

B R I E F C O N T E N T S

About the Authors ...xix

Foreword by Richard Bejtlich ..xxi

Acknowledgments ..xxv

Introduction ... xxvii

Chapter 0: Malware Analysis Primer ...1

PART 1: BASIC ANALYSIS

Chapter 1: Basic Static Techniques..9

Chapter 2: Malware Analysis in Virtual Machines...29

Chapter 3: Basic Dynamic Analysis ...39

PART 2: ADVANCED STATIC ANALYSIS

Chapter 4: A Crash Course in x86 Disassembly ...65

Chapter 5: IDA Pro ...87

Chapter 6: Recognizing C Code Constructs in Assembly..109

Chapter 7: Analyzing Malicious Windows Programs...135

PART 3: ADVANCED DYNAMIC ANALYSIS

Chapter 8: Debugging...167

vi Brie f Conten ts

Chapter 9: OllyDbg ..179

Chapter 10: Kernel Debugging with WinDbg...205

PART 4: MALWARE FUNCTIONALITY

Chapter 11: Malware Behavior ..231

Chapter 12: Covert Malware Launching ..253

Chapter 13: Data Encoding ...269

Chapter 14: Malware-Focused Network Signatures...297

PART 5: ANTI-REVERSE-ENGINEERING

Chapter 15: Anti-Disassembly...327

Chapter 16: Anti-Debugging ..351

Chapter 17: Anti-Virtual Machine Techniques ...369

Chapter 18: Packers and Unpacking ...383

PART 6: SPECIAL TOPICS

Chapter 19: Shellcode Analysis ..407

Chapter 20: C++ Analysis ...427

Chapter 21: 64-Bit Malware...441

Appendix A: Important Windows Functions ..453

Appendix B: Tools for Malware Analysis..465

Appendix C: Solutions to Labs ..477

Index ...733

C O V E R T M A L W A R E L A U N C H I N G

As computer systems and users have become more
sophisticated, malware, too, has evolved. For example,
because many users know how to list processes with the
Windows Task Manager (where malicious software used
to appear), malware authors have developed many techniques to blend their
malware into the normal Windows landscape, in an effort to conceal it.

This chapter focuses on some of the methods that malware authors use
to avoid detection, called covert launching techniques. Here, you’ll learn how to
recognize code constructs and other coding patterns that will help you to
identify common ways that malware is covertly launched.

Launchers

As discussed in the previous chapter, a launcher (also known as a loader) is a
type of malware that sets itself or another piece of malware for immediate or
future covert execution. The goal of a launcher is to set up things so that the
malicious behavior is concealed from a user.

Launchers often contain the malware that they’re designed to load. The
most common example is an executable or DLL in its own resource section.

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

254 Chapter 12

The resource section in the Windows PE file format is used by the executable
and is not considered part of the executable. Examples of the normal contents
of the resource section include icons, images, menus, and strings. Launchers
will often store malware within the resource section. When the launcher is
run, it extracts an embedded executable or DLL from the resource section
before launching it.

As you have seen in previous examples, if the resource section is com-
pressed or encrypted, the malware must perform resource section extrac-
tion before loading. This often means that you will see the launcher use
resource-manipulation API functions such as FindResource, LoadResource,
and SizeofResource.

Malware launchers often must be run with administrator privileges or
escalate themselves to have those privileges. Average user processes can’t
perform all of the techniques we discuss in this chapter. We discussed privi-
lege escalation in the previous chapter. The fact that launchers may con-
tain privilege-escalation code provides another way to identify them.

Process Injection

The most popular covert launching technique is process injection. As the name
implies, this technique injects code into another running process, and that
process unwittingly executes the malicious code. Malware authors use pro-
cess injection in an attempt to conceal the malicious behavior of their code,
and sometimes they use this to try to bypass host-based firewalls and other
process-specific security mechanisms.

Certain Windows API calls are commonly used for process injection.
For example, the VirtualAllocEx function can be used to allocate space in an
external process’s memory, and WriteProcessMemory can be used to write data
to that allocated space. This pair of functions is essential to the first three
loading techniques that we’ll discuss in this chapter.

DLL Injection
DLL injection—a form of process injection where a remote process is forced
to load a malicious DLL—is the most commonly used covert loading tech-
nique. DLL injection works by injecting code into a remote process that calls
LoadLibrary, thereby forcing a DLL to be loaded in the context of that pro-
cess. Once the compromised process loads the malicious DLL, the OS auto-
matically calls the DLL’s DllMain function, which is defined by the author of
the DLL. This function contains the malicious code and has as much access
to the system as the process in which it is running. Malicious DLLs often have
little content other than the Dllmain function, and everything they do will
appear to originate from the compromised process.

Figure 12-1 shows an example of DLL injection. In this example, the
launcher malware injects its DLL into Internet Explorer’s memory, thereby
giving the injected DLL the same access to the Internet as Internet Explorer.
The loader malware had been unable to access the Internet prior to injection
because a process-specific firewall detected it and blocked it.

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 255

Figure 12-1: DLL injection—the launcher malware cannot access the Internet until it
injects into iexplore.exe.

In order to inject the malicious DLL into a host program, the launcher
malware must first obtain a handle to the victim process. The most common
way is to use the Windows API calls CreateToolhelp32Snapshot, Process32First,
and Process32Next to search the process list for the injection target. Once the
target is found, the launcher retrieves the process identifier (PID) of the tar-
get process and then uses it to obtain the handle via a call to OpenProcess.

The function CreateRemoteThread is commonly used for DLL injection to
allow the launcher malware to create and execute a new thread in a remote
process. When CreateRemoteThread is used, it is passed three important param-
eters: the process handle (hProcess) obtained with OpenProcess, along with the
starting point of the injected thread (lpStartAddress) and an argument for
that thread (lpParameter). For example, the starting point might be set to
LoadLibrary and the malicious DLL name passed as the argument. This will
trigger LoadLibrary to be run in the victim process with a parameter of the
malicious DLL, thereby causing that DLL to be loaded in the victim process
(assuming that LoadLibrary is available in the victim process’s memory space
and that the malicious library name string exists within that same space).

Malware authors generally use VirtualAllocEx to create space for the mali-
cious library name string. The VirtualAllocEx function allocates space in a
remote process if a handle to that process is provided.

The last setup function required before CreateRemoteThread can be called
is WriteProcessMemory. This function writes the malicious library name string
into the memory space that was allocated with VirtualAllocEx.

Listing 12-1 contains C pseudocode for performing DLL injection.

hVictimProcess = OpenProcess(PROCESS_ALL_ACCESS, 0, victimProcessID );

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof(maliciousLibraryName),...,...);
WriteProcessMemory(hVictimProcess,...,maliciousLibraryName, sizeof(maliciousLibraryName),...);
GetModuleHandle("Kernel32.dll");
GetProcAddress(...,"LoadLibraryA");

 CreateRemoteThread(hVictimProcess,...,...,LoadLibraryAddress,pNameInVictimProcess,...,...);

Listing 12-1: C Pseudocode for DLL injection

Hard Drive

Launcher
Malware

Malicious DLL

iexplore.exe

Memory

Launcher
Malware

Injection

iexplore.exe

Malicious DLL

Internet

Blocked

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

256 Chapter 12

This listing assumes that we obtain the victim PID in victimProcessID
when it is passed to OpenProcess at  in order to get the handle to the victim
process. Using the handle, VirtualAllocEx and WriteProcessMemory then allocate
space and write the name of the malicious DLL into the victim process. Next,
GetProcAddress is used to get the address to LoadLibrary.

Finally, at , CreateRemoteThread is passed the three important parameters
discussed earlier: the handle to the victim process, the address of LoadLibrary,
and a pointer to the malicious DLL name in the victim process. The easiest
way to identify DLL injection is by identifying this trademark pattern of Win-
dows API calls when looking at the launcher malware’s disassembly.

In DLL injection, the malware launcher never calls a malicious function.
As stated earlier, the malicious code is located in DllMain, which is automati-
cally called by the OS when the DLL is loaded into memory. The DLL injec-
tion launcher’s goal is to call CreateRemoteThread in order to create the remote
thread LoadLibrary, with the parameter of the malicious DLL being injected.

Figure 12-2 shows DLL injection code as seen through a debugger. The
six function calls from our pseudocode in Listing 12-1 can be seen in the dis-
assembly, labeled  through .

Figure 12-2: DLL injection debugger view

Once you find DLL injection activity in disassembly, you should start
looking for the strings containing the names of the malicious DLL and the
victim process. In the case of Figure 12-2, we don’t see those strings, but they
must be accessed before this code executes. The victim process name can
often be found in a strncmp function (or equivalent) when the launcher

�

�

�
�

�

�

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 257

determines the victim process’s PID. To find the malicious DLL name, we
could set a breakpoint at 0x407735 and dump the contents of the stack to
reveal the value of Buffer as it is being passed to WriteProcessMemory.

Once you’re able to recognize the DLL injection code pattern and iden-
tify these important strings, you should be able to quickly analyze an entire
group of malware launchers.

Direct Injection
Like DLL injection, direct injection involves allocating and inserting code
into the memory space of a remote process. Direct injection uses many of
the same Windows API calls as DLL injection. The difference is that instead
of writing a separate DLL and forcing the remote process to load it, direct-
injection malware injects the malicious code directly into the remote process.

Direct injection is more flexible than DLL injection, but it requires a lot
of customized code in order to run successfully without negatively impacting
the host process. This technique can be used to inject compiled code, but
more often, it’s used to inject shellcode.

Three functions are commonly found in cases of direct injection:
VirtualAllocEx, WriteProcessMemory, and CreateRemoteThread. There will typi-
cally be two calls to VirtualAllocEx and WriteProcessMemory. The first will allo-
cate and write the data used by the remote thread, and the second will
allocate and write the remote thread code. The call to CreateRemoteThread
will contain the location of the remote thread code (lpStartAddress) and
the data (lpParameter).

Since the data and functions used by the remote thread must exist in the
victim process, normal compilation procedures will not work. For example,
strings are not in the normal .data section, and LoadLibrary/GetProcAddress
will need to be called to access functions that are not already loaded. There
are other restrictions, which we won’t go into here. Basically, direct injection
requires that authors either be skilled assembly language coders or that they
will inject only relatively simple shellcode.

In order to analyze the remote thread’s code, you may need to debug
the malware and dump all memory buffers that occur before calls to
WriteProcessMemory to be analyzed in a disassembler. Since these buffers
most often contain shellcode, you will need shellcode analysis skills, which
we discuss extensively in Chapter 19.

Process Replacement

Rather than inject code into a host program, some malware uses a method
known as process replacement to overwrite the memory space of a running pro-
cess with a malicious executable. Process replacement is used when a mal-
ware author wants to disguise malware as a legitimate process, without the
risk of crashing a process through the use of process injection.

This technique provides the malware with the same privileges as the
process it is replacing. For example, if a piece of malware were to perform
a process-replacement attack on svchost.exe, the user would see a process

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

258 Chapter 12

name svchost.exe running from C:\Windows\System32 and probably think noth-
ing of it. (This is a common malware attack, by the way.)

Key to process replacement is creating a process in a suspended state. This
means that the process will be loaded into memory, but the primary thread
of the process is suspended. The program will not do anything until an exter-
nal program resumes the primary thread, causing the program to start run-
ning. Listing 12-2 shows how a malware author achieves this suspended state
by passing CREATE_SUSPENDED (0x4) as the dwCreationFlags parameter when per-
forming the call to CreateProcess.

00401535 push edi ; lpProcessInformation
00401536 push ecx ; lpStartupInfo
00401537 push ebx ; lpCurrentDirectory
00401538 push ebx ; lpEnvironment
00401539 push CREATE_SUSPENDED ; dwCreationFlags
0040153B push ebx ; bInheritHandles
0040153C push ebx ; lpThreadAttributes
0040153D lea edx, [esp+94h+CommandLine]
00401541 push ebx ; lpProcessAttributes
00401542 push edx ; lpCommandLine
00401543 push ebx ; lpApplicationName
00401544 mov [esp+0A0h+StartupInfo.dwFlags], 101h
0040154F mov [esp+0A0h+StartupInfo.wShowWindow], bx
00401557 call ds:CreateProcessA

Listing 12-2: Assembly code showing process replacement

Although poorly documented by Microsoft, this method of process cre-
ation can be used to load a process into memory and suspend it at the entry
point.

Listing 12-3 shows C pseudocode for performing process replacement.

CreateProcess(...,"svchost.exe",...,CREATE_SUSPEND,...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase,SizeOfImage,...);
WriteProcessMemory(...,headers,...);
for (i=0; i < NumberOfSections; i++) {
 WriteProcessMemory(...,section,...);

}
SetThreadContext();
...
ResumeThread();

Listing 12-3: C pseudocode for process replacement

Once the process is created, the next step is to replace the victim process’s
memory with the malicious executable, typically using ZwUnmapViewOfSection
to release all memory pointed to by a section passed as a parameter. After
the memory is unmapped, the loader performs VirtualAllocEx to allocate

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 259

new memory for the malware, and uses WriteProcessMemory to write each of
the malware sections to the victim process space, typically in a loop, as
shown at .

In the final step, the malware restores the victim process environment so
that the malicious code can run by calling SetThreadContext to set the entry
point to point to the malicious code. Finally, ResumeThread is called to initiate
the malware, which has now replaced the victim process.

Process replacement is an effective way for malware to appear non-
malicious. By masquerading as the victim process, the malware is able to bypass
firewalls or intrusion prevention systems (IPSs) and avoid detection by appear-
ing to be a normal Windows process. Also, by using the original binary’s path,
the malware deceives the savvy user who, when viewing a process listing, sees
only the known and valid binary executing, with no idea that it was unmapped.

Hook Injection

Hook injection describes a way to load malware that takes advantage of Win-
dows hooks, which are used to intercept messages destined for applications.
Malware authors can use hook injection to accomplish two things:

 To be sure that malicious code will run whenever a particular message is
intercepted

 To be sure that a particular DLL will be loaded in a victim process’s
memory space

As shown in Figure 12-3, users generate events that are sent to the OS,
which then sends messages created by those events to threads registered to
receive them. The right side of the figure shows one way that an attacker can
insert a malicious DLL to intercept messages.

Figure 12-3: Event and message flow in Windows
with and without hook injection

USER USER

Events Events

Windows OS Windows OS

Messages Messages

Threads

Process/
Application

Process/
Application

Threads

Malicious DLL

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

260 Chapter 12

Local and Remote Hooks
There are two types of Windows hooks:

 Local hooks are used to observe or manipulate messages destined for an
internal process.

 Remote hooks are used to observe or manipulate messages destined for a
remote process (another process on the system).

Remote hooks are available in two forms: high and low level. High-level
remote hooks require that the hook procedure be an exported function con-
tained in a DLL, which will be mapped by the OS into the process space of a
hooked thread or all threads. Low-level remote hooks require that the hook
procedure be contained in the process that installed the hook. This proce-
dure is notified before the OS gets a chance to process the event.

Keyloggers Using Hooks
Hook injection is frequently used in malicious applications known as
keyloggers, which record keystrokes. Keystrokes can be captured by register-
ing high- or low-level hooks using the WH_KEYBOARD or WH_KEYBOARD_LL hook
procedure types, respectively.

For WH_KEYBOARD procedures, the hook will often be running in the con-
text of a remote process, but it can also run in the process that installed the
hook. For WH_KEYBOARD_LL procedures, the events are sent directly to the pro-
cess that installed the hook, so the hook will be running in the context of the
process that created it. Using either hook type, a keylogger can intercept key-
strokes and log them to a file or alter them before passing them along to the
process or system.

Using SetWindowsHookEx
The principal function call used to perform remote Windows hooking is
SetWindowsHookEx, which has the following parameters:

idHook Specifies the type of hook procedure to install.

lpfn Points to the hook procedure.

hMod For high-level hooks, identifies the handle to the DLL containing
the hook procedure defined by lpfn. For low-level hooks, this identifies the
local module in which the lpfn procedure is defined.

dwThreadId Specifies the identifier of the thread with which the hook
procedure is to be associated. If this parameter is zero, the hook proce-
dure is associated with all existing threads running in the same desktop
as the calling thread. This must be set to zero for low-level hooks.

The hook procedure can contain code to process messages as they come
in from the system, or it can do nothing. Either way, the hook procedure
must call CallNextHookEx, which ensures that the next hook procedure in the
call chain gets the message and that the system continues to run properly.

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 261

Thread Targeting
When targeting a specific dwThreadId, malware generally includes instructions
for determining which system thread identifier to use, or it is designed to
load into all threads. That said, malware will load into all threads only if it’s a
keylogger or the equivalent (when the goal is message interception). How-
ever, loading into all threads can degrade the running system and may trig-
ger an IPS. Therefore, if the goal is to simply load a DLL in a remote process,
only a single thread will be injected in order to remain stealthy.

Targeting a single thread requires a search of the process listing for the
target process and can require that the malware run a program if the target
process is not already running. If a malicious application hooks a Windows
message that is used frequently, it’s more likely to trigger an IPS, so malware
will often set a hook with a message that is not often used, such as WH_CBT (a
computer-based training message).

Listing 12-4 shows the assembly code for performing hook injection in
order to load a DLL in a different process’s memory space.

00401100 push esi
00401101 push edi
00401102 push offset LibFileName ; "hook.dll"
00401107 call LoadLibraryA
0040110D mov esi, eax
0040110F push offset ProcName ; "MalwareProc"
00401114 push esi ; hModule
00401115 call GetProcAddress
0040111B mov edi, eax
0040111D call GetNotepadThreadId
00401122 push eax ; dwThreadId
00401123 push esi ; hmod
00401124 push edi ; lpfn
00401125 push WH_CBT ; idHook
00401127 call SetWindowsHookExA

Listing 12-4: Hook injection, assembly code

In Listing 12-4, the malicious DLL (hook.dll) is loaded by the malware,
and the malicious hook procedure address is obtained. The hook procedure,
MalwareProc, calls only CallNextHookEx. SetWindowsHookEx is then called for a thread
in notepad.exe (assuming that notepad.exe is running). GetNotepadThreadId is a
locally defined function that obtains a dwThreadId for notepad.exe. Finally, a
WH_CBT message is sent to the injected notepad.exe in order to force hook.dll to
be loaded by notepad.exe. This allows hook.dll to run in the notepad.exe process
space.

Once hook.dll is injected, it can execute the full malicious code stored in
DllMain, while disguised as the notepad.exe process. Since MalwareProc calls only
CallNextHookEx, it should not interfere with incoming messages, but malware
often immediately calls LoadLibrary and UnhookWindowsHookEx in DllMain to ensure
that incoming messages are not impacted.

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

262 Chapter 12

Detours

Detours is a library developed by Microsoft Research in 1999. It was originally
intended as a way to easily instrument and extend existing OS and applica-
tion functionality. The Detours library makes it possible for a developer to
make application modifications simply.

Malware authors like Detours, too, and they use the Detours library to
perform import table modification, attach DLLs to existing program files,
and add function hooks to running processes.

Malware authors most commonly use Detours to add new DLLs to exist-
ing binaries on disk. The malware modifies the PE structure and creates a
section named .detour, which is typically placed between the export table and
any debug symbols. The .detour section contains the original PE header with
a new import address table. The malware author then uses Detours to modify
the PE header to point to the new import table, by using the setdll tool pro-
vided with the Detours library.

Figure 12-4 shows a PEview of Detours being used to trojanize notepad.exe.
Notice in the .detour section at  that the new import table contains evil.dll,
seen at . Evil.dll will now be loaded whenever Notepad is launched. Note-
pad will continue to operate as usual, and most users would have no idea that
the malicious DLL was executed.

Figure 12-4: A PEview of Detours and the evil.dll

Instead of using the official Microsoft Detours library, malware authors
have been known to use alternative and custom methods to add a .detour
section. The use of these methods for detour addition should not impact
your ability to analyze the malware.

APC Injection

Earlier in this chapter, you saw that by creating a thread using CreateRemoteThread,
you can invoke functionality in a remote process. However, thread creation
requires overhead, so it would be more efficient to invoke a function on

�

�

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 263

an existing thread. This capability exists in Windows as the asynchronous
procedure call (APC).

APCs can direct a thread to execute some other code prior to executing
its regular execution path. Every thread has a queue of APCs attached to it,
and these are processed when the thread is in an alertable state, such as
when they call functions like WaitForSingleObjectEx, WaitForMultipleObjectsEx,
and Sleep. These functions essentially give the thread a chance to process the
waiting APCs.

If an application queues an APC while the thread is alertable but before
the thread begins running, the thread begins by calling the APC function.
A thread calls the APC functions one by one for all APCs in its APC queue.
When the APC queue is complete, the thread continues running along its
regular execution path. Malware authors use APCs to preempt threads in an
alertable state in order to get immediate execution for their code.

APCs come in two forms:

 An APC generated for the system or a driver is called a kernel-mode APC.

 An APC generated for an application is called a user-mode APC.

Malware generates user-mode APCs from both kernel and user space
using APC injection. Let’s take a closer look at each of these methods.

APC Injection from User Space
From user space, another thread can queue a function to be invoked in a
remote thread, using the API function QueueUserAPC. Because a thread must
be in an alertable state in order to run a user-mode APC, malware will look to
target threads in processes that are likely to go into that state. Luckily for the
malware analyst, WaitForSingleObjectEx is the most common call in the Win-
dows API, and there are usually many threads in the alertable state.

Let’s examine the QueueUserAPC’s parameters: pfnAPC, hThread, and dwData. A
call to QueueUserAPC is a request for the thread whose handle is hThread to run
the function defined by pfnAPC with the parameter dwData. Listing 12-5 shows
how malware can use QueueUserAPC to force a DLL to be loaded in the context
of another process, although before we arrive at this code, the malware has
already picked a target thread.

NOTE During analysis, you can find thread-targeting code by looking for API calls such as
CreateToolhelp32Snapshot, Process32First, and Process32Next for the malware to
find the target process. These API calls will often be followed by calls to Thread32First
and Thread32Next, which will be in a loop looking to target a thread contained in the
target process. Alternatively, malware can also use Nt/ZwQuerySystemInformation with
the SYSTEM_PROCESS_INFORMATION information class to find the target process.

00401DA9 push [esp+4+dwThreadId] ; dwThreadId
00401DAD push 0 ; bInheritHandle
00401DAF push 10h ; dwDesiredAccess
00401DB1 call ds:OpenThread 
00401DB7 mov esi, eax

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

264 Chapter 12

00401DB9 test esi, esi
00401DBB jz short loc_401DCE
00401DBD push [esp+4+dwData] ; dwData = dbnet.dll
00401DC1 push esi ; hThread
00401DC2 push ds:LoadLibraryA  ; pfnAPC
00401DC8 call ds:QueueUserAPC

Listing 12-5: APC injection from a user-mode application

Once a target-thread identifier is obtained, the malware uses it to open
a handle to the thread, as seen at . In this example, the malware is looking
to force the thread to load a DLL in the remote process, so you see a call to
QueueUserAPC with the pfnAPC set to LoadLibraryA at . The parameter to be sent
to LoadLibraryA will be contained in dwData (in this example, that was set to the
DLL dbnet.dll earlier in the code). Once this APC is queued and the thread
goes into an alertable state, LoadLibraryA will be called by the remote thread,
causing the target process to load dbnet.dll.

In this example, the malware targeted svchost.exe, which is a popular target
for APC injection because its threads are often in an alertable state. Malware
may APC-inject into every thread of svchost.exe just to ensure that execution
occurs quickly.

APC Injection from Kernel Space
Malware drivers and rootkits often wish to execute code in user space, but
there is no easy way for them to do it. One method they use is to perform
APC injection from kernel space to get their code execution in user space.
A malicious driver can build an APC and dispatch a thread to execute it in a
user-mode process (most often svchost.exe). APCs of this type often consist of
shellcode.

Device drivers leverage two major functions in order to utilize APCs:
KeInitializeApc and KeInsertQueueApc. Listing 12-6 shows an example of these
functions in use in a rootkit.

000119BD push ebx
000119BE push 1 
000119C0 push [ebp+arg_4] 
000119C3 push ebx
000119C4 push offset sub_11964
000119C9 push 2
000119CB push [ebp+arg_0] 
000119CE push esi
000119CF call ds:KeInitializeApc
000119D5 cmp edi, ebx
000119D7 jz short loc_119EA
000119D9 push ebx
000119DA push [ebp+arg_C]
000119DD push [ebp+arg_8]
000119E0 push esi
000119E1 call edi ;KeInsertQueueApc

Listing 12-6: User-mode APC injection from kernel space

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 265

The APC first must be initialized with a call to KeInitializeApc. If the
sixth parameter (NormalRoutine)  is non-zero in combination with the sev-
enth parameter (ApcMode)  being set to 1, then we are looking at a user-
mode type. Therefore, focusing on these two parameters can tell you if the
rootkit is using APC injection to run code in user space.

KeInitializeAPC initializes a KAPC structure, which must be passed to
KeInsertQueueApc to place the APC object in the target thread’s corresponding
APC queue. In Listing 12-6, ESI will contain the KAPC structure. Once
KeInsertQueueApc is successful, the APC will be queued to run.

In this example, the malware targeted svchost.exe, but to make that deter-
mination, we would need to trace back the second-to-last parameter pushed
on the stack to KeInitializeApc. This parameter contains the thread that will
be injected. In this case, it is contained in arg_0, as seen at . Therefore, we
would need to look back in the code to check how arg_0 was set in order to
see that svchost.exe’s threads were targeted.

Conclusion

In this chapter, we’ve explored the common covert methods through which
malware launches, ranging from the simple to advanced. Many of the tech-
niques involve manipulating live memory on the system, as with DLL injec-
tion, process replacement, and hook injection. Other techniques involve
modifying binaries on disk, as in the case of adding a .detour section to a
PE file. Although these techniques are all very different, they achieve the
same goal.

A malware analyst must be able to recognize launching techniques in
order to know how to find malware on a live system. Recognizing and ana-
lyzing launching techniques is really only part of the full analysis, since all
launchers do only one thing: they get the malware running.

In the next two chapters, you will learn how malware encodes its data
and communicates over the network.

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

266 Chapter 12

L A B S
Lab 12-1

Analyze the malware found in the file Lab12-01.exe and Lab12-01.dll. Make
sure that these files are in the same directory when performing the analysis.

Questions

1. What happens when you run the malware executable?

2. What process is being injected?

3. How can you make the malware stop the pop-ups?

4. How does this malware operate?

Lab 12-2

Analyze the malware found in the file Lab12-02.exe.

Questions

1. What is the purpose of this program?

2. How does the launcher program hide execution?

3. Where is the malicious payload stored?

4. How is the malicious payload protected?

5. How are strings protected?

Lab 12-3

Analyze the malware extracted during the analysis of Lab 12-2, or use the file
Lab12-03.exe.

Questions

1. What is the purpose of this malicious payload?

2. How does the malicious payload inject itself?

3. What filesystem residue does this program create?

Lab 12-4

Analyze the malware found in the file Lab12-04.exe.

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

Cover t Malware Launching 267

Questions

1. What does the code at 0x401000 accomplish?

2. Which process has code injected?

3. What DLL is loaded using LoadLibraryA?

4. What is the fourth argument passed to the CreateRemoteThread call?

5. What malware is dropped by the main executable?

6. What is the purpose of this and the dropped malware?

Practical Malware Analysis
© 2012 Michael Sikorski and Andrew Honig

