webbot will time out if a file transfer doesn’t complete within 
25 seconds.

 Your webbot will store cookies in the file c:\cookie.txt.

 Your webbot will automatically follow a maximum of four redirections, 
as directed by servers in HTTP headers.

 Your webbot will, if asked, tell the remote server that you do not have a 
local authentication certificate. (This is only important if you access a 
website employing SSL encryption, which is used to protect confidential 
information on e-commerce websites.)

These defaults are set at the beginning of the file. Feel free to change 
any of these settings to meet your specific needs.

Using LIB_http

The LIB_http library provides a set of wrapper functions that simplify compli-
cated PHP/CURL interfaces. Each of these interfaces calls a common routine, 
http(), which performs the specified task, using the values passed to it by the 
wrapper interfaces. All functions in LIB_http share a similar format: A target 
and referring URL are passed, and an array is returned, containing the 
contents of the requested file, transfer status, and error conditions. 

While LIB_http has many functions, we’ll restrict our discussion to simply 
fetching files from the Internet using HTTP. The remaining features are 
described as needed throughout the book.

http_get() 

The function http_get() downloads files with the GET method; it has many 
advantages over PHP’s built-in functions for downloading files from the Inter-
net. Not only is the interface simple, but this function offers all the previously 
described advantages of using PHP/CURL. The script in Listing 3-4 shows 
how files are downloaded with http_get().

# Usage: http_get()
array http_get (string target_url, string referring_url)

Listing 3-4: Using http_get()

These are the inputs for the script in Listing 3-4:

target_url is the fully formed URL of the desired file.

referring_url is the fully formed URL of the referer.

webbots2e.book  Page 31  Thursday, February 16, 2012  11:59 AM



32 Chapter 3

These are the outputs for the script in Listing 3-4:

$array['FILE'] contains the contents of the requested file.

$array['STATUS'] contains status information regarding the file transfer.

$array['ERROR'] contains a textual description of any errors.

http_get_withheader() 

When a web agent requests a file from the Web, the server returns the file 
contents, as discussed in the previous section, along with the HTTP header, 
which describes various properties related to a web page. Browsers and 
webbots rely on the HTTP header to determine what to do with the contents 
of the downloaded file. 

The data that is included in the HTTP header varies from application 
to application, but it may define cookies, the size of the downloaded file, 
redirections, encryption details, or authentication directives. Since the 
information in the HTTP header is critical to properly using a network file, 
LIB_http configures PHP/CURL to automatically handle the more com-
mon header directives. Listing 3-5 shows how this function is used.

# Usage: http_get_withheader()
array http_get_withheader (string target_url, string referring_url)

Listing 3-5: Using http_get()

These are the inputs for the script in Listing 3-5:

target_url is the fully formed URL of the desired file.

referring_url is the fully formed URL of the referer.

These are the outputs for the script in Listing 3-5:

$array['FILE'] contains the contents of the requested file, including the 
HTTP header.

$array['STATUS'] contains status information about the file transfer.

$array['ERROR'] contains a textual description of any errors.

The example in Listing 3-6 uses the http_get_withheader() function to 
download a file and display the contents of the returned array.

# Include http library
include("LIB_http.php"); 

# Define the target and referer web pages
$target = "http://www.schrenk.com/publications.php";
$ref    = "http://www.schrenk.com";

# Request the header
$return_array = http_get_withheader($target, $ref); 

# Display the header
echo "FILE CONTENTS \n";
var_dump($return_array['FILE']); 

webbots2e.book  Page 32  Thursday, February 16, 2012  11:59 AM



Downloading Web Pages 33

echo "ERRORS \n";
var_dump($return_array['ERROR']); 

echo "STATUS \n";
var_dump($return_array['STATUS']); 

Listing 3-6: Using http_get_withheader()

The script in Listing 3-6 downloads the page and displays the requested 
page, any errors, and a variety of status information related to the fetch 
and download. 

Listing 3-7 shows what is produced when the script in Listing 3-6 is exe-
cuted, with the array that includes the page header, error conditions, and 
status. Notice that the contents of the returned file are limited to only the 
HTTP header, because we requested only the header and not the entire 
page. Also, notice that the first line in a HTTP header is the HTTP code, 
which indicates the status of the request. An HTTP code of 200 tells us that 
the request was successful. The HTTP code also appears in the status array 
element.4 

FILE CONTENTS 
string(215) "HTTP/1.1 200 OK
Date: Sat, 08 Oct 2011 16:38:51 GMT
Server: Apache/2.0.53 (FreeBSD) mod_ssl/2.0.53 OpenSSL/0.9.7g PHP/5 
X-Powered-By: PHP/5
Content-Type: text/html; charset=ISO-8859-1

"
ERRORS
string(0) ""

STATUS
array(20) {
  ["url"]=>
  string(39) "http://www.schrenk.com/publications.php"
  ["content_type"]=>
  string(29) "text/html; charset=ISO-8859-1"
  ["http_code"]=>
  int(200)
  ["header_size"]=>
  int(215)
  ["request_size"]=>
  int(200)
  ["filetime"]=>
  int(-1)
  ["ssl_verify_result"]=>
  int(0)
  ["redirect_count"]=>
  int(0)

4 A complete list of HTTP codes can be found in Appendix B.

webbots2e.book  Page 33  Thursday, February 16, 2012  11:59 AM



34 Chapter 3

  ["total_time"]=>
  float(0.683)
  ["namelookup_time"]=>
  float(0.005)
  ["connect_time"]=>
  float(0.101)
  ["pretransfer_time"]=>
  float(0.101)
  ["size_upload"]=>
  float(0)
  ["size_download"]=>
  float(0)
  ["speed_download"]=>
  float(0)
  ["speed_upload"]=>
  float(0)
  ["download_content_length"]=>
  float(0)
  ["upload_content_length"]=>
  float(0)
  ["starttransfer_time"]=>
  float(0.683)
  ["redirect_time"]=>
  float(0)
}

Listing 3-7: File contents, errors, and the download status array returned by LIB_http

The information returned in $array['STATUS'] is extraordinarily useful for 
learning how the fetch was conducted. Included in this array are values 
for download speed, access times, and file sizes—all valuable when writing 
diagnostic webbots that monitor the performance of a website.

Learning More About HTTP Headers
When a Content-Type line appears in an HTTP header, it defines the MIME, 
or the media type of file sent from the server. The MIME type tells the web 
agent what to do with the file. For example, the Content-Type in the previous 
example was text/html, which indicates that the file is a web page. Knowing if 
the file they just downloaded was an image or an HTML file helps browsers 
know if they should display the file as text or render an image. For example, 
the HTTP header information for a JPEG image is shown in Listing 3-8.

HTTP/1.1 200 OK 
Date: Wed, 23 Mar 2011 00:06:13 GMT 
Server: Apache/1.3.12 (Unix) mod_throttle/3.1.2 tomcat/1.0 PHP/5
Last-Modified: Wed, 23 Jul 2008 18:03:29 GMT 
ETag: "74db-9063-3d3eebf1" 
Accept-Ranges: bytes 
Content-Length: 36963 
Content-Type: image/jpeg

Listing 3-8: An HTTP header for an image file request

webbots2e.book  Page 34  Thursday, February 16, 2012  11:59 AM



Downloading Web Pages 35

Examining LIB_http’s Source Code

Most webbots in this book will use the library LIB_http to download pages 
from the Internet. If you plan to explore any of the webbot examples that 
appear later in this book, you should obtain a copy of this library; the latest 
version is available for download at this book’s website. We’ll explore some of 
the defaults and functions of LIB_http here.

LIB_http Defaults

At the very beginning of the library is a set of defaults, as shown in Listing 3-9.

define("WEBBOT_NAME", "Test Webbot");       # How your webbot will appear in server logs
define("CURL_TIMEOUT", 25);                 # Time (seconds) to wait for network response
define("COOKIE_FILE", "c:\cookie.txt");     # Location of cookie file

Listing 3-9: LIB_http defaults

LIB_http Functions

The functions shown in Listing 3-10 are available within LIB_http. All of 
these functions return the array defined earlier, containing downloaded 
files, error messages, and the status of the file transfer. 

http_get($target, $ref)                              # Simple get request (w/o header)
http_get_withheader($target, $ref)                   # Simple get request (w/ header) 
http_get_form($target, $ref, $data_array)            # Form (method ="GET", w/o header)
http_get_form_withheader($target, $ref, $data_array) # Form (method ="GET", w/ header)
http_post_form($target, $ref, $data_array)           # Form (method ="POST", w/o header)
http_post_withheader($target, $ref, $data_array)     # Form (method ="POST", w/ header)
http_header($target, $ref)                           # Only returns header

Listing 3-10: LIB_http functions

Final Thoughts

Some of these functions use an additional input parameter, $data_array, 
when form data is passed from the webbot to the webserver. These functions 
are listed below: 

 http_get_form()

 http_get_form_withheader()

 http_post_form()

 http_post_form_withheader()

If you don’t understand what all these functions do now, don’t worry. 
Their use will become familiar to you as you go through the examples that 
appear later in this book. Now might be a good time to thumb through 
Appendix A, which details the features of PHP/CURL that webbot devel-
opers are most apt to need.

webbots2e.book  Page 35  Thursday, February 16, 2012  11:59 AM



webbots2e.book  Page 36  Thursday, February 16, 2012  11:59 AM




