INDEX

Symbols and Numbers

! (bang symbol), 305
-- operation, 112
% operation, 112
% symbol, 423
| (pipe symbol), in Snort, 304
++ operation, 112
010 Editor, 468
32-bit applications, WOW64 and, 448
32-bit rotate-right-additive hash, 418
64-bit malware, 441–449
 clues to functionality, 448
 labs, 450–451
 solutions, 723–732

A

A, at end of Windows function name, 17
absolute addresses, 443
 vs. relative addresses, in OllyDbg, 184–185
abstraction levels, in x86 disassembly, 66–67
accept function, 143, 144, 454
access token, 246
accuracy, vs. expediency, 304
active window, logging, 239
ADD encoding algorithm, 276
add instruction, 74, 349
AddCodeXref function (IDC), 342
address space, loading executable into another process’s, 595
address space layout randomization (ASLR), 184
AddressOfNameOrdinals array, 416
AddressOfNames array, 416
AdjustTokenPrivileges function, 246, 247, 454, 730
administrator privileges, for malware launchers, 254
Adobe Reader
 CVE-2010-0188 critical vulnerability, 424
 overflow in, 705
ADS (Alternate Data Streams) feature, 139
Advanced Encryption Standard (AES), 618
decrypting, 625–626
advapi32.dll, 17
 imports from, 20, 480, 481
 obtaining handle to, 237
advertisements, pop-up, 560–561
AES (Advanced Encryption Standard), 618
decrypting, 625–626
Agobot, 376
air-gapped networks, 29
 _alloca_probe function, 522
 alphabetic encoding, shellcode decoder with, 697
Alternate Data Streams (ADS) feature, 139
ALU (arithmetic logic unit), 68
AMD64 architecture, 441
"Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Machine Monitor" (Robin and Irvine), 373
AND logical operator, in x86 architecture, 75
anti-debugging, 351–366
cHECKS, 656
defeating techniques, 660
labs, 367–368
solutions, 655–669
anti-debugging, continued
NTGlobalFlag flag, 659–660
PhantomOm protection from checks, 658, 659
ProcessHeap flag, 658–659
timing checks, 665–669
GetTickCount function, 668–669
with QueryPerformanceCounter, 667–668
rdtsc function, 669
anti-disassembly, 327–349
basics, 328–329
defeating disassembly algorithms, 329–334
flow-oriented disassembly, 331–334
linear disassembly, 329–331
false conditional branch, 336, 645, 647, 653
labs, 350
solutions, 645–655
malware awareness of
debugger, 351
manually repaired code, 648–649
obscuring flow control, 340–346
adding missing code cross-references in IDA Pro, 342
function pointer problem, 340–341
misusing structured exception handlers, 344–346
return pointer abuse, 342–343
signs of, 645–646
techniques, 334–340
impossible disassembly, 337–340
jump instruction with constant target, 336
jump instructions with same target, 334–335
NOP-ing out instructions with IDA Pro, 340
thwarting stack-frame analysis, 347–349
anti-virtual machine (anti-VM) techniques, 369–380, 500, 678
finding using strings, 679–683
highlighting anti-VM in IDA Pro, 377–378
impact on malware analysis, 673–677
labs, 381–382
solutions, 670–684
process replacement, 683–684
tweaking settings, 379–380
VMware artifacts, 370–373
vulnerable instructions, 373–379, 678–679
No Pill technique, 375
querying I/O communication port, 375–377
Red Pill anti-VM technique, 374–375
antivirus programs, and kernel patching, 227
antivirus scanning, 10
antivirus signatures, scan against, 478
Anubis, 40
ApateDNS, 51–52, 57, 465, 483, 485
malware DNS requests and, 489
APC (asynchronous procedure call), 263
APC injection, 262–265
AppInit_DLLs, 241–242, 572
for persistence, 575
applications, access to device objects, 206
arguments in malware, OllyDbg to debug, 532
arithmetic instruction, 74–76
arithmetic logic unit (ALU), 68
arithmetic operations disassembly, 112–113
in WinDbg, 211
arrays, disassembling, 127–128
arrows window, in IDA Pro, 90
The Art of Assembly Language (Hyde), 68
ASCII strings, 11
loading on stack, 724–725
ASLR (address space layout randomization), 184
ASPack, 398
assembly code, for process replacement, 258
assembly language, 67. See also C code constructs in assembly
if statement, 113–114
for loop, 117
switch statement, 124
while loop, 118
assembly-level debuggers, vs. source-level, 168
asynchronous procedure call (APC), 263
AT_INFO structure, 547–548
AttachThreadInput function, 454
attackers
identifying investigative activity, 299
safely investigating online, 300–302
Autoruns tool, 140, 241, 465–466
backdoor, 3, 121, 232–234, 479, 519, 538
analysis, 537–538
CreateProcess and Sleep functions for, 479
evading detection, 308–311
HTTP reverse, 539
implementing, 524
indications of, 493
reading configuration file, 723
sandbox and, 41
backup images, of operating systems, 30
“Bad or Unknown 32-bit Executable File” error, 363
bang symbol (!), 305
base addresses
finding with PEview, 545
of kernel32.dll, finding with assembly code, 415
for PE files in Windows, 184
Base64 cipher, 277–280, 622
custom substitution cipher, 280
identifying and decoding, 278–280
Base64 encoding
decoding, 624–625
identifying in URL, 611
padding, 610, 630
Python program to decode string, 289
static pattern within, 631
base64_encode function, 610
basename, 535
BCDEdit, 227
beaconing, 309, 611
client-initiated, 311
determining generation, 628–629
packet structure, 643
request from initial malware run, 627–628
sending by malware, 633–634, 639–640
string decoding, 636
beep driver, 214
behavior of malware. See malware behavior
BeingDebugged flag, 354, 657–658
checking, 535–534
Berkeley compatible sockets, 143–144
BFK DNS logger, 302
BHOs (Browser Helper Objects), 157
big-endian, 70
binary data
Base64-encoding conversion, 277
static analysis, 503–507
Binary File option, in IDA Pro, 88
binary translation by VMware, in kernel mode, 373
bind function, 143, 144, 454
BinDiff, 466
BinNavi, 466
BitBlaze, 40
Bitblt function, 454
blacklists, of IP addresses, 301
81ink pointers, 414
block cryptography algorithms, 626
blue screen, in Windows, 158
Bochs (debugger), 467
Bookmarks plug-in, in OllyDbg, 199–200
boot.ini file, 207–208, 226
botnet controller, 234
botnets, 3, 234, 376
bp command, in WinDbg, 211
branching, in x86 architecture, 80–81
breakpoints
in debuggers, 171–175
conditional, 175
hardware execution, 174–175
software execution, 173–174
defferred, 212–213, 554
hardware vs. software, 687
for kernel activity, 548
in OllyDbg, 188–191, 391
command-line to set, 199
scanning code for, 357
and self-decoding, 289
breakpoints, continued
setting, 357
setting on stack, 690
in WinDbg, 211–212
bridged network adapter, 34
Browser Helper Objects (BHOs), 157
brute-force XOR encoding, 271–273
bu command, in WinDbg, 212
bu $isent command, in WinDbg, 213, 554
buffer, malware placement of value in, 538
buffer-overflow attack, 421
Burp Suite, 467
Buster Sandbox Analyzer, 473
byte array initialization, 680–681
bytecode, 67

C
C code constructs in assembly, 109–132
arithmetic operations disassembly, 112–113
array disassembly, 127–128
function call conventions, 119–121
global vs. local variables, 110–112
if statements, 113–116
labs, 133–134
solutions, 501–513
linked list traversal, 130–132
loops, 116–118
for loops, 116–118
while loops, 118
structures, identifying, 128–130
switch statements, 121–126
if style for, 122–123, 124
jump table, 123–126
C programming language, 110
function pointers in, 340
main method and offsets, in x86 architecture, 83–84
pseudocode for process replacement, 258
standard library, IDA Pro catalog of named constants, 102
The C Programming Language
(Kernighan and Ritchie), 110
C++ analysis, 427–438
labs, 439–440
solutions, 712–723
object-oriented programming, 427–432
inheritance and function overriding, 432
overloading and mangling, 430–431
this pointer, 428–430
objects creation and destruction, 437
virtual vs. nonvirtual functions, 432–436
Caesar cipher, 270
call instruction, 119, 333, 386, 409
and finding OEP, 391–392
position dependence, 408
for quick analysis, 521–522
with target based on DWORD pointer, 396
call memory_location, 77
call stack trace, in OllyDbg, 193
callback type, 136
calling conventions, x64 architecture differences, 443–447
CallNextHookEx function, 260, 261, 454
Canvas penetration-testing tool, 380
Capture BAT, 467
capturing events
network traffic, 580
stopping procmon from, 44
capturing screen, function for, 615
CBC (Cipher Block Chaining), 626
cdecl calling convention, 119–120
cell phone malware, 88
central processing unit (CPU) threads and, 149
in x86 architecture, 68
CertOpenSystemStore function, 454
CF (carry) flag, 72
CFB (Cipher Feedback), 626
CFF Explorer, 467
cfile.read command, 293
chained encoding algorithm, 277
CheckRemoteDebuggerPresent function, 352, 454
child classes in C++, 432
functions from parent class, 436
chunk size, dependency with entropy score, 284
Cipher Block Chaining (CBC), 626
Cipher Feedback (CFB), 626
ciphers, 270–280
 Base 64, 277–280
 Caesar cipher, 270
 other encoding schemes, 276–277
 XOR cipher, 271–276
 cisvc.exe
 PEview of original and trojanized versions, 584–585
 writing shellcode into, 583–584
 class identifiers (CLSIDs), 155
 and COM functionality, 518
 classes, in object-oriented code, 428
 classtype keyword, in Snort, 304
 client side of network, 144–145
 client-initiated beaconing, 311
 client/server framework, Component Object Model as, 154
 CloseHandle function, 526
 CloseServiceHandle function, 554
 cloud services, 300
 Cloudburst, 380
 CLSIDs (class identifiers), 155
 and COM functionality, 518
 cmd.exe, 544
 cmp instruction, 80, 348, 502
 CoCreateInstance function, 155–156, 313, 454, 518
 code
 in memory, 69
 performing checksums, 357
 redefining in IDA Pro, 103
 understanding surrounding, 312–313
 code construct, 109
 code cross-references, 95–96
 code entry point, unpacking stub and, 384
 code libraries, linking, 15
 COFF (Common Object File Format),
 IDA Pro support for, 87
 CoInitialize function, 313
 CoInitializeEx function, 154
 colors in IDA Pro navigation band, 93
 COM (Component Object Model),
 154–157, 313, 626
 related functions, 518
 server malware, 157
 command-line
 analysis of binary, 94
 arguments in malware, 526
 check for arguments, 525–529
 encoded, 636
 option analysis, 535–537
 running malware from, 493
 Command Line plug-in, for OllyDbg,
 198–199, 657–658
 launching, 660
 command processing, and malware signature, 644
 command shell, thread input to, 636
 comments
 in HTML, 506
 command character parsed from, 509
 to send commands to malware, 507
 in IDA Pro, 100
 Common Object File Format (COFF),
 IDA Pro support for, 87
 Comodo Instant Malware Analysis, 40
 comparing strings, in Process Explorer, 49
 compilation, 67
 Component Object Model (COM),
 154–157, 313, 626
 related functions, 518
 server malware, 157
 compression algorithm, packers and, 384
 compsb instruction, 82
 ComSpec environmental variable, 636
 conditional branches, 348
 false, 645, 647
 flow-oriented disassembly and, 333
 conditional breakpoints, 175
 in OllyDbg, 188, 189–190
 conditional jump, 80–81, 113, 116, 354
 conditionals, in x86 architecture, 80
 configuration information, Windows Registry for, 139
 connect function, 143, 144, 313, 454, 727
 connect mode, in Netcat, 52
 ConnectNamedPipe function, 455
 console programs,
 IMAGE_SUBSYSTEM_WINDOWS_CUI
 value for, 23
 constructor, 437
 content keyword, in Snort, 304
content-based countermeasures, 298, 302–307
control unit, 68
ControlService function, 455, 549
convention, 72
CopyFile function, 526
countermeasures
content-based, 302–307
network-based, 297
covet launching techniques, 253–265
APC injection, 262–265
Detours, 262
hook injection, 259–261
labs, 266–267
solutions, 586–607
launchers, 253–254
process injection, 254–257
process replacement, 257–259
CPU (central processing unit)
threads and, 149
in x86 architecture, 68
cpuid instruction, virtual machine
and, 374
crashing virtual machine, from procmon, 44
CreateFile function, 137, 215, 219, 455, 520, 527, 583, 640
debugger and, 171
CreateFileMapping function, 137–138, 455, 520, 527, 583
CreateMutex function, 152, 455, 522
CreatePipe function, 233
CreateProcess function, 147–149, 233, 455, 479, 524, 544, 590, 642, 727
parameters, 728
CreateRemoteThread function, 256, 262, 423, 455, 586, 600, 730
arguments for, 603–604
and direct injection, 257
for DLL injection, 255
CreateService function, 153, 243, 455, 514–516, 549, 550, 554
CreateThread function, 150–151
CreateToolhelp32Snapshot function, 255, 263, 455, 498
CreateWindowEx function, 137
credential stealers, 234–241
GINA interception, 235–236
hash dumping, 236–238
keystroke logging, 238–241
cross-references (xref), 124
checking for gethostbyname, 495
for global variables, 547
graphs of, 98, 99
for function, 498
for installer export, 572–573
in IDA Pro, 95–97
adding missing code, 342
navigating, 92–93
and virtual functions, 436
CryptAcquireContext function, 455
cryptographic algorithms, 280–285
recognizing strings and imports, 281–282
search for cryptographic constants, 282–283
search for high-entropy content, 283–285
cryptography, drawbacks, 281
CWSandbox, 40

D
da command, in WinDbg, 210
data
hard-coded vs. ephemeral, 314–315
overlaying onto structure, 214
Python script for converting to string, 500–501
redefining in IDA Pro, 103
data buffers, instructions for manipulating, 81
data cross-references, 96–97
data encoding, 269–294
cryptographic algorithms, 280–285
recognizing strings and imports, 281–282
search for cryptographic constants, 282–283
search for high-entropy content, 283–285
custom, 285–288
decoding, 288–294
instrumentation for generic decryption, 291–294
manual programming of functions, 289–290
self-decoding, 288–289
goal of analyzing algorithms, 270
identifying and leveraging steps, 315–317
labs, 295–296
solutions, 607–626
simple ciphers, 270–280
Base64, 277–280
Caesar cipher, 270
other encoding schemes, 276–277
XOR cipher, 271–276
Data Execution Prevention (DEP), 578
data section in main memory, 69
.data section in PE file, 22
size of, 24
DataDirectory array, 364
db command, in WinDbg, 558
dd command, in WinDbg, 210, 218, 564
DDoS (distributed denial-of-service) attack, 234
malware to launch, 517
debuggers, 167–178. See also anti-debugging; Ollydbg; WinDbg
exceptions, 175–177
first- and second-chance, 176
identifying behavior, 356–359
INT scanning, 357
performing code checksums, 357
timing checks, 357–359
interference with functionality, 359–363
exceptions, 361–362
inserting interrupts, 362–363
TLS callbacks, 359–361
just-in-time, 411
kernel vs. user mode, 168–169
Microsoft symbols, 212–215
modifying program execution with, 177
source-level vs. assembly-level, 168
using, 169–175
breakpoints, 171–175
single-stepping, 169–170
stepping-over vs. stepping-into, 170–171
vulnerabilities, 363–365
Windows debugger detection, 352–356
manually checking structures, 353–356
with Windows API, 352–353
decoding, 288–294
anti-debugging routine in, 663
instrumentation for generic decryption, 291–294
manual programming of functions, 289–290
self-decoding, 288–289
stack-formed strings, 540–541
XOR-encoded strings, 542–543
decryption
of AES, 625–626
instrumentation for generic, 291–294
requirements for, 622
Deep Freeze, 467
default view for IDA Pro, returning to, 92
default web browser, malware determination of, 699–703
defferred breakpoint, 212–213, 554
delete operator, 437
DeleteFile function, PyCommand to prevent execution, 201
Delphi programs, compile time, 23
DEP (Data Execution Prevention), 578
Dependency Walker (depends.exe), 16–17, 49, 468, 480
destructor, 437
Detail filter, in procmon, 45
Detours, 262
device drivers, 206
analysis, 562
finding in kernel, 217
finding in memory, with WinDbg, 563
IDA Pro to open, 551
loading, 226
tool for loading, 470–471
WinDbg for viewing, 551–553
device object
obtaining handle to, 216
viewing in kernel, 218
\Device\PhysicalDisk1, 138
\Device\PhysicalMemory, 139
DeviceIoControl function, 206, 216, 219, 455, 561–562, 565–566
INDEX

!devobj command, in WinDbg, 220
digital logic, 66
digital signatures, 48
direct injection, 254–257
disassembler, 3, 67. See also anti-disassembly; IDA Pro (Interactive Disassembler Professional)
Disassembler window, in OllyDbg, 182
disassembly, 65. See also x86 disassembly
enhancing in IDA Pro, 100–103
of Hello World program, 412
distance Snort rule keyword, 305
distributed denial-of-service (DDoS) attack, 234
malware to launch, 517
div instruction, 75
divide-by-zero exception, 653, 668
DLL display window, in Process Explorer, 48
DLL injection, 286-289, 621, 676, 730
DLL load-order hijacking, 244–245
DllCanUnloadNow function, 157, 456
DllEntryPoint function, 206, 551
DllGetClassObject function, 157, 456
DllInstall function, 157, 456
DllMain function, 43, 146, 254, 401, 495
determining number of functions called by, 499
DLL_PROCESS_ATTACH, 573
DllRegisterServer function, 157, 456
DLLs. See dynamic link libraries (DLLs)
DllUnregisterServer function, 157, 456
DNS (Domain Name System)
attackers tunneling information, 309
attackers’ use of, 309
server, malware access to, 34
tools for controlling responses, 465
DNS requests
ApateDNS response to, 51–52
checking for, 57
documentation manuals, for x86 architecture, 85
domain
blacklists, 301
getting information, 300–302
and malicious activity, 299
Domain Name System. See DNS (Domain Name System)
DomainTools, 301
double-packed malware, 397
downloaders, 3, 231–232
malware as, 481–482
downloading malware, opening URL for, 651–652, 654
driver objects
finding, 220–221
getting list, 552
structure in Windows, 206
driver signature, 64-bit versions of Windows and, 227
DriverEntry function, 206, 551
DriverInit function, 214, 563
DriverUnload function, 563
!devobj command, in WinDbg, 217
dt command, in WinDbg, 217, 552, 563, 565
du command, in WinDbg, 210
dummy names, 100
changing, 111
Dummy service, in INetSim, 56
dump command, in OllyDbg, 658
dumping executable from memory, 469
OllyDump for, 390
dwo command, in WinDbg, 211
DWORD
call instruction with target based on, 396
in Windows API, 136
dynamic analysis, 39–60, 65. See also debuggers
advanced, 3
basic, 2–3
basic tools in practice, 56–59
benefits of, 39
Capture BAT for, 467
combining with static analysis, 307–321
comparing Registry snapshots with Regshot, 50–51
faking network, 51–53
INetSim, 55–56
labs, 61–62
solutions, 482–493
packet sniffing with Wireshark, 53–55
Process Explorer for viewing processes, 47–50

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig
Process Monitor (procmon), 43–46
running malware, 42–43
sandboxes, 40–42
drawbacks, 41–42
dynamic link libraries (DLLs), 12, 17,
145–147
analyzing in IDA Pro, 521–525
base address different from
preferred, 88
basic structure, 146–147
Detours to add new to existing
binaries, 262
injection, 254–257
debugger view, 256
launching, 42
loading in OllyDbg, 191–192
load-order hijacking, for
persistence, 244–245
malware as, 42
memory addresses for, 184–185
memory map to locate, 546–547
packed, 401
Process Explorer for finding
injection, 589
dynamic linking, 16
dynamic unpacking programs,
automated, 389
dynamically linked functions, explor-
ing with Dependency Walker,
16–17

E
EA (effective address), in IDAPython
scripts, 105
Eagle, Chris, The IDA Pro Book, 88
EAT (export address table), hooking
method and, 248
EAX register, 75, 646
EBP register, 77
ECB (Electronic Code Book), 626
Eckel, Bruce, Thinking in C++, 428
ECX register, this parameter and, 429
.edata section, in PE file, 22
EDI register, 81
EDX register, 75
effective address (EA), in IDAPython
scripts, 105
EFLAGS register, 72
EIP (instruction pointer), 73
Electronic Code Book (ECB), 626
ELF (Executable and Linking For-
mat), IDA Pro support for, 87
EM64T architecture, 441
e-mail-stealing malware, 572
Emerging Threats list of signatures, 304
EnableExecuteProtectionSupport
function, 456
encoding. See data encoding
encoding functions, 614, 725
encrypted files
first bytes of, 286
writing, 614
encrypted write, function graph of, 287
encryption
decoding algorithm with
OllyDbg, 616
indications of, 618
relationship of functions, 621–622
endianness, in x86 architecture, 70
enter instruction, 77
ter instruction, 77
ter instruction, 77
entropy calculation, for packed
executables, 387–388
entropy score, dependency with
chunk size, 284
EnumProcesses function, 456, 730
EnumProcessModules function, 456
epilogue
64-bit code, 446–447
in functions, 77
EPROCESS structure
changing, 566
examining in WinDbg, 565
error message strings
finding in binary, 503–504
indicators of malware’s likely
functions, 718
ESI register, 81
ESP register, 77, 348
event capture, toggling on and off in
procmon, 749
event flow, in Windows with and with-
out hook injection, 259
Ex suffix, for Windows functions, 17
exception handlers
in 64-bit systems, 445, 447
building, 653
misusing structured, 344–346
in OllyDbg, 194–195
properly disassembled code, 654
ExceptionHandler function, 345
EXCEPTION_REGISTRATION data structure, 344
exceptions, 344, 361–362
in debuggers, 175–177
first- and second-chance, 176
in Windows, 157–158
exclusive OR cipher. See XOR cipher
EXEC files, program infecting, 519
Executable and Linking Format (ELF), IDA Pro support for, 87
executables. See also packed executables
dumping from memory, 469
function import by ordinal, 16–17, 43
loading, 384–385
into address space of another process, 595
in IDA Pro, 88–89
opening in OllyDbg, 180–181
PEiD plug-ins running of, 14
searching for strings in, 11
shellcode as, 407
termination, 656–657
exit, analysis of immediate, 724
expediency, vs. accuracy, 304
exploits, 245
explorer.exe
code search for, 732
writing path into process, 588
export address table (EAT), hooking method and, 248
export data, in IMAGE_EXPORT_DIRECTORY array, 416
exported functions, 18
absence of, 521
Exports window, in IDA Pro, 91
$EXTERNAL_NET variable, in Snort, 303

false call calling convention, 120
fibers, in Microsoft systems, 151
“File contains too much data” error, in OllyDbg, 364
file mappings, 137–138
file signatures, 10
File system filters, in procmon, 46
file system functions, in Windows API, 137–138
FILE_BOTH_DIR_INFORMATION structure, 558–559
FileInfo structure, 558–559
FileInsight, 468
FileMon tool, 43
files
brute-forcing many, 273
checking names, 541
hidden, 558–559
recovering, 559–560
malware creation of, 612
malware modification of, 527–529
malware opening of, 714–716
malware uploading of, 716
transferring from virtual machine, 36
writing from kernel space, 215
Filter dialog in Process Monitor, 484
filters
in procmon, 44–46
in Wireshark, 53
Find OEP plug-in (Section Hop), 391
FindCrypt2, 283
output, 619
FindFirstFile function, 20, 456, 478–479, 520, 527, 715
finding
networking code, 313
original entry point (OEP), 391–395
with automated tools, 391–392
manually, 392–395
strings, 11–13
findKernel32Base function, 419, 697, 707
FindNextFile function, 20, 478–479, 520, 715
FindResource function, 254, 456, 596, 600, 609
findSymbolByHash function, 418, 419, 697, 707
fake services, 55
FakeDNS, 469
faking networks, 51–53
Netcat (nc) for monitoring, 52–53
false positives, in Snort, 306
Fast Library Identification and Recognition Technology (FLIRT), 88
signature detection, 541
FindWindow function, 456, 662–663
to search for debugger, 356
firewall
 and kernel patching, 227
 for virtual machine, 33
firmware, 66
flags, 72–73
fldz instruction, 412
FlexHEX, 468
flink pointers, 414
FLIRT (Fast Library Identification and Recognition Technology), 88
signature detection, 541
floating-point instruction, 130
flow chart, of current function, 98
flow control, obscuring, 340–346
 adding missing code cross-references in IDA Pro, 342
 function pointer problem, 340–341
 misusing structured exception handlers, 344–346
 return pointer abuse, 342–343
flow-oriented disassembly, 329, 331–334
flow Snort rule keyword, 305
fstenv instruction, structure for, 411–412
for loops, 116–118
ForceFlags field, in heap header, 355
format string, identifying, 505
formatting operands, in IDA Pro, 100
FPU (x87 floating-point unit), 411–413
 FpuSaveState structure, 411
frame functions, 446
FS segment register, and SEH chain, 344, 354
fsgina.dll, 235
fstenv instruction, structure for, 411–412
FtpPutFile function, 456, 714
FtpSetCurrentDirectory function, 714
function pointers, 435
 problem, 340–341
functions
 analysis to determine stack frame construction, 347
 analyzing in IDA Pro, 97–98
 graphically, 114
call conventions, 119–121
decision to skip analysis, 526
disassembly and memory dump, 174
executable import by ordinal, 16–17, 43
executable use of, 15–18
exported, 18
finding connection between, 622
finding that installs hook, 223
graphing cross-references, 498
graphs of calls, 98
hard-coded locations for calls, 410
identifying at stored memory location, 695
imported, 18, 19
naming conventions, 17
overloading in object-oriented programming, 430–431
program termination by, 656–657
recursive, 527
search for information on, 19
stepping-over vs. stepping-into, 394–395
virtual vs. nonvirtual, 432–436
vtables, 434–435
Functions window, in IDA Pro, 91
G
g (go) command, in WinDbg, 211
GCC (GNU Compiler Convention), calling conventions, 121
GDI32.dll, 17
 importing from, 20
GDT (global descriptor table), 374
GDT register (GDTR), 374
general registers, 71–72
 in x64 architecture, 443
GET request, 309
 and malicious activity, 299
malware construction of, 539
GetAdaptersInfo function, 456
dynamic resolution, 680
getaddrinfo function, 313
GetAsyncKeyState function, 239, 457, 581, 585
GetCommandLineA function, 395
 breakpoint on, 400
getContent function, 615
GetCurrentProcessId function, 547
GetCurrentThreadId function, 575
Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig
GetDC function, 457
GetFileSize function, 708
GetForegroundWindow function, 239–240, 457, 581, 585, 598–599
GetHash function, 236
gethostbyname function, 313, 314, 457, 495–496, 727
gethostname function, 457, 611, 650
GetKeyState function, 240, 457
GetModuleBaseNameA function, 587
GetModuleFileName function, 457, 515, 531, 541, 575
GetModuleHandle function, 395, 457, 609
breakpoint on, 400
GetProcAddress function, 13, 15, 224, 237, 256, 387, 413, 457, 520
setting breakpoints on, 395
unpacking stub import of, 385
GetStartupInfo function, 457
GetSystemDefaultLangId function, 457, 498
GetSystemDefaultLCID function, 178
GetTempPath function, 457, 515, 531, 541, 575
GetTickCount function, 313, 314, 315, 358–359, 458, 668–669
GetVersion function, 395
GetVersionEx function, 458
GetWindowsDirectory function, 458
GFI Sandbox, 40–41
Graphical Identification and Authentication (GINA) interception, 235–236
indications of, 567–571
Gray Hat Python (Seitz), 201
GUI manipulation functions, 20
GUI programs, IMAGE_SUBSYSTEM_WINDOWS_GUI value for, 23
GUIDs (globally unique identifiers), 155

H hal.dll, malicious drivers and, 207
handles
for device objects, 220
obtaining, 216
for injecting malicious DLL, 255
locating for PDF document, 708
obtaining to samsrv.dll and advapi32.dll, 237
for service, OpenService function for, 550
in Windows API, 137
to Winlogon, opening, 603
handles type (H) type, in Windows API, 136
Handles window, in Process Explorer, 48
hard-coded headers, 637
hard-coded locations, for function calls, 410
hardware breakpoints, 357
in OllyDbg, 188, 190
vs. software, 687
hardware level, in x86 architecture, 66
hash dumping, 236–238
identifying method, 238
hash function, 418
hashed exported names, for symbol resolution, 417–418
hashing, 10
headers
hard-coded, 637
in PE file format, 21–26
Heads function, 105
graph
of encrypted write, 287
from IDA Pro Entropy Plugin, 284–285
graph mode, in IDA Pro, 89–90, 98–99
Graphical Identification and Authentication (GINA) interception, 235–236
indications of, 567–571
Gray Hat Python (Seitz), 201
GUI manipulation functions, 20
GUI programs, IMAGE_SUBSYSTEM_WINDOWS_GUI value for, 23
GUIDs (globally unique identifiers), 155

H hal.dll, malicious drivers and, 207
handles
for device objects, 220
obtaining, 216
for injecting malicious DLL, 255
locating for PDF document, 708
obtaining to samsrv.dll and advapi32.dll, 237
for service, OpenService function for, 550
in Windows API, 137
to Winlogon, opening, 603
handles type (H) type, in Windows API, 136
Handles window, in Process Explorer, 48
hard-coded headers, 637
hard-coded locations, for function calls, 410
hardware breakpoints, 357
in OllyDbg, 188, 190
vs. software, 687
hardware level, in x86 architecture, 66
hash dumping, 236–238
identifying method, 238
hash function, 418
hashed exported names, for symbol resolution, 417–418
hashing, 10
headers
hard-coded, 637
in PE file format, 21–26
Heads function, 105
heap, 69
heap space, creating, 437
heap spray, 705
heap structures, information for creating, 355
Hello World program, 418–421
disassembly, 412
help, in OllyDbg, 197
heuristics, 10
Hex Editor Neo, 468
hex editors, 468
hex window, in Wireshark, 53
Hex Workshop, 468
HexEdit, 468
Hex-Rays Decompiler plug-in, 106, 347, 468–469
hidden files, 558–559
retrieving, 559–560
hidden process, 566
Hide Debugger plug-in, 334
for OllyDbg, 198
Hidedebug plug-in, 354
high-entropy content, search for, 283
high-level language, 66, 67
high-level remote hooks, 260
HKEY, 139
HKEY_CLASSES_ROOT, 140
\http\shell\open\command, 699
HKEY_CURRENT_CONFIG, 140
HKEY_CURRENT_USER (HKCU), 140
HKEY_LOCAL_MACHINE (HKLM), 140
HKEY_LOCAL_MACHINE\Software registry key, 448
\Microsoft\Cryptography\RNG\Seed, 549
\RegSetValue, 484
\Microsoft\Windows\CurrentVersion\Run, 485
\Microsoft\Windows NT\CurrentVersion\ SysHost, 488
HKEY_USERS, 140
\HlGetPrimaryCredential function, 238
\HOME_NET variable, in Snort, 303
honeypots, 369
hook function, \NtQueryDirectoryFile function as, 556–558
hook injection, 259–261
assembly code, 261
hooking examining in OllyDbg, 579–580
function, 598
inline, 248–250
keylogger and, 239
local and remote, 260
looking for code, 223
low-level operation, 579
malware, installing code for, 577
System Service Descriptor Table (SSDT), 221–222
checking for, 222
host-based signatures, 2
hostname
Base64 string for encoding, 611
function to obtain, 722
of local machine, loading buffer, 650
host-only networking, 32–33
hotkeys, registering, 20
HTML (HyperText Markup Language) comments, 506
command character parsed from, 509
to send commands to malware, 507
\htons function, 727
HTTP (HyperText Transfer Protocol) attackers’ use of, 309
port 80 and, 232
reverse backdoor, 539
HTTP server
backdoor indicators, 493
malware access to, 34
simulating, 56
HTTP\OpenRequest function, 313
\HTTP_PORTS variable, in Snort, 303
\HTTPQueryInfo function, 313
HTTPS, attackers’ use of, 309
HTTPS server, simulating, 56
\HTTPSPostRequest function, 313
Hungarian notation, 136
Hyde, Randall, The Art of Assembly Language, 68
HyperText Markup Language (HTML) comments, 506
command character parsed from, 509
to send commands to malware, 507
HyperText Transfer Protocol (HTTP) attackers’ use of, 309
port 80 and, 232
reverse backdoor, 539
IAT (import address table), hooking method and, 248
ICE (In-Circuit Emulator) breakpoint, 363
IDA Pro (Interactive Disassembler Professional), 87–106, 469
 adding IP_ADAPTER_INFO structure, 680–681
 analyzing functions, 97–98
 analyzing functions graphically, 114
 applying structure in, 547–548
 comparison plug-in for, 466
 consecutive jump instructions in, 335
 cross-references, 95–97
 enhancing disassembly, 100–103
 FindCrypt2, 283
 graphing options, 98–99
 for loop, 117
 of parsing routines, 318–319
 view for tail jump, 392–394
 highlighting anti-VM in, 377–378
 identifying XOR loops in, 274–276
 interface, 89–90
 disassembly window modes, 89–90
 returning to default view, 92
 windows for analysis, 91–92
 labs, 107–108
 solutions, 494–501
 listing imported with cryptographic functions, 282
 loading executable, 88–89
 looking at user-space code in, 215–216
 manually switching bytes between data and instructions, 334
 navigating, 92–94
 colors in navigation band, 93
 exploring history, 93
 jumping to location, 93–94
 links and cross-references, 92–93
 to open driver, 551
 packed program and, 387
 plug-ins for extending, 103–106
 commercial plug-ins, 106
 IDAPython, 105–106
 IDC scripts, 104–105
 search for x86 instructions vulnerable to VM detection, 670–672
 searching, 94–95
 searching packed executable for tail jump, 392
 for TLS callback function analysis, 360
 toggling between graph and traditional view, 495
 vs. WinDbg, 553
 WinMain function in, 561
The IDA Pro Book (Eagle), 88
IDA Pro Entropy Plugin, 283–284, 619–620, 622
 graph from, 284–285
IDA Pro database (.idb), 88
IDA Pro Free, 87
idaapi module in IDAPython, 105
IDAPython, 105–106
.idata section, in PE file, 22
idautils module in IDAPython, 105
.idb (IDA Pro database), 88
ide module in IDAPython, 105
IDC scripts, 104–105
IDEA (International Data Encryption Algorithm), 283
identifying malware, hashing for, 10
IDSs (intrusion detection systems), 298
 signature-based, 302
 with Snort, 303–304
IDT (Interrupt Descriptor Table), 225, 374
IDT register (IDTR), 374
if statements
 for active Internet connection, 510
 recognizing, 113–116
IIDs (interface identifiers), 155
 and COM functionality, 518
image base, 184
IMAGE_DATA_DIRECTORY structure, 364
IMAGE_DOS_HEADER structure, 22, 594
IMAGE_EXPORT_DIRECTORY array, export data in, 416
IMAGE_FILE_DLL to modify PE header, 43
IMAGE_FILE_HEADER, in PE file, 22
IMAGE_NT_HEADERS structure, 22, 594
IMAGE_OPTIONAL_HEADER structure, 363–364
IMAGE_SECTION_HEADER structure, 23, 594
IMAGE_SUBSYSTEM_WINDOWS_CUI value, for console programs, 23
IMAGE_SUBSYSTEM_WINDOWS_GUI value, for GUI programs, 23
$iment command, in WinDbg, 213
ImmDbg (Immunity Debugger), 179, 292–294, 469, 616–617
Python scripts for, 200
immediate operands, 69
imm.getRegs function, 293
imm.remoteVirtualAlloc command, 293
imm.setBreakpoint function, 293
Immunity Debugger (ImmDbg), 179, 292–294, 469, 616–617
Python scripts for, 200
Immunity security company, 179
imm.writeLong function, 293
imm.writeMemory command, 293
import address table (IAT), hooking method and, 248
Import Reconstructor (ImpRec), 390–391, 469
import table
absence of, 480
modification, 262
rebuilding with Import Reconstructor, 390–391
repairing manually, 395–397
imported functions, 15, 18, 19
examining list, 513–517
packer resolving of, 385
Imports window, in IDA Pro, 91
ImpRec (Import Reconstructor), 390–391, 469
In-Circuit Emulator (ICE) breakpoint, 363
in instruction (x86), 376
indexing service, malware starting, 582
indirection tactics, 300
inet_addr function, 458, 522
INetSim, 55–56, 57, 469, 634
logs for requests, 58
information-stealing malware, 4
infrastructure, attackers’ use of existing, 311
inheritance, in object-oriented programming, 432
.ini files, 139
InInitializationOrderLinks list of structures, 414
initialization function, 214
injected code, 64-bit version, 442
inline hooking, 248–250
function installing, 574–575
input function, and decoding, 286
input/output system (I/O), in x86 architecture, 68
inserting interrupts, 362–363
installer export, graph of cross-references, 572–573
installing
inline hook, 574–575
VMware Tools, 31
InstallService, 43
instance of class, 428
instruction pointer, 68, 71
destructor to change, 177
instruction pointer–relative data addressing, in x64 architecture, 443–444
instruction set, 67
instructions
bytes as part of multiple, 338
in x86 architecture, 69–70
anti-VM, 377
INT 0x2E instruction, 158
INT 20 anti-debugging technique, 363
INT 3 instruction
exception and, 176
inserting, 362
INT scanning, 357
Interactive Disassembly Professional.
See IDA Pro (Interactive Disassembly Professional)
interface identifiers (IIDs), 155
and COM functionality, 518
International Data Encryption Algorithm (IDEA), 283
Internet connection
if construct for active, 510
malware and, 29, 34
malware check for active, 501
Internet Explorer, third-party plug-ins for, 157
Internet functions, graph for functions connected with, 634–635
Internet Relay Chat (IRC), 309
Internet services, simulating, 55
INDEX

InternetCloseHandle function, 504, 634
InternetConnect function, 313
InternetGetConnectedState function, 501, 502
InternetOpen function, 145, 313, 458, 504, 505, 514, 634, 639–640, 650
InternetOpenUrl function, 145, 313, 458, 504, 505, 634
InternetReadFile function, 145, 313, 458, 634
InternetWriteFile function, 313, 458
interpreted languages, 67
interprocess coordination, with mutexes, 151–152
Interrupt Descriptor Table (IDT), 225, 374
interrupts
anti-debugging with, 362–363
rootkits and, 225
intrusion detection systems (IDSs), 298
signature-based, 302
with Snort, 303–304
intrusion prevention systems (IPSs), 298
I/O communication port, query of, 375–377
IoConnectInterrupt function, 225
IoCreateDevice function, 562
IoCreateSymbolicLink function, 562
IoGetCurrentProcess function, 565
import for, 560
IopInvalidDeviceRequest function, 564
IP addresses
blacklists of, 301
getting, 300–302
and malicious activity, 299
IP_ADAPTER_INFO structure, adding to IDA Pro, 680–681
IPRP service, malware installed as, 488
IRC (Internet Relay Chat), 309
IRP_MJ_DEVICE_CONTROL function, 218
code listing, 219
locating function for, 218
IRP_MJ_READ function, 219
Irvine, Cynthia, 373
isdataat Snort rule keyword, 305
IsDebuggerPresent function, 352, 458
IsNTAdmin function, 458
IsWow64Process function, 448, 459
effort to dynamically resolve, 729–730
Itanium, 441
IWebBrowser2 interface, Navigate function, 155

J
JavaScript
in PDF files, 704–705
to profile user’s system, 423
jmp instruction, 80, 329, 517
consecutive in IDA Pro, 335
with constant condition, 336
with same target, 334–335
jnz instruction, 408–409
Joe Sandbox, 40
jump instructions, 386
jump table, for switch structure, 641–642
jumping to location, in IDA Pro, 93–94
just-in-time debugger, 411
OllyDbg as, 696
jz instruction, 653
false conditional for, 647–648
target of, 646

K
KANAL (Krypto ANALyzer), 283, 610, 619
KeInitializeApc function, 264–265
KeInsertQueueApc function, 264–265
kernel-based keyloggers, 238
kernel code, 206
64-bit malware and, 442
breakpoints, 548
malware creation of file, 554
kernel debugging
looking at user-space code, 215–216
setting up for VMware, 207–210
WinDbg and, 205
kernel driver, creating service to load, 216
kernel mode
binary translation by VMware, 373
for debuggers, vs. user mode, 168–169
in Windows, 158–159
kernel patch protection, 227
kernel space, APC injection from,
264–265
kernel32.dll, 17, 20, 159
 assembly code to find base
 address, 415
 finding in memory, 413–415
 imported functions, 16
 imports from, 480, 481
 name change by malware, 520, 529
 shellcode and, 413
 viewing imports from, 478
KERNEL_DRIVER service type, 153
kernel-mode APC, 263
kernel-mode code, looking at,
217–220
Kernighan, Brian, The C Programming
Language, 110
KeServiceDescriptorTable function, 559
KeTickCount function, 549
key
 for cryptographic algorithms, 281
 in registry, 139
key initialization code, identifying, 622
keyboard inputs, 20
keyloggers, 4, 238–241
 analysis, 585, 597–599
 hooks for, 260
 indications of, 491, 581
KMixer.sys, 217
KnownDLLs registry key, 245
Krypto ANALyzer (KANAL), 283,
610, 619
lab environments, malware and, 298
labeling, in OllyDbg, 197
labs
 64-bit malware, 450–451
 solutions, 723–732
 anti-debugging, 367–368
 solutions, 655–669
 anti-disassembly, 350
 solutions, 645–655
 anti-virtual machine (anti-VM)
 techniques, 381–382
 solutions, 670–684
 C++ analysis, 439–440
 solutions, 712–723
 C code constructs in assembly,
 133–134
 solutions, 501–513
 covert launching techniques,
 266–267
 solutions, 586–607
 data encoding, 295–296
 solutions, 607–626
 dynamic analysis, 61–62
 solutions, 482–493
IDA Pro, 107–108
 solutions, 494–501
 malware behavior, 251–252
 solutions, 566–586
 network signatures, 323–324
 solutions, 626–645
OllyDbg, 292–203
 solutions, 530–548
 packers, 403
 solutions, 684–695
 shellcode analysis, 425–426
 solutions, 696–712
 static analysis, 27–28
 solutions, 477–481
WinDbg, 228
 solutions, 548–566
 Windows malware, 162–163
 solutions, 513–529
last in, first out (LIFO) structure, 77
launchers, 4, 231–232. See also covert
launching techniques
LdrGetProcAddress function, 15
LdrLoadDll function, 15, 459
LDT (local descriptor table), 374
LDT register (LDTR), 374
lea instruction (load effective
address), 73–74
leaf functions, 446
leave instruction, 77
left rotation (rol), 76
legacy graphs, in IDA Pro, 98
libdisasm disassembly library, 330
LIFO (last in, first out) structure, 77
linear disassembly, 329–331
 vs. flow-oriented, 331–332
linked libraries, executable use of,
15–18
linked list traversal, 130–132
links, navigating in IDA Pro, 92–93
Linux virtual machine, 57
listen function, 143, 144
listen mode, in Netcat, 52
LIST_ENTRY structure, 414, 565
little-endian data, 69
lm command, in WinDbg, 212, 223, 553, 555
ln command, in WinDbg, 213
loaddll.exe, 401
OllyDbg use of, 191
loader, 232. See also launchers
loading
device drivers, 226
executable, 384–385
in IDA Pro, 88–89
LoadLibrary function, 13, 15, 261, 387, 413, 417, 459, 520, 521, 545, 546, 547, 585
finding last call, 692
unpacking stub import of, 385
LoadResource function, 254, 459, 596, 600, 609
loc links, in IDA Pro, 93
local administrator, user
running as, 245
local descriptor table (LDT), 374
local hooks, 260
local machine, loading buffer with hostname, 650
Local Security Authority Subsystem Service (LSASS) process, 236
local user accounts, password
hashes of, 236
local variables, vs. global, 110–112
locally unique identifiers (LUIDs), 238, 247
locations, name changes in IDA Pro, 100
LockResource function, 596, 609
logging
active window, 239
of credentials, 570–571
errors in malware, 674
in OllyDbg, 197
logical operators, 75
logon, credential stealers, 234–241
long pointer (LP) type, in Windows API, 136
LookupPrivilegeValueA function, 247, 730
loopback encoding algorithm, 277
loops
in C code, 116–118
setting breakpoints after, 394
LordPE, 469
LowLevelKeyboardProc export, 20
low-level language level, 66, 67
LowLevelMouseProc export, 20
low-level remote hooks, 260
LsaEnumerateLogonSessions function, 459
lsaext.dll, 236
LSASS (Local Security Authority Subsystem Service) process, 236
lsass.exe, 236
LUIDs (locally unique identifiers), 238
MAC address, for virtual machine, 371
machine code, 67
magic constant, 283
magic number, 376
main function
determining start, 530
starting analysis at, 501–502
main memory, in x86 architecture, 68, 69
major function table, 218
analyzing functions of, 564–566
finding, 220
Malcode Analyst Pack, 469–470
malicious documents, Process Explorer to analyze, 50
malloc function, 578
malware. See also Windows malware
64-bit, 441–449
analyzing without unpacking, 400–401
attempts to delete itself, 531
double-packed, 397
hashing for identifying, 10
observing in natural habitat, 298
packed and obfuscated, 13–14
running, 42–43
safe environment for running, 14
searching for evidence of encoding, 608
self-deletion scripting code, 674
types, 3–4
malware analysis
creating machine for, 31–33
danger of overanalysis, 308
INDEX 751

general rules, 4–5
goals, 1–2
risks of using VMware for, 36–37
techniques, 2–3. See also dynamic analysis; static analysis
tools, 465–475
malware behavior, 231–250
backdoor, 232–234
botnets, 234
credential stealers, 234–241
GINA interception, 235–236
hash dumping, 236–238
keystroke logging, 238–241
downloaders and launchers, 231–232
indications of, 298–299
labs, 251–252
solutions, 566–586
persistence, 241–245
DLL load-order hijacking, 244–245
trojanized system binaries, 243–244
Windows Registry for, 241–243
privilege escalation, 245–247
SetDebugPrivilege, 246–247
remote administration tool (RAT), 233–234
user-mode rootkits, 247–250
IAT hooking, 248
inline hooking, 248–250
Mandiant
ApateDNS, 51–52
Red Curtain, 388
mangling, 430–431
manual unpacking, 389–397
MapViewOfFile function, 137–138, 459, 520, 527, 583
MapVirtualKey function, 459
mass malware, 4
MD5 (Message-Digest Algorithm 5), 10
media files, shellcode stored within, 423
memcmp function, 497
memcpy function, 596
memory
addresses for global variables, 111
allocation for objects, 437
checking for VMware artifacts, 373
copying PE sections into, 593–594
dumping executable from, 390, 400, 469
finding device driver in, with WinDbg, 563
finding kernel32.dll in, 413–415
function dump, 174
processes and, 147
memory-access violations, 177
memory address operands, 69
memory breakpoint, in OllyDbg, 188, 190–191
Memory dump window, in OllyDbg, 183
memory map, to locate DLLs, 546–547
Memory Map window, in OllyDbg, 183–185
memory window, WinDbg reading from, 210–211
Memoryze, 470
message box, malware creation of, 586
Message-Digest Algorithm 5 (MD5), 10
message flow, in Windows with and without hook injection, 259
Metasploit, 245, 418
methods
in C++ class, 427
overloading, 430–431
microcode, in x86 architecture, 66
Microsoft. See also Windows
Component Object Model (COM), 154–157
documentation, 453
firewall, 33
Hyper-V, 31
Software Data Execution Prevention (DEP), 345
symbols, 212–215
Virtual PC, 31
Visual Studio, 16
calling conventions, 121
wide character string, 11
Microsoft Developer Network (MSDN), 414
Microsoft signed binary, verifying, 48
MIME (Multipurpose Internet Mail Extensions) standard, Base64 and, 277
MmGetSystemRoutineAddress function, 224, 459
mneumonics, in instructions, 69
Module32First function, 459
Module32Next function, 459
modules
 getting name of, 602
 listing in WinDbg, 212
modulo operation, 75, 112, 113
mov instruction, 73, 76, 79, 338, 500
 position dependence, 409
movsb instruction, 82
movsd instruction, 528
movsx instruction, 81
MS-DOS Stub Program, 22
MSDN (Microsoft Developer Network), 414
MSDN online, 19
msg keyword, in Snort, 304
msgina.dll and GINA, 235
msvcrt.dll, imports from, 480
mul instruction, 75
multibyte encoding algorithm, 276
Multipurpose Internet Mail Extensions (MIME) standard, Base64 and, 277
multithreaded version, of Windows reverse shell, 233
mutants, 151
mutexes, 58, 482, 513
 creating, 483, 515
 interprocess coordination with, 151–152
 malware creation of, 585
 malware use of, 517
MZ header, in PE executable, 594

N
named constants, 102–103
named pipes, watching for input on, 634
names
 conventions for functions, 17
 hashed exported, for symbol resolution, 417–418
 for lab files, 27
 of locations, changing in IDA Pro, 100
 for malicious DLL, 257
 of malware, string comparison, 666
 mangling in C++, 431
 of modules, getting, 602
 for mutexes, 151
Names window, in IDA Pro, 91
namespaces, files accessible via, 138–139
NAT (Network Address Translation), 311
 for VMware, 34
Native API, in Windows, 159–161
native applications, 161
Navigate function, 155, 313
nc. See *Netcat* (nc)
 nested if statements, 113, 114–116
net start *cisvc* command, 582
net start command, 43, 152, 581
Netcat (nc), 52–53, 470, 483, 634
 examining results, 485
 output when listening on port 80, 504
 reverse shells, 232–233
NetScheduleJobAdd function, 459, 547
NetShareEnum function, 459
network adapter, bridged, 34
Network Address Translation (NAT), 311
 for VMware, 34
network countermeasures, 297
Network filter, in procmon, 46
network interface cards (NICs), virtual, 371
network signatures, 2, 297–322
 analysis, 631–632
 attacker’s perspective and, 321–322
 creating, 490
 creating for Snort, 317
 creating XOR brute-force, 273
 Emerging Threats list of, 304
 generating, 643
 labs, 325–324
 solutions, 626–645
 for malware infection detection, 2
 User-Agent field for, 637
networking APIs, 143–145
networks
 analysis, 538–539
 capturing traffic, 580
 faking, 51–55
 finding code, 513
host-only, 32–33
indications of functioning, 572
knowing sources of content, 314
server and client sides, 144–145
virtual, 32
new operator, 435, 437, 712
nibble, 278
NICs (network interface cards),
virtual, 371
No Pill technique, 375. See also sldt instruction (No Pill)
NopBytes function, 339
nonleaf functions, 446
nonprivileged mode, 177
nonvirtual functions, vs. virtual,
432–436
NOP instruction, in x86 architecture, 76
NOP sequence, 337
NOP sled, shellcode and, 422–423
NOP-ing out instructions with IDA Pro, 340
Norman SandBox, 40
Norton Ghost, 30
noscript tags, malware commands from, 638
NSPack, 388
NT namespace, 138
NtContinue function, 161, 386
NtCreateFile function, 215, 224
ntdll.dll, 17, 159, 352, 414
NtGlobalFlag flag, 355, 659–660
ntohl function, 191
ntoskrnl.exe, 159
malicious drivers and, 207
NtQueryDirectoryFile function, 459, 559
as hook function, 556–558
NtQueryInformationFile function, 160
NtQueryInformationKey function, 160
NtQueryInformationProcess function,
352, 460
NtQueryInformationThread function, 160
NtQuerySystemInformation function, 160
NtReadFile function, 160
NtSetInformationProcess function, 460
NtWriteFile function, 160, 215
NULL bytes, avoiding in shellcode, 421
NULL-preserving single-byte XOR encoding, 273–274
NULL terminator, 11
Number of Opcode Bytes option, 335
NXDOMAIN option, 52
O
!object command, in WinDbg, 552
object-oriented programming,
427–432
overloading and mangling,
430–431
this pointer, 428–430
objects, creating and destroying
in C++, 437
OEP. See original entry point (OEP)
OfficeMalScanner, 470
offset links, in IDA Pro, 93
oleInitialize function, 154, 460, 518
OllyDbg, 168, 179–201, 364, 470
analysis, 691
assistance features, 197
breakpoints, 188–191
choosing to debug arguments, 532
default settings for exceptions, 362
disassembly view, 533
examining hook in, 579–580
exceptions, 194–195
executing code, 186–187
finding function addresses with, 410
forcing code disassembly, 689
interface, 181–183
just-in-time debugger, 411, 696
labs, 202–203
solutions, 530–548
loading DLLs, 191–192, 401
loading malware, 180–181, 656
memory map to examine DLL load locations, 546
Memory Map window, 183–185
opening malware with, 538
OutputDebugString format string vulnerability, 365
packed program and, 387
patching, 195–196
pausing before TLS callback, 361
plug-ins, 197–200, 354

OllyDbg, continued
- premature termination of program in, 662
- rebasing, 184–185
- Run Trace option, 395
- screen capture decoding with, 616
- scriptable debugging, 200–201
- shellcode analysis, 196–197
- strncmp function in, 663
- tracing, 192–194
- viewing threads and stacks, 185–186
- vulnerabilities in, 363–365
- WinUpack and, 400

OllyDump, 198, 389–390
- dumping unpacked program, 694
- Find OEP by Section Hop (Trace Into), 686
- Find OEP by Section Hop (Trace Over), 685, 687
- forcing code disassembly, 686
- opcodes, in x86 architecture, 67, 70
- open source sniffer, 53
- OpenMutex function, 152, 460, 522
- OpenProcess function, 460
- OpenProcessToken function, 247, 730
- OpenSCManager function, 153, 460, 514, 515, 549, 550, 554
- OpenService function, 549, 550
- OpenSSL, 281
- operands
 - formatting in IDA Pro, 100
 - in x86 architecture, 69, 70
- operating systems (OSs), backup images of, 30
- Operation filter, in procmon, 45
- operational replication, 308
- operations security (OPSEC), 299
- or instruction, 76
- OR logical operator, in x86 architecture, 75
- ordinal, executable import of functions by, 16–17, 43
- original entry point (OEP)
 - code around, 399
 - in DLLs, 401
 - finding, 391–395
 - with automated tools, 391–392
 - manually, 392–395
 - indications of, 694
- transferring execution to, 386
- unpacking stub and, 384
- orphaned process, 490–491
- OSR Driver Loader, 470–471
- OSs (operating systems), backup images of, 30
- Outlook Express, 579–580
- output functions, tracing from, 286
- OutputDebugString function, 353, 460, 664
- overanalysis, danger of, 308
- overloading, 430–431

P
- packed DLLs, 401
- packed executables
 - detecting, 23
 - entropy calculation for, 387–388
 - identifying, 387–388
 - loading in OllyDbg, 389
 - repairing import table for, 390
- packed files
 - indications of, 480
 - strings and, 483
- packed malware, 13–14
 - detecting with PEiD, 14
- packers, 383–402
 - anatomy, 384–387
 - labs, 403
 - solutions, 684–695
 - resolving imports, 385
 - tail jump, 386
 - tips and tricks for common, 397–400
 - unpacking illustrated, 386–387
 - packet listing, in Wireshark, 53
 - packet sniffing, with Wireshark, 53–55
 - packing algorithm, program to run in reverse, 389
 - padding characters, Base64
 - string and, 279
- Parallels, 31
- parent classes in C++, 432
 - child class functions from, 436
- parent-child relationships, in classes, 432
 - parsing routines
 - analyzing, 318–320
 - IDA Pro graph of, 318–319
- pass-the-hash attacks, 236
password check function, 533
testing if disabled, 534
passwords, 661
 getting correct, 665
 sniffing, 53
PatchByte function, 337, 339
PatchGuard, 227
patching, in OllyDbg, 195–196
payload rule options, in Snort, 303
PCRE (Perl Compatible Regular Expression) notation, in
 Snort, 305, 316
pcre Snort rule keyword, 305
pdata section, in PE file, 22
PDF Dissector, 471
.pdf documents, 704–712
 analyzing with Process Explorer, 50
 objects created for, 716
PDF Tools, 471
PE Explorer, 26, 471
 unpacking plug-ins, 388
PE file format. See Portable Executable (PE) file format
PEB (Process Environment Block) structure, 352, 391–392
documented, 354
PEBrowse Professional, 26
PECompact, 397–398
PeekNamedPipe function, 460, 634
PEiD, 471, 478, 479–480
detecting packers with, 14
 KANAL output, 610
peripheral devices, connecting and disconnecting, 34–35
Perl Compatible Regular Expression (PCRE) notation, in Snort, 305, 316
persistence, 241–245, 572
 AppInit_DLLs for, 575
 DLL load-order hijacking, 244–245
 of registry, 139
trojanized system binaries, 243–244
 Windows Registry for, 241–243
Petite, 398
PEview, 471, 478
 examining PE files with, 22–24
 finding base address with, 545
 original and trojanized versions of cisvc.exe, 584–585
Phatbot plug-in, 354, 658, 659, 665
Phatbot, VMware detection, 375–376
phishing, targeted, 299
PIC (position-independent code), 408–409
pipe symbol (|), in Snort, 304
plug-ins
 for extending IDA Pro, 103–106
 in OllyDbg, 197–200, 354
 PEiD, running of executables, 14
 third-party, for Internet Explorer, 157
pointers, handles vs., 137
Poison Ivy, 189, 234
 tracing, 193–194
 use of VirtualAlloc function, 189–190
polling, 239
polymorphism, 434
pop instruction, 77, 79
 after call, 409–411
 and tail jump, 394
pop-up ads, 560–561
popa instruction, 79, 244
popad instruction, 79
port 80, backdoor and, 232
Portable Executable (PE) file format, 14–15, 396
 copying sections into memory, 593–594
 examining file structure, 486
 header vulnerabilities, OllyDbg, 363–365
 headers and sections, 21–26
 summary information, 26
 IDA Pro support for, 87
 indications in, 729
 packed executables formatting of, 385
 parsing export data, 415–417
 PEview for examining, 22–24
 rebasing and, 184
 Resource Hacker tool for viewing, 25–26
 resource section, 254, 567
 section headers, and OllyDbg crash, 364
 .tls section, 360, 662
 ports, malware use of, 52
 position-independent code (PIC), 408–409
POST method, 309
printf function, 120
call compiled for 32-bit processor, 445
call compiled for 64-bit processor, 446
IDA Pro problems recognizing, 502
privilege escalation, 245–247
SeDebugPrivilege, 246–247
privileged mode, 177
ProcDump, 400
Process activity filter, in procmon, 46
process context, 158
Process Environment Block (PEB) structure, 352, 591–592
documented, 354
Process Explorer, 58, 472, 483
comparing strings, 49
Dependency Walker, 49
for finding DLL injection, 589
Verify option, 48–49
viewing processes with, 47–50
Process Hacker, 472
Process Monitor (procmon), 43–46, 472, 483
boot logging options, 46
display, 44
Filter dialog, 484
filtering in, 44–46
filters on toolbar, 46
reviewing results, 58
toggling event capture on and off, 749
Process Name filter, in procmon, 45
Process Properties window,
 Strings tab, 49
process replacement, 48–49, 257–259
Process32First function, 255, 263, 460
Process32Next function, 255, 263, 460
processes
 creating, 147–149, 590
dumping from memory, 390, 400
dynamically resolving enumeration imports, 600–601
EBX register of suspended newly created, 591
enumerating, 601
for following running malware, 147–149
function to open and manipulate, 20
hidden, 566
interprocess coordination with mutexes, 151–152
Properties window for, 48
resuming suspended, 595
starting and replacing, 596
ProcessHeap flag, in PEB structure, 355
procmon. See Process Monitor (procmon)
programs. See executables
prologue
 64-bit code, 446–447
 in functions, 77
Properties window, in Process Explorer, 48
protocols, attackers mimicking existing, 309–310
psapi.dll, 586, 600
push instruction, 77, 79, 244, 329, 689
vs. mov, 120
with return instruction for tail jump, 399
to start functions in disassembly, 394
Pwdump, 236
PyCommand Python script, 200–201
PyCrypto cryptography library, 290, 625
potential pitfalls, 626
Python, 472
IDA Python, 105–106
program to decode Base64-encoded string, 289
PyCommand script, 200–201
script for converting data to string, 500–501
Q
query, of I/O communication port, 375–377
QueryPerformanceCounter function, 358–359, 460, 667–668
QueueUserAPC function, 263, 460
R
radio-frequency identification (RFID) tokens, 235
RaiseException function, 157, 344
Random function, 313, 314
random number generator seed, 484
RAT (remote administration tool), 233–234
raw data, translating to Base64, 277–278
RC4 algorithm, 283
RCPT command (SMTP), 572
.rdata section, in PE file, 21
rdtsc function, 669
rdtsc instruction, for timing check, 358
read breakpoints, for finding tail jump, 394
ReadFile function, 137, 219
origin of handle passed to, 623
ReadProcessMemory function, 460, 590
rebasing, 88
in OllyDbg, 184–185
receiving data, and code analysis, 312
recovery of hidden files, 559–560
recursive function, 527
recv function, 143, 144, 313, 461
Red Pill anti-VM technique, 374–375.
See also sidt instruction (Red Pill)
reference Snort rule keyword, 305
RegCreateKeyEx function, 448
RegDeleteKeyEx function, 448
Regedit (Registry Editor), 140–141
RegGetValue function, 141
Regional Internet Registries (RIRs), 301
register operands, 69
RegisterClassEx function, 20
RegisterHotKey function, 20, 461
registers, 68
shifting, 75
in x64 architecture, 443
in x86 architecture, 71–73
Registers window, in OllyDbg, 182
registries, for Internet addresses, 301
Registry (Windows), 139–143
analyzing code, 141–142
common functions, 141
defining services, 242
function for string search, 679
indications of modification, 508
for persistence, 241–243
root keys, 140
scripting with .reg files, 142–143
snapshots with Regshot, 50–51
VMware artifacts in, 371
Registry Editor (Regedit), 140–141
Registry filter, in procmon, 46
registry keys, 20
malware and, 42
references to debuggers, 356
\Registry\Machine strings, 549
RegMon tool, 43
RegOpenKey function, 461
RegOpenKeyEx function, 141, 142, 448, 508
RegSetValueEx function, 141, 508
Regshot, 50–51, 56, 472, 487–488
regular expressions, for identifying malware patterns, 631
relative addresses, vs. absolute addresses, in OllyDbg, 184–185
relative virtual addresses (RVAs), for PE files, 416
ReleaseMutex function, 151
.reloc section, in PE file, 22
remote administration tool (RAT), 233–234
remote hooks, 260
remote machine, program receiving commands from, 522
remote process, VirtualAllocEx function and, 255
remote shell session function, 497
remote socket, program connecting to, 727
rep instructions, in x86 architecture, 81–83
REP MOVzx instruction, 536
replication, operational, 308
resource extraction import functions, 567
Resource Hacker, 25–26, 472, 482, 554, 596–597
resource section
executable file stored in, 555
loading data from, 481
resources
imports for manipulating, 600
obfuscated with single-byte XOR encoding, 609
resources management, processes for, 147
ResumeThread function, 259, 461
ret instruction, 77, 386, 409
retn instruction, 342–343, 693
return instruction, for tail jump, push instruction with, 399
return pointer, abuse, 342–343
rev keyword, in Snort, 304
reverse-engineering, 3
network protocols, 53
in x86 disassembly, 67–68
reverse-engineering environment, 466
reverse IP lookups, 301
reverse shell, 232–233
analysis, 544
creating, 703
reversible cipher, 271
RFID (radio-frequency identification) tokens, 235
right rotation (ror), 76
Rijndael algorithm, 618
RIP-relative addressing, 443
RIRs (Regional Internet Registries), 301
Ritchie, Dennis, *The C Programming Language*, 110
Robin, John, 373
RobTex, 302
rogue byte, 337
ROL encoding algorithm, 276
rol instruction, 76
Roman Empire, Caesar cipher and, 270
root key, in registry, 139
rootkits, 4, 221–225
finding, 555–556
interrupts and, 225
user-mode rootkits, 247–250
ROR encoding algorithm, 276
ror instruction, 76
ROT encoding algorithm, 276
rotation, instruction for, 76
.rsrc section, in PE file, 22, 25–26
RtlCompareMemory function, 557–558
RtlCreateRegistryKey function, 461, 549, 553
RtlInitUnicodeString function, 219, 559
RtlWriteRegistryValue function, 461, 549, 553
tutils.dll, comparing trojanized and clean versions, 243
rule options, in Snort, 303
run subkey, for running programs automatically, 140
run trace, in OllyDbg, 193
rundll32.exe, 42–43, 488
filter for process, 572
for running DLL malware, 42–43
running process, attaching OllyDbg to, 181
running services, listing, 152
runtime linking, 15
RVAs (relative virtual addresses), for PE files, 416
safe environment, 29. See also virtual machines
SafeSEH, 345
SAM (Security Account Manager), password hashes of local user accounts, 236
SamlConnect function, 237, 461
SamGetPrivateData function, 237, 461
SamQueryInformationUser function, 237
SamrQueryInformationUser function, 237
samsrv.dll library, obtaining handle to, 237
sandboxes, 40–42, 473
Sandboxie, 473
sc command, 555
 scareware, 4
scasb instruction, 82
scasx instruction, 81
ScoopyNG, 379
screen capture, function for, 615
ScreenEA function, 105
scriptable debugging, in OllyDbg, 200–201
scripts, IDC, 104–105
searching
 default order for loading DLLs in Windows XP, 245
 in IDA Pro, 94–95
 for symbols, 212–213
Section Hop, 391
Secure Hash Algorithm 1 (SHA-1), 10
Security Account Manager (SAM), password hashes of local user accounts, 236
security descriptor, 246
SetDebugPrivilege privilege-escalation procedure, 603
segment registers, 71
SEH (Structured Exception Handling), 157, 665
chain, 345
misusing, 344–346
Seitz, Justin, *Gray Hat Python*, 201
self-decoding, 288–289
self-deletion scripting code, 674
send function, 143, 144, 313, 461
installing inline hook, 574
sending data, and code analysis, 312
server side of network, 144–145
ServiceMain function, 673
services
defining in Registry, 242
function creating, 677
functions indicating creation, 549
handles for, OpenService function for, 550
malware creation, 514
malware installed as, 487
program creating, 561
sc command for information about, 555
in Windows, 152–154
SetColor function, 105
setdll tool, 262
SetFilePointer function, 709
SetFileTime function, 461
SetThreadContext function, 259, 461, 590, 595
SetWaitableTimer function, 516
SetWindowsHookEx function, 20, 239, 260, 261, 462, 597
SetWindowText function, 20
SF (sign) flag, 72
sfc_os.dll, 604
SfcTerminateWatcherThread function, 462, 604
sgdt instruction
virtual machine and, 374
and VMware detection, 375
SHA-1 (Secure Hash Algorithm 1), 10
shared files, 138
shared folders, 36
in VMware, 380
shell, connecting pipe to output, 624
Shell32.dll, 20
shellcode
64-bit version, 442
decoder with alphabetic encoding, 697
finding, 423–424
hash array, 700–701
locating open handle to PDF, 708
payload, 698
writing into cisvc.exe, 583–584
shellcode analysis, 407–424
dynamic, 706–707
encodings, 421–422
identifying execution location, 409–413
labs, 425–426
solutions, 696–712
loading code for, 408
manual symbol resolution, 413–418
finding kernel32.dll in memory, 413–415
parsing PE export data, 415–417
using hashed exported names, 417–418
NOP sled, 422–423
in OllyDbg, 196–197
solutions, 696–712
position-independent code (PIC), 408–409
shellcode_launcher.exe, 408, 411, 696
ShellExecute function, 462, 636
shifting registers, 75
shl instruction, 75, 76
ShowWindow function, 20
shr instruction, 75
sid keyword, in Snort, 304
sidt instruction (Red Pill), 375, 670, 671
virtual machine and, 374
signature-based IDSs, 302
signatures. See network signatures
cipher, 270–280
Base64, 277–280
Caesar cipher, 270
other encoding schemes, 276–277
XOR cipher, 271–276
simple instructions, in x86
architecture, 73–76
single-byte XOR encoding, 271
single-stepping
 in debuggers, 169–170, 176
 and icbp instruction, 363
 in OllyDbg, 187
sinkhole, 297
Size of Raw Data, 23–24
SizeOfRawData field, in PE header, 365
SizeofResource function, 254, 596, 609
sldt instruction (No Pill), 670, 672
 and VMware detection, 375
Sleep function, 239, 263, 329, 479
 in loop, 629
 parameter for, 499
 sandboxes and, 41
Sleuth Kit, The (TSK), 473
smart cards, 235
snapshots
 comparing with Regshot, 50–51, 58
 of registry, 487–488
 of virtual machines, 35–36
Snort, 473
 analyzing parsing routines, 318–320
 creating signature, 317
 false positives in, 306
 intrusion detection with, 303–304
 Perl Compatible Regular Expression (PCRE) notation in, 305
 signature for rule, 632
 targeting multiple elements, 320–321
sockaddr_in structure, 543, 702
socket function, 143, 144, 513
 symbolic constants for, 500
sockets
 Berkeley compatible, 143–144
 code for creating, 701–702
 program connecting to remote, 727
SoftICE, 168
software, modifying execution with
 debugger, 177
software breakpoints, 357
 vs. hardware, 687
 in OllyDbg, 188–189
Software Data Execution Prevention
 Software (DEP), 345
source-level debuggers, vs.
 assembly-level, 168
spam-sending malware, 4
spear-phishing, 299
special files, in Windows API, 138–139
strftime function, annotated code for
 arguments, 628–629
spyware, 20
SSDT (System Service Descriptor Table)
 checking for, 222
 hooking, 221–222
stack, 69
 addresses for local variables, 111
 ExceptionHandler code and, 345
 fixing for function, 506–507
 identifying parameters pushed onto, 502–503
 objects created on, 437
 viewing in OllyDbg, 185–186
 in x64 architecture, differences in usage, 443–447
 in x86 architecture, 77–80
 function calls, 77–78
 layout, 78–80
stack overflow, 158
stack pointer, negative number for, 348
stack variables, automatically
 naming, 100
Stack window, in OllyDbg, 182–183
stack-formed strings, decoding, 540–541
stack-frame analysis, thwarting, 347–349
standard back trace, in OllyDbg, 192–193
StartAddress function, 516
START_PENDING, as service status, 517
StartService function, 153, 549,
 550, 554
StartServiceCtrlDispatcher function, 462, 514
STARTUPINFO structure, 148, 233
 manipulating, 544
static analysis, 9–26, 65
 advanced, 3
 basic, 2
 combining with dynamic analysis, 307–321
Dependency Walker for, 468
example, PotentialKeylogger.exe, 18–21
labs, 27–28
solutions, 477–481
techniques, 482–485
static IP addresses, 632
static libraries, 145
static linking, 15
static unpacking programs, automated, 389
static values in memory, 69
status flags, 71
STATUS_BREAKPOINT exception, 362
stdcall calling convention, 120
stepping, in OllyDbg, 187
stepping-into, in debuggers, 170–171
stepping-over, in debuggers, 170–171, 187
Storm worm, 375
stosx instruction, 81
str instruction, 670, 671–672
to detect VMware, 377–378
and virtual machine detection, 377
strcat function, risk in using, 421
strcpy function, risk in using, 421
strncmp function, 527
string instructions, 81
strings
comparing in Process Explorer, 49
comparison of malware names, 666
concatenation functions, 535
decoding stack-formed, 540–541
decoding XOR encoded, 542–543
finding, 11–13
finding anti-VM techniques using, 679–683
functions for manipulating, 715
in malware, 487
obfuscated comparison, 640–641
packed files and, 483
Python script for converting data to, 500–501
recognizing in cryptographic algorithms, 281–282
sending to debugger for display, 353
strings listings, identifying keyloggers in, 240–241
Strings tool, 473
to search executable, 11–12
Strings window, in IDA Pro, 91
strncpy function, 256, 523, 524, 715
for module name comparison, 666
in OllyDbg, 663
strcpy function, 611
strchr function, 541, 725
strstr function, 640
Structured Exception Handling (SEH), 157, 665
chain, 345
misusing, 344–346
structures
applying in IDA Pro, 547–548
AT_INFO, 547–548
EPROCESS
changing, 566
examining in WinDbg, 565
identifying, 128–130
InInitializationOrderLinks list of, 414
LIST_ENTRY, 414, 565
manually checking, 353–356
Microsoft symbols and viewing information on, 213–214
overlaying data onto, 214
sockaddr_in, 543, 702
STARTUPINFO, 148, 233, 594
SYSTEMTIME, 516
time-related, manipulating, 516
UNICODE_STRING, for Windows kernel, 219
Structures window, in IDA Pro, 92
SUB encoding algorithm, 276
sub links, in IDA Pro, 93
subkey, in registry, 139
subtraction, instruction for, 74
suspended process, resuming, 595
suspended state, creating process in, 258
SuspendThread function, 462
SvcHost DLLs, 242–243
svchost.exe, 257–258
malware launch from, 488
running as orphaned process, 490–491
switch statement, 121–126, 722–723
graph indicating, 509–510
if style for, 122–123, 124
jump table for, 123–126, 641–642
symbolic constants, for socket function, 500
symbolic links, creating, 562
symbols, 212–215
configuring, 215
searching for, 212–213
and viewing structure information, 213–214
SYSCALL instruction, 158, 221
SYSENTER instruction, 158
SysInternals, Autoruns program, 241
SYSTEM account, 152
system binaries, trojanized, for persistence, 243–244
system calls, filtering on, 45
system function, 462
system memory. See memory
system residue, checking for, 356
System Service Descriptor Table (SSDT)
checking for, 222
hooking, 221–222
SystemFunction025 function, 237
SystemFunction027 function, 237
SYSTEMTIME structure, 516
SystemTimeToFileTime function, 516

T
tail jump, 386
eliminating code as, 693
examining code for, 687–688
and finding OEP, 392
for program packed with UPack, 399
targeted malware, 4
targeted phishing, 299
TCP handshake, capturing, 59
TCPView, 473
TEB (Thread Environment Block), 344
TerminateProcess function, IAT
hooking of, 248
test instruction, 80
text mode, in IDA Pro, 90–91
.text section, in PE file, 21, 22
TF (trap) flag, 72
The Sleuth Kit (TSK), 473
Themida, 400
Thinking in C++ (Eckel), 428
this pointer, 428–430, 712–713, 719
in disassembly, 430
thread context, 149
Thread Environment Block (TEB), 344
thread identifiers (TID), 575–576
Thread Information Block (TIB), 344
thread local storage (TLS) callbacks, 359–361
Thread32First function, 462
Thread32Next function, 462
threads
program accessing context of, 591
targeting, 261
viewing in OllyDbg, 185–186
in Windows, 149–151
ThreatExpert, 40
TIB (Thread Information Block), 344
TID (thread identifiers), 575–576
Time Date Stamp description, in PE file, 22–23
time-related structures, manipulating, 516
timestomping, 535
timing checks, 357–359
GetTickCount function, 668–669
with QueryPerformanceCounter,
667–668
rdtsc function, 669
TLS (thread local storage) callbacks, 359–361
Toolhelp32ReadProcessMemory function, 462
Tor, 300, 474
tracing, in OllyDbg, 192–194
traffic logs, of malware activities, 312
transferring files, from virtual machine, 36
trap flag, 176–177
trojanized system binaries, for persistence, 243–244
Truman, 474
TSK (The Sleuth Kit), 473
type library, loading manually in IDA Pro, 102
types, in Windows API, 136
U
u (unassemble) command,
in WinDbg, 212
Ultimate Packer for eXecutables. See UPX (Ultimate Packer for eXecutables)
unconditional jump, 80, 517
undo feature, snapshots as, 35
unescape function (JavaScript), 423, 705–706
unhandled exception, 344
UnhookWindowsHookEx function, 261
Unicode strings, 11–12
UNICODE_STRING structure, for Windows kernel, 219
uniform resource locators (URLs), opening to download malware, 651–652, 654
unload function, analysis in WinDbg vs. IDA Pro, 553
UnMapViewOfSection function, 592
unpacking, 14, 685–686
analyzing malware without, 400–401
example, 386–387
manual, 389–397
unpacking stub, 383, 384, 389, 692
size of, 399
UPack, 388, 398
UPX (Ultimate Packer for eXecutables), 14, 388, 389, 475
packing with modified version, 684–685
tips and tricks, 397
UPX-packed malware, 479
URLDownloadToCacheFile function, 232, 606, 626, 628, 642
URLDownloadToFile function, 313, 462, 482
URLs (uniform resource locators), opening to download malware, 651–652, 654
USB flash drives, 206
user mode
calls from application, 206–207
for debuggers, vs. kernel mode, 168–169
in Windows, 158–159
user space
APC injection from, 263–264
keyloggers, 239–240
looking at code, 215–216
user32.dll, 17, 20, 545
User-Agent, 312, 317
dynamically generated, 511
for malware, 303, 310, 628
string for signature, 643
user-mode APC, 263
user-mode rootkits, 247–250
IAT hooking, 248
inline hooking, 248–250
V
value entry, in registry, 140
variables, global vs. local, 110–112
VERA (Visualizing Executables for Reversing and Analysis), 475–476
victim information, malware gathering of, 722
viewing processes, with Process Explorer, 47–50
virtual addresses, automatically naming, 100
virtual function tables, 434–435, 715
recognizing, 435–436
virtual functions, vs. nonvirtual, 432–436
virtual machines, 29–38. See also anti-virtual machine (anti-VM) techniques
crashing from procmon, 44
disconnecting network, 32
escaping, 380
hiding precise location, 300
malware detection on, 42
malware efforts to detect, 369, 670–672
option to boot debugger-enabled version of OS, 208
setting up, 580
structure, 30–31
taking snapshots, 35–36
transferring files from, 36
using multiple, 33
virtual machine team, 33
virtual networking, 32, 57
Virtual Size, 23–24
VirtualAlloc function, 596
Poison Ivy use of, 189–190
VirtualAllocEx function, 255, 256, 423, 462, 586, 588, 730
and direct injection, 257
and process injection, 254
VirtualProtectEx function, 462
VirtualSize field, in PE header, 365
virus, 4
language setting and, 177
VirusTotal, 10, 475, 478, 479
Visualizing Executables for Reversing and Analysis (VERA), 475–476
VMcat, 380
VMchat, 380
VMdrag-n-hack, 380
VMdrag-n-sploit, 380
VMftp, 380
VMware, 30
artifacts, 370–373
configuring, 31–33
configuring to create virtual connection with host OS, 208–209
disk space use, 31
kernel debugging setup, 207–210
movie-capture feature, 37
Network Address Translation (NAT) mode, 34
record/replay, 37, 170
risks of using for malware analysis, 36–37
settings to avoid detection, 379–380
Snapshot Manager, 35
VMware Player, 30
VMware Tools
installing, 31
stopping service, 371
VMware Workstation, 30–31, 475
VMwareService.exe, 370
VMwareTray.exe, 370
VMwareUser.exe, 370
.vmx file, 379
Volatility Framework, 475
Von Neumann architecture, 68
vtables, 434–435
recognizing, 435–436
W
W, at end of Windows function name, 17
WaitForMultipleObjectsEx function, 263
WaitForSingleObject function, 151
WaitForSingleObjectEx function, 263
Watching window, in OllyDbg, 197
web applications, Burp Suite for testing, 467
web browser, malware determination of default, 699–703
WEP (Wired Equivalent Privacy), 34
while loops, 118
WH_KEYBOARD procedures, 260
WH_KEYBOARD_LL procedures, 260
whois requests, for domains, 301–302
whosthere-alt, 238
wide character string, 11
WideCharToMultiByte function, 462
Wi-Fi Protected Access (WPA), 34
Win32 device namespace, 138
WIN32_SHARE_PROCESS type, 153
WinDbg, 168, 205–227, 475
arithmetic operators, 211
breakpoints, 211–212
connecting to virtual machine with, 209–210
EPROCESS structure examined with, 565
finding device driver in memory, 563
vs. IDA Pro, 553
for kernel debugger, 552
labs, 228
solutions, 548–566
loading drivers, 226
module listing, 212
output, 726
reading from memory, 210–211
rootkits, 221–225
SSDT viewed in, 222
system breakpoint and, 361
viewer, 551–553
window modes, in IDA Pro, 89–90
Windows
blue screen, 158
Component Object Model (COM), 154–157
device drivers, 206
executables, common sections, 22
following running malware, 145–158
dynamic link libraries (DLLs), 145–147
exceptions, 157–158
interprocess coordination with mutexes, 151–152
processes, 147–149
services, 152–154
threads, 149–151
functions for importing linked functions, 15
kernel vs. user mode, 158–159
Native API, 159–161
reverse shell, 233
tool for dumping process, 400
as virtual OS, 31
Windows 7, kernel issues in, 226–227
Windows 32-bit on Windows 64-bit (WOW64) subsystem, 447
Windows API, 136–139
code calling functions, 526
debugger detection with, 352–353
file system functions, 137–138
handles, 137
IDA Pro catalog of named constants, 102
networking APIs, 143–145
special files, 138–139
Windows debugger detection, 352–356
manually checking structures, 353–356
with Windows API, 352–353
Windows File Protection, 604, 605–606
Windows functions, 453–463
ex suffix for, 17
Windows Internet (WinInet) API, 145, 313, 504, 639–640
advantages and disadvantages, 633
Windows malware, 135–161
labs, 162–163
solutions, 513–529
Windows NT/2000 Native API Reference (Nebbett), 160
Windows Registry. See Registry (Windows)
Windows Sockets (Winsock) API, 313
Windows Update binary malware creation of handler, 605–606
moving to temporary directory, 605
string to temporary move, 606
Windows virtual machine, 57
Windows Vista, kernel issues for, 226–227
Windows XP
default search order for loading DLLs, 245
disabled firewall, 549
WinExec function, 462, 482
WinGraph32 application, 98
WinHex, 468, 596–597, 609
WinInet (Windows Internet) API, 145, 313, 504, 639–640
advantages and disadvantages, 633
wininet.dll, 17, 501
imports from, 480
Winlogon, opening handle to, 603
Winlogon Notify, 242
WinMain function, analysis, 640
WinMD5 calculator, 10, 11
WinObj Object Manager, 138
Winsock (Windows Sockets) API, 313
Winsock libraries, 143
WinUpack, 398–400, 691–695
Wired Equivalent Privacy (WEP), 34
Wireshark, 57, 475, 483
DNS and HTTP example, 54
Follow TCP Stream window, 54
packet sniffing with, 53–55
reviewing capture, 59
Witty worm, 138
Wx, function names beginning with, 235
WxLogged0nSAS function, 463
Word documents, analyzing with Process Explorer, 50
WORD type, in Windows API, 136
worm, 4
WOW64 (Windows 32-bit on Windows 64-bit) subsystem, 447
Wow64DisableWow64FsRedirection function, 448, 463
WPA (Wi-Fi Protected Access), 34
writefile function, 137, 215, 219, 585
origin of handle passed to, 623
WriteProcessMemory function, 255, 256, 423, 463, 586, 590, 593
and direct injection, 257
and process injection, 254
ws2_32.dll, 17, 144, 483
imports from, 521
WSAGetLastError function, 144, 313

Practical Malware Analysis © 2012 Michael Sikorski and Andrew Honig
WSASocket function, 542, 727
WSAStartup function, 144, 313, 463, 542, 727
wshtcpip.dll, 483
WSock32.dll, 17
wupdmgr.exe, 604
launching, 606

X
x command, WinDbg, 213
x64 architecture, 441
differences in calling convention and stack usage, 443–447
exception handling, 445
malware with component for, 729
x64 Windows, kernel issues for, 226–227
x86-64 architecture, 441
x86 architecture, 68–85
branching, 80–81
C main method and offsets, 83–84
code types and data access, 408
conditionals, 80
documentation manuals, 85
instructions, 69–70
instruction set, general-purpose register for, 409
main memory, 69
NOP instruction, 76
opcodes and endianness, 70
operands, 70
registers, 71–73, 374
rep instructions, 81–83
search for vulnerable instructions, 670–672
simple instructions, 73–76
stack, 77–80
function calls, 77–78
layout, 78–80
x86 disassembly, 65–85
levels of abstraction, 66–67
reverse-engineer, 67–68
x87 floating-point unit (FPU), 411–413
Xen, 31
XOR cipher, 271–276
brute-forcing, 271–273
identifying loops in IDA Pro, 274–276
NULL preserving single-byte, 273–274
XOR encoded strings, decoding, 542–543
XOR encoding loop, 620–621
xor instruction, 76, 596
forms, 275
searching for, 612–613
searching for nonzeroing, 608
XOR logical operator, in x86 architecture, 75
xref. See cross-references (xref)
Xrefs window, in IDA Pro, 96

Y
YARA, 475
Yuschuk, Oleh, 179

Z
Zero Wine, 475
zero-day exploit, 33, 245
ZF (zero) flag, 72, 80
zombies, 234
ZwContinue function, 386
ZwCreateFile function, 219
ZwDeviceIoControlFile function, inline hooking of, 249–250
ZwUnmapViewOfSection function, 258
Zynamics BinDiff, 106