
The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

3
U n d e r s t a n d i n g O b j e c t s

Even though there are a number of built-
in reference types in JavaScript, you will

most likely create your own objects fairly
frequently. As you do so, keep in mind that

objects in JavaScript are dynamic, meaning that
they can change at any point during code execution.
Whereas class-based languages lock down objects
based on a class definition, JavaScript objects have
no such restrictions.

A large part of JavaScript programming is managing those objects,
which is why understanding how objects work is key to understanding
JavaScript as a whole. This is discussed in more detail later in this chapter.

32 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Defining Properties
Recall from Chapter 1 that there are two basic ways to create your own
objects: using the Object constructor and using an object literal. For
example:

var person1 = {
 name: "Nicholas"
};

var person2 = new Object();
person2.name = "Nicholas";

u person1.age = "Redacted";
person2.age = "Redacted";

v person1.name = "Greg";
person2.name = "Michael";

Both person1 and person2 are objects with a name property. Later in the
example, both objects are assigned an age property u. You could do this
immediately after the definition of the object or much later. Objects you
create are always wide open for modification unless you specify otherwise
(more on that in “Preventing Object Modification” on page 45). The
last part of this example changes the value of name on each object v;
property values can be changed at any time as well.

When a property is first added to an object, JavaScript uses an inter-
nal method called [[Put]] on the object. The [[Put]] method creates a
spot in the object to store the property. You can compare this to adding
a key to a hash table for the first time. This operation specifies not just
the initial value, but also some attributes of the property. So, in the pre-
vious example, when the name and age properties are first defined on each
object, the [[Put]] method is invoked for each.

The result of calling [[Put]] is the creation of an own property on
the object. An own property simply indicates that the specific instance
of the object owns that property. The property is stored directly on the
instance, and all operations on the property must be performed through
that object.

n O t e Own properties are distinct from prototype properties, which are discussed in
Chapter 4.

When a new value is assigned to an existing property, a separate oper-
ation called [[Set]] takes place. This operation replaces the current value
of the property with the new one. In the previous example, setting name

Understanding Objects 33

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

to a second value results in a call to [[Set]]. See Figure 3-1 for a step-by-
step view of what happened to person1 behind the scenes as its name and age
properties were changed.

person1

name "Nicholas"

[[Put]]name

person1

name "Nicholas"

age "Redacted"

person1

name "Greg"

age "Redacted"

[[Put]]age [[Set]]name

Figure 3-1: Adding and changing properties of an object

In the first part of the diagram, an object literal is used to create the
person1 object. This performs an implicit [[Put]] for the name property.
Assigning a value to person1.age performs a [[Put]] for the age property.
However, setting person1.name to a new value ("Greg") performs a [[Set]]
operation on the name property, overwriting the existing property value.

Detecting Properties
Because properties can be added at any time, it’s sometimes necessary to
check whether a property exists in the object. New JavaScript developers
often incorrectly use patterns like the following to detect whether a prop-
erty exists:

// unreliable
if (person1.age) {
 // do something with age
}

The problem with this pattern is how JavaScript’s type coercion affects
the outcome. The if condition evaluates to true if the value is truthy (an
object, a nonempty string, a nonzero number, or true) and evaluates to
false if the value is falsy (null, undefined, 0, false, NaN, or an empty string).
Because an object property can contain one of these falsy values, the
example code can yield false negatives. For instance, if person1.age is 0,
then the if condition will not be met even though the property exists.
A more reliable way to test for the existence of a property is with the in
operator.

34 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

The in operator looks for a property with a given name in a specific
object and returns true if it finds it. In effect, the in operator checks to see
if the given key exists in the hash table. For example, here’s what happens
when in is used to check for some properties in the person1 object:

console.log("name" in person1); // true
console.log("age" in person1); // true
console.log("title" in person1); // false

Keep in mind that methods are just properties that reference func-
tions, so you can check for the existence of a method in the same way.
The following adds a new function, sayName(), to person1 and uses in to
confirm the function’s presence.

var person1 = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

console.log("sayName" in person1); // true

In most cases, the in operator is the best way to determine whether
the property exists in an object. It has the added benefit of not evaluat-
ing the value of the property, which can be important if such an evalua-
tion is likely to cause a performance issue or an error.

In some cases, however, you might want to check for the existence of
a property only if it is an own property. The in operator checks for both
own properties and prototype properties, so you’ll need to take a different
approach. Enter the hasOwnProperty() method, which is present on all objects
and returns true only if the given property exists and is an own property.
For example, the following code compares the results of using in versus
 hasOwnProperty() on different properties in person1:

var person1 = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

console.log("name" in person1); // true
console.log(person1.hasOwnProperty("name")); // true

console.log("toString" in person1); // true
u console.log(person1.hasOwnProperty("toString")); // false

Understanding Objects 35

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

In this example, name is an own property of person1, so both the in
operator and hasOwnProperty() return true. The toString() method, how-
ever, is a prototype property that is present on all objects. The in opera-
tor returns true for toString(), but hasOwnProperty() returns false u. This
is an important distinction that is discussed further in Chapter 4.

Removing Properties
Just as properties can be added to objects at any time, they can also be
removed. Simply setting a property to null doesn’t actually remove the
property completely from the object, though. Such an operation calls
[[Set]] with a value of null, which, as you saw earlier in the chapter, only
replaces the value of the property. You need to use the delete operator to
completely remove a property from an object.

The delete operator works on a single object property and calls an
internal operation named [[Delete]]. You can think of this operation as
removing a key/value pair from a hash table. When the delete operator is
successful, it returns true. (Some properties can’t be removed, and this is
discussed in more detail later in the chapter.) For example, the following
listing shows the delete operator at work:

var person1 = {
 name: "Nicholas"
};

console.log("name" in person1); // true

delete person1.name; // true - not output
console.log("name" in person1); // false

u console.log(person1.name); // undefined

In this example, the name property is deleted from person1. The
in operator returns false after the operation is complete. Also, note
that attempting to access a property that doesn’t exist will just return
 undefined u. Figure 3-2 shows how delete affects an object.

person1

name "Nicholas"

delete person1.name;

person1

Figure 3-2: When you delete the name property, it completely
disappears from person1.

36 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Enumeration
By default, all properties that you add to an object are enumerable, which
means that you can iterate over them using a for-in loop. Enumerable
properties have their internal [[Enumerable]] attributes set to true. The
for-in loop enumerates all enumerable properties on an object, assigning
the property name to a variable. For example, the following loop out-
puts the property names and values of an object:

var property;

for (property in object) {
 console.log("Name: " + property);
 console.log("Value: " + object[property]);
}

Each time through the for-in loop, the property variable is filled with
the next enumerable property on the object until all such properties have
been used. At that point, the loop is finished and code execution contin-
ues. This example uses bracket notation to retrieve the value of the object
property and output it to the console, which is one of the primary use
cases for bracket notation in JavaScript.

If you just need a list of an object’s properties to use later in your pro-
gram, ECMAScript 5 introduced the Object.keys() method to retrieve an
array of enumerable property names, as shown here:

u var properties = Object.keys(object);

// if you want to mimic for-in behavior
var i, len;

for (i=0, len=properties.length; i < len; i++){
 console.log("Name: " + properties[i]);
 console.log("Value: " + object[properties[i]]);
}

This example uses Object.keys() to retrieve the enumerable properties
from an object u. A for loop is then used to iterate over the properties
and output the name and value. Typically, you would use Object.keys() in
situations where you want to operate on an array of property names and
for-in when you don’t need an array.

n O t e There is a difference between the enumerable properties returned in a for-in loop
and the ones returned by Object.keys(). The for-in loop also enumerates prototype
properties, while Object.keys() returns only own (instance) properties. The differ-
ences between prototype and own properties are discussed in Chapter 4.

Understanding Objects 37

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Keep in mind that not all properties are enumerable. In fact, most
of the native methods on objects have their [[Enumerable]] attribute set
to false. You can check whether a property is enumerable by using the
 propertyIsEnumerable() method, which is present on every object:

var person1 = {
 name: "Nicholas"
};

console.log("name" in person1); // true
u console.log(person1.propertyIsEnumerable("name")); // true

var properties = Object.keys(person1);

console.log("length" in properties); // true
v console.log(properties.propertyIsEnumerable("length")); // false

Here, the property name is enumerable, as it is a custom property
defined on person1 u. The length property for the properties array, on
the other hand, is not enumerable v because it’s a built-in property on
Array.prototype. You’ll find that many native properties are not enumer-
able by default.

Types of Properties
There are two different types of properties: data properties and accessor
properties. Data properties contain a value, like the name property from ear-
lier examples in this chapter. The default behavior of the [[Put]] method
is to create a data property, and every example up to this point in the
chapter has used data properties. Accessor properties don’t contain a value
but instead define a function to call when the property is read (called
a getter), and a function to call when the property is written to (called a
setter). Accessor properties only require either a getter or a setter, though
they can have both.

There is a special syntax to define an accessor property using an
object literal:

var person1 = {
u _name: "Nicholas",

v get name() {
 console.log("Reading name");
 return this._name;
 },

38 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

w set name(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 }
};

console.log(person1.name); // "Reading name" then "Nicholas"

person1.name = "Greg";
console.log(person1.name); // "Setting name to Greg" then "Greg"

This example defines an accessor property called name. There is a data
property called _name that contains the actual value for the property u.
(The leading underscore is a common convention to indicate that the
property is considered to be private, though in reality it is still public.)
The syntax used to define the getter v and setter w for name looks a lot
like a function but without the function keyword. The special keywords get
and set are used before the accessor property name, followed by paren-
theses and a function body. Getters are expected to return a value, while
setters receive the value being assigned to the property as an argument.

Even though this example uses _name to store the property data, you
could just as easily store the data in a variable or even in another object.
This example simply adds logging to the behavior of the property; there’s
usually no reason to use accessor properties if you are only storing the
data in another property—just use the property itself. Accessor properties
are most useful when you want the assignment of a value to trigger some
sort of behavior, or when reading a value requires the calculation of the
desired return value.

n O t e You don’t need to define both a getter and a setter; you can choose one or both.
If you define only a getter, then the property becomes read-only, and attempts to
write to it will fail silently in nonstrict mode and throw an error in strict mode.
If you define only a setter, then the property becomes write-only, and attempts to
read the value will fail silently in both strict and nonstrict modes.

Property Attributes
Prior to ECMAScript 5, there was no way to specify whether a property
should be enumerable. In fact, there was no way to access the internal
attributes of a property at all. ECMAScript 5 changed this by introduc-
ing several ways of interacting with property attributes directly, as well
as introducing new attributes to support additional functionality. It’s
now possible to create properties that behave the same way as built-
in JavaScript prop erties. This section covers in detail the attributes of
both data and accessor properties, starting with the ones they have in
common.

Understanding Objects 39

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Common Attributes
There are two property attributes shared between data and accessor
properties. One is [[Enumerable]], which determines whether you can
 iterate over the property. The other is [[Configurable]], which determines
whether the property can be changed. You can remove a configurable
property using delete and can change its attributes at any time. (This also
means configurable properties can be changed from data to accessor
properties and vice versa.) By default, all properties you declare on an
object are both enumerable and configurable.

If you want to change property attributes, you can use the Object
.defineProperty() method. This method accepts three arguments: the
object that owns the property, the property name, and a property descrip-
tor object containing the attributes to set. The descriptor has properties
with the same name as the internal attributes but without the square
brackets. So you use enumerable to set [[Enumerable]], and configurable
to set [[Configurable]]. For example, suppose you want to make an object
property nonenumerable and nonconfigurable:

var person1 = {
u name: "Nicholas"

};

Object.defineProperty(person1, "name", {
v enumerable: false

});

console.log("name" in person1); // true
w console.log(person1.propertyIsEnumerable("name")); // false

var properties = Object.keys(person1);
console.log(properties.length); // 0

Object.defineProperty(person1, "name", {
x configurable: false

});

// try to delete the Property
delete person1.name;

y console.log("name" in person1); // true
console.log(person1.name); // "Nicholas"

z Object.defineProperty(person1, "name", { // error!!!
 configurable: true
});

The name property is defined as usual u, but it’s then modified to set
its [[Enumerable]] attribute to false v. The propertyIsEnumerable() method
now returns false w because it references the new value of [[Enumerable]].

40 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

After that, name is changed to be nonconfigurable x. From now on,
attempts to delete name fail because the property can’t be changed, so
name is still present on person1 y. Calling Object.defineProperty() on name
again would also result in no further changes to the property. Effectively,
name is locked down as a property on person1.

The last piece of the code tries to redefine name to be configurable
once again z. However, this throws an error because you can’t make a
nonconfigurable property configurable again. Attempting to change a
data property into an accessor property or vice versa should also throw
an error in this case.

n O t e When JavaScript is running in strict mode, attempting to delete a nonconfigurable
property results in an error. In nonstrict mode, the operation silently fails.

Data Property Attributes
Data properties possess two additional attributes that accessors do not.
The first is [[Value]], which holds the property value. This attribute is
filled in automatically when you create a property on an object. All prop-
erty values are stored in [[Value]], even if the value is a function.

The second attribute is [[Writable]], which is a Boolean value indicat-
ing whether the property can be written to. By default, all properties are
writable unless you specify otherwise.

With these two additional attributes, you can fully define a data prop-
erty using Object.defineProperty() even if the property doesn’t already exist.
Consider this code:

var person1 = {
 name: "Nicholas"
};

You’ve seen this snippet throughout this chapter; it adds the name
property to person1 and sets its value. You can achieve the same result
using the following (more verbose) code:

var person1 = {};

Object.defineProperty(person1, "name", {
 value: "Nicholas",
 enumerable: true,
 configurable: true,
 writable: true
});

Understanding Objects 41

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

When Object.defineProperty() is called, it first checks to see if the
property exists. If the property doesn’t exist, a new one is added with
the attributes specified in the descriptor. In this case, name isn’t already
a property of person1, so it is created.

When you are defining a new property with Object.defineProperty(),
it’s important to specify all of the attributes because Boolean attributes
automatically default to false other wise. For example, the following code
creates a name property that is nonenumerable, nonconfigurable, and
nonwritable because it doesn’t explicitly make any of those attributes
true in the call to Object.defineProperty().

var person1 = {};

Object.defineProperty(person1, "name", {
 value: "Nicholas"
});

console.log("name" in person1); // true
console.log(person1.propertyIsEnumerable("name")); // false

delete person1.name;
console.log("name" in person1); // true

person1.name = "Greg";
console.log(person1.name); // "Nicholas"

In this code, you can’t do anything with the name property except
read the value; every other operation is locked down. If you’re changing
an existing property, keep in mind that only the attributes you specify will
change.

n O t e Nonwritable properties throw an error in strict mode when you try to change the
value. In nonstrict mode, the operation silently fails.

Accessor Property Attributes
Accessor properties also have two additional attributes. Because there
is no value stored for accessor properties, there is no need for [[Value]]
or [[Writable]]. Instead, accessors have [[Get]] and [[Set]], which contain
the getter and setter functions, respectively. As with the object literal form
of getters and setters, you need only define one of these attributes to
 create the property.

n O t e If you try to create a property with both data and accessor attributes, you will get
an error.

42 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

The advantage of using accessor property attributes instead of object
literal notation to define accessor properties is that you can also define
those properties on existing objects. If you want to use object literal nota-
tion, you have to define accessor properties when you create the object.

As with data properties, you can also specify whether accessor proper-
ties are configurable or enumerable. Consider this example from earlier:

var person1 = {
 _name: "Nicholas",

 get name() {
 console.log("Reading name");
 return this._name;
 },

 set name(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 }
};

This code can also be written as follows:

var person1 = {
 _name: "Nicholas"
};

Object.defineProperty(person1, "name", {
 get: function() {
 console.log("Reading name");
 return this._name;
 },
 set: function(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 },
 enumerable: true,
 configurable: true
});

Notice that the get and set keys on the object passed in to Object
.defineProperty() are data properties that contain a function. You can’t
use object literal accessor format here.

Setting the other attributes ([[Enumerable]] and [[Configurable]]) allows
you to change how the accessor property works. For example, you can
 create a nonconfigurable, nonenumerable, nonwritable property like this:

var person1 = {
 _name: "Nicholas"
};

Understanding Objects 43

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Object.defineProperty(person1, "name", {
 get: function() {
 console.log("Reading name");

u return this._name;
 }
});

console.log("name" in person1); // true
console.log(person1.propertyIsEnumerable("name")); // false
delete person1.name;
console.log("name" in person1); // true

person1.name = "Greg";
console.log(person1.name); // "Nicholas"

In this code, the name property is an accessor property with only a
 getter u. There is no setter or any other attributes to explicitly set to true,
so the value can be read but not changed.

n O t e As with accessor properties defined via object literal notation, an accessor property
without a setter throws an error in strict mode when you try to change the value. In
nonstrict mode, the operation silently fails. Attempting to read an accessor property
that has only a setter defined always returns undefined.

Defining Multiple Properties
It’s also possible to define multiple properties on an object simultaneously
if you use Object.defineProperties() instead of Object.defineProperty(). This
method accepts two arguments: the object to work on and an object con-
taining all of the property information. The keys of that second argument
are property names, and the values are descriptor objects defining the
attributes for those properties. For example, the following code defines
two properties:

var person1 = {};

Object.defineProperties(person1, {

u // data property to store data
 _name: {
 value: "Nicholas",
 enumerable: true,
 configurable: true,
 writable: true
 },

44 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

v // accessor property
 name: {
 get: function() {
 console.log("Reading name");
 return this._name;
 },
 set: function(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 },
 enumerable: true,
 configurable: true
 }
});

This example defines _name as a data property to contain informa-
tion u and name as an accessor property v. You can define any number
of properties using Object. defineProperties(); you can even change existing
properties and create new ones at the same time. The effect is the same
as calling Object. defineProperty() multiple times.

Retrieving Property Attributes
If you need to fetch property attributes, you can do so in Java Script by
using Object.getOwnPropertyDescriptor(). As the name suggests, this method
works only on own properties. This method accepts two arguments: the
object to work on and the property name to retrieve. If the property exists,
you should receive a descriptor object with four properties: configurable,
enumerable, and the two others appropriate for the type of property. Even
if you didn’t specifically set an attribute, you will still receive an object
containing the appropriate value for that attribute. For example, this
code creates a property and checks its attributes:

var person1 = {
 name: "Nicholas"
};

var descriptor = Object.getOwnPropertyDescriptor(person1, "name");

console.log(descriptor.enumerable); // true
console.log(descriptor.configurable); // true
console.log(descriptor.writable); // true
console.log(descriptor.value); // "Nicholas"

Here, a property called name is defined as part of an object literal. The
call to Object.getOwnPropertyDescriptor() returns an object with enumerable,
configurable, writable, and value, even though these weren’t explicitly
defined via Object.defineProperty().

Understanding Objects 45

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Preventing Object Modification
Objects, just like properties, have internal attributes that govern their
behavior. One of these attributes is [[Extensible]], which is a Boolean
value indicating if the object itself can be modified. All objects you
create are extensible by default, meaning new properties can be added to
the object at any time. You’ve seen this several times in this chapter. By
setting [[Extensible]] to false, you can prevent new properties from being
added to an object. There are three different ways to accomplish this.

Preventing Extensions
One way to create a nonextensible object is with Object.preventExtensions().
This method accepts a single argument, which is the object you want to
make nonextensible. Once you use this method on an object, you’ll never
be able to add any new properties to it again. You can check the value of
[[Extensible]] by using Object.isExtensible(). The following code shows
examples of both methods at work.

var person1 = {
 name: "Nicholas"
};

u console.log(Object.isExtensible(person1)); // true

v Object.preventExtensions(person1);
console.log(Object.isExtensible(person1)); // false

w person1.sayName = function() {
 console.log(this.name);
};

console.log("sayName" in person1); // false

After creating person1, this example checks the object’s [[Extensible]]
attribute u before making it unchangeable v. Now that person1 is non-
extensible, the sayName() method w is never added to it.

n O t e Attempting to add a property to a nonextensible object will throw an error in strict
mode. In nonstrict mode, the operation fails silently. You should always use strict
mode with nonextensible objects so that you are aware when a nonextensible object
is being used incorrectly.

Sealing Objects
The second way to create a nonextensible object is to seal the object. A
sealed object is nonextensible, and all of its properties are nonconfigu-
rable. That means not only can you not add new properties to the object,

46 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

but you also can’t remove properties or change their type (from data to
accessor or vice versa). If an object is sealed, you can only read from and
write to its properties.

You can use the Object.seal() method on an object to seal it. When
that happens, the [[Extensible]] attribute is set to false, and all proper-
ties have their [[Configurable]] attribute set to false. You can check to see
whether an object is sealed using Object.isSealed() as follows:

var person1 = {
 name: "Nicholas"
};

console.log(Object.isExtensible(person1)); // true
console.log(Object.isSealed(person1)); // false

u Object.seal(person1);
v console.log(Object.isExtensible(person1)); // false

console.log(Object.isSealed(person1)); // true

w person1.sayName = function() {
 console.log(this.name);
};

console.log("sayName" in person1); // false

x person1.name = "Greg";
console.log(person1.name); // "Greg"

y delete person1.name;
console.log("name" in person1); // true
console.log(person1.name); // "Greg"

var descriptor = Object.getOwnPropertyDescriptor(person1, "name");
console.log(descriptor.configurable); // false

This code seals person1 u so you can’t add or remove properties.
Since all sealed objects are nonextensible, Object.isExtensible() returns
false v when used on person1, and the attempt to add a method called
sayName() w fails silently. Also, though person1.name is successfully changed
to a new value x, the attempt to delete it y fails.

If you’re familiar with Java or C++, sealed objects should also be
familiar. When you create a new object instance based on a class in
one of those languages, you can’t add any new properties to that object.
However, if a property contains an object, you can modify that object.
In effect, sealed objects are JavaScript’s way of giving you the same mea-
sure of control without using classes.

n O t e Be sure to use strict mode with sealed objects so you’ll get an error when someone
tries to use the object incorrectly.

Understanding Objects 47

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Freezing Objects
The last way to create a nonextensible object is to freeze it. If an object is
frozen, you can’t add or remove properties, you can’t change properties’
types, and you can’t write to any data properties. In essence, a frozen object
is a sealed object where data properties are also read-only. Frozen objects
can’t become unfrozen, so they remain in the state they were in when
they became frozen. You can freeze an object by using Object.freeze() and
determine if an object is frozen by using Object.isFrozen(). For example:

var person1 = {
 name: "Nicholas"
};

console.log(Object.isExtensible(person1)); // true
console.log(Object.isSealed(person1)); // false
console.log(Object.isFrozen(person1)); // false

u Object.freeze(person1);
v console.log(Object.isExtensible(person1)); // false
w console.log(Object.isSealed(person1)); // true

console.log(Object.isFrozen(person1)); // true

person1.sayName = function() {
 console.log(this.name);
};

console.log("sayName" in person1); // false

x person1.name = "Greg";
console.log(person1.name); // "Nicholas"

delete person1.name;
console.log("name" in person1); // true
console.log(person1.name); // "Nicholas"

var descriptor = Object.getOwnPropertyDescriptor(person1, "name");
console.log(descriptor.configurable); // false
console.log(descriptor.writable); // false

In this example, person1 is frozen u. Frozen objects are also consid-
ered nonextensible and sealed, so Object.isExtensible() returns false v
and Object.isSealed() returns true w. The name property can’t be changed,
so even though it is assigned to "Greg", the operation fails x, and sub-
sequent checks of name will still return "Nicholas".

n O t e Frozen objects are simply snapshots of an object at a particular point in time. They
are of limited use and should be used rarely. As with all non extensible objects, you
should use strict mode with frozen objects.

48 Chapter 3

The Principles of Object-Oriented JavaScript
©2014, Nicholas C. Zakas

Summary
It helps to think of JavaScript objects as hash maps where properties are
just key/value pairs. You access object properties using either dot notation
or bracket notation with a string identifier. You can add a property at any
time by assigning a value to it, and you can remove a property at any time
with the delete operator. You can always check whether a property exists
by using the in operator on a property name and object. If the property
in question is an own property, you could also use hasOwnProperty(), which
exists on every object. All object properties are enumerable by default,
which means that they will appear in a for-in loop or be retrieved by
Object.keys().

There are two types of properties: data properties and accessor
 properties. Data properties are placeholders for values, and you can
read from and write to them. When a data property holds a function
value, the property is considered a method of the object. Unlike data
properties, accessor properties don’t store values on their own; they use
a combination of getters and setters to perform specific actions. You can
create both data properties and accessor properties directly using object
literal notation.

All properties have several associated attributes. These attributes
define how the properties work. Both data and accessor properties
have [[Enumerable]] and [[Configurable]] attributes. Data properties
also have [[Writable]] and [[Value]] attributes, while accessor proper-
ties have [[Get]] and [[Set]] attributes. By default, [[Enumerable]] and
[[Configurable]] are set to true for all properties, and [[Writable]] is set
to true for data properties. You can change these attributes by using
Object. defineProperty() or Object.defineProperties(). It’s also possible to
retrieve these attributes by using Object.getOwnPropertyDescriptor().

When you want to lock down an object’s properties in some way,
there are three different ways to do so. If you use Object.preventExtensions(),
objects will no longer allow properties to be added. You could also create a
sealed object with the Object.seal() method, which makes that object non-
extensible and makes its properties nonconfigurable. The Object.freeze()
method creates a frozen object, which is a sealed object with nonwritable
data properties. Be careful with nonextensible objects, and always use strict
mode so that attempts to access the objects incorrectly will throw an error.

