

8
D I S K S A N D F I L E S Y S T E M S

Oh, my head hurts bad.
Rings of ones and zeros, ouch!

Filesystems hide them.

Proper data management is perhaps a sys-
tems administrator’s most vital duty. You

can replace almost every computer compo-
nent, but the data on your disk is irreplace-

able. Perhaps that data isn’t important or it’s backed
up, but losing files will ruin your day. As a sysadmin,
you must protect important data by carefully manag-
ing your disks and filesystems.

We covered the basics of disklabels and MBR partitions in Chapter 2,
but OpenBSD lets you use and abuse disks and filesystems in any number
of ways. You’ll learn how in this chapter.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

126 Chapter 8

Device Nodes
A device node is a file that provides a logical interface to a piece of hardware.
By reading from a device node, sending data to it, or using a command on
it, you’re telling the operating system to perform an action on a piece of
hardware or, in some cases, a logical device.

Different devices behave differently when data is sent to them. For
example, writing to the console makes text appear on the screen or termi-
nal, while writing to a disk device puts data on that disk. (OpenBSD puts
device nodes in /dev and disallows device nodes on other filesystems.)

Many disk management programs expect to be given a device name
as an argument. Unfortunately, device node names are frequently cryptic
and vary widely among operating systems—even on closely related operat-
ing systems that run on the same hardware. To simplify your life just a bit,
Table 8-1 lists the device node names for common OpenBSD disk devices.

Table 8-1: Common Disk Device Node Names

Device Node Description

/dev/fd* Floppy disk (block)
/dev/rfd* Floppy disk (raw)
/dev/wd* IDE and some SATA disks (block)
/dev/rwd* IDE and some SATA disks (raw)
/dev/sd* SCSI/SAS/SATA/USB/RAID/non-IDE disk (block)
/dev/rsd* SCSI/SAS/SATA/USB/RAID/non-IDE disk (raw)
/dev/cd* CD/DVD drive (block)

Device names also have a number that tells you which instance of that
device it refers to. The numbering starts at 0. The first IDE hard drive is
/dev/wd0, /dev/wd1 is the second, and /dev/cd1 is the second CD drive.

Every partition is assigned a letter. For example, the root partition is a,
the swap area is b, the whole disk is c, and so on. Each partition also has a
separate device node, the result of appending the partition letter to your
disk device name. For example, if you install to a single IDE drive, your root
partition is /dev/wd0a.

Raw and Block Devices
Notice in Table 8-1 that devices are listed in either block or raw (character)
mode. This refers to how the devices are accessed.

Block Devices
Hard disks are usually accessed using a block device node (sometimes called
a cooked device node). When accessing a device as a block, data transmitted
to or from the device is buffered, or collected until there is sufficient data to

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 127

make accessing the device worth the trouble. Block devices are generally
considered more efficient than raw devices.

The device nodes for block devices are named after the device driver;
for example, /dev/wd3.

Raw Devices
Raw devices are sometimes called character devices, because they access
a device one character at a time. If you need to control exactly how data
appears on a disk (for example, when creating a filesystem) use a raw
device. Raw device nodes have an r in front of their name, as in /dev/rwd3.

Raw devices do no buffering. When you tell your system to write to a
raw device, the data is transmitted immediately. Raw mode works best with
software that provides its own buffering or that wants to arrange data in a
specific way.

Here’s an easy way to remember the difference between block and raw
throughput: Say you spill a bottle of aspirin. If you pick up each aspirin
individually and deposit it directly in the bottle, you’re doing an unbuffered,
or raw, transfer. If you pick up the aspirin with your right hand and collect
them in your left, then dump a bunch into the bottle at once (along with all
of the dirt from your floor), you’re doing a buffered transfer.1

Choosing Your Mode
Address disks (and many other devices) as raw or block by choosing the cor-
responding device node. Some programs expect to access raw devices, while
others expect block devices. If a program opens /dev/sd1a, it’s accessing
partition a on disk sd1 as a block device. If it opens /dev/rsd1a, it’s accessing
the exact same partition as a character device.

Regardless of the mode, the underlying hardware remains the same; the
only thing that changes is how you exchange information with the device.

Device Attachment vs. Device Name
Not long ago, most disks were permanently affixed to a single physical loca-
tion on the system. If your computer had two IDE buses, each with two hard
drives, the operating system knew exactly where to find them, usually at
/wd1 and /wd2. A SCSI disk had a SCSI ID and a logical unit number (LUN),
and changing them required rebooting the computer. Traditionally, you
could use the disk’s location in the system to identify the disk. For example,
a booting i386 computer would find the root partition by looking for the
hard drive attached to the first port on the first IDE controller, finding the
a partition on that disk, and reading the filesystem table from that disk. You
could go into the BIOS to tell the computer to look for the root partition
on a different disk, but the computer still identified the disk by where it was
physically attached to the computer.

1. If it’s buffered aspirin, then you’re doing buffered buffered aspirin transfers. But let’s not
go there.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

128 Chapter 8

Today, disks can appear and disappear from multiple locations on the
system. For example, you might attach and remove several flash drives as
needed, or hot swap Serial Attached SCSI (SAS) or Serial ATA (SATA)
drives from bus to bus. Physical location is no longer a safe way to identify
a disk. While /dev/sd0 is the device node for the first SCSI disk, you cannot
assume that the disk currently attached to the first SCSI port is the same
disk that was plugged in there the last time the system booted. OpenBSD
labels actual disks with unique IDs, as discussed in the next section.

DUIDs and /etc/fstab
All OpenBSD platforms use the disklabel to identify partitions and other
information about a disk. When you label a disk (as we did in Chapter 3
and will do by hand later this chapter), disklabel adds a disklabel unique
identifier, or DUID, to the disk label. The DUID is a unique hexadecimal
number that lets OpenBSD identify a specific disk.

To find a disk’s DUID, pass the device name to disklabel and look for
the duid entry:

disklabel sd0
...
duid: 55128c3700af5491
...

The disk currently attached as sd0 has a DUID of 55128c3700af5491. Even
if you physically move the disk so that it becomes sd9 or sd18, OpenBSD can
use the DUID to uniquely identify this disk.

OpenBSD uses the filesystem table /etc/fstab to map filesystems on a
disk to mount points using either the disk location or the DUID. Each file-
system appears on its own line in /etc/fstab, as shown here:

! 55128c3700af5491.b "none #swap $sw
55128c3700af5491.a / ffs rw 1 1
55128c3700af5491.k /home ffs rw,nodev,nosuid 1 2
55128c3700af5491.d /tmp ffs rw,nodev,nosuid 1 2
...

We’ll focus on the first entry to explore what’s going on here. The
first field, 55128c3700af5491.b !, is the location of the partition. Whereas
older systems used the disk device name and the partition letter (such as
/dev/sd0a), newer systems can use the DUID, a period, and the partition
letter (as in 55128c3700af5491.a). By using DUIDs in the filesystem table,
OpenBSD can always mount the same disk at the same location, no mat-
ter how it’s attached.

The second field, none ", lists the mount point, which is the directory
where the filesystem is attached to the directory tree. Every partition you
can write files to is attached to a mount point (such as /usr, /var, and so on),
with one partition being the root partition (/). Swap space uses a mount
point of none.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 129

Next, swap #, is the filesystem type. The standard OpenBSD partition
uses type ffs, the UNIX Fast File System. Other options include, but are not
limited to, msdos (Microsoft-style FAT partitions), mfs (Memory File System),
and cd9660 (CD).

The fourth field, sw $, shows the mount options used for this file-
system. I’ll cover mount options in more detail in “FFS Mount Options”
on page 135, but here are a few that frequently appear in /etc/fstab :

ro The filesystem is mounted read-only. Not even root can write to it.
rw The filesystem is mounted read-write.
nodev Device nodes are not interpreted.
nosuid setuid files are forbidden.
noauto OpenBSD won’t automatically mount the filesystem at boot or
when running mount -a. This option is useful for removable media drives
that might not have media in them, such as CD and USB flash drives.

The fifth field indicates whether dump(8) should back up this filesystem.
If this field is 0 (or absent), dump doesn’t routinely back up the filesystem.
Otherwise, the number given is the minimum dump level needed to back
up the filesystem.

The last field is the pass number. It tells fsck when to check the filesystem
during boot. Filesystems with a pass number of 1 are checked first, filesystems
with a pass number of 2 are checked second, and so on. A pass number of 0
tells fsck to not check the filesystem during boot. If a filesystem doesn’t have
a pass number, it’s equivalent to 0.

I strongly recommend using DUIDs in /etc/fstab and anywhere else,
rather than using device node names. While a device node name might
change, a DUID will not.

MBR Partitions and fdisk(8)
Some hardware platforms have specific ideas about disk partitioning that
differ from what OpenBSD expects. For example, the i386 and amd64
platforms expect to find MBR partitions on hard drives, and OpenBSD
accommodates this quirk by putting its own disklabel partitions inside MBR
partitions. We briefly touched on creating partitions during the installation
process, but if you add hard drives to an existing system, you’ll need to edit
the MBR partition table by hand using fdisk(8).

My particular test system has two hard drives: wd0 and wd1. I think that
wd1 is completely blank but before I can use this drive, I need to verify that it
is empty, and then create MBR partitions. While fdisk has all sorts of com-
mands to edit disks, I find the simplest way is to use the interactive disk
editor. Run fdisk -e and give it the device node for the new disk.

fdisk -e wd1
Enter 'help' for information
fdisk: 1>

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

130 Chapter 8

The editor is minimal, but lets you view, add, remove, and edit MBR
partitions. If you forget the commands at any time, entering help will print
out all the commands fdisk supports.

Viewing MBR Partitions
To see the MBR partitions on the current disk, enter print or p. Here’s
an example:

fdisk: 1> print
Disk: wd1 geometry: 2088/255/63 [33554304 Sectors]
Offset: 0 Signature: 0x0
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 00 0 0 0 - 0 0 0 [0: 0] unused
 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused

The first line shows the disk geometry (as discussed in Chapter 2). Every
value in this disk’s MBR table is set to 0, meaning that it has no configured
partitions.

Adding and Removing Partitions
Say we want to create an MBR partition on this disk. I habitually use parti-
tion 0, but the OpenBSD installer usually uses partition 3. The specific
number you pick doesn’t matter unless you want multiple MBR partitions
on the disk.

To edit a partition, enter edit or e followed by the partition number. For
example, to edit partition 0, enter the following:

fdisk: 1> e 0
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 00 0 0 0 - 0 0 0 [0: 0] unused

! Partition id ('0' to disable) [0 - FF]: [0] (? for help) a6
Do you wish to edit in CHS mode? [n]

" offset: [0]
size: [0] *

W A R N I N G Conveniently, fdisk prints the current information on this MBR partition. Make
sure it’s the partition you think it is before you muck it up.

First, at !, set a partition ID. This is a label indicating what kind of file-
system will be on the disk. OpenBSD uses partition ID a6, so enter that.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 131

The offset at " is the number of sectors from the beginning of the disk
to the start of the partition. We want to use this entire disk for OpenBSD,
so set it to 0.

Finally, the size at # is the number of sectors the MBR partition fills.
There is no need to copy the number of sectors in the disk here; OpenBSD
fdisk uses * to mean “all free space.”

Now print the MBR table again to check your work.

fdisk:*1> p
Disk: wd1 geometry: 2088/255/63 [33554304 Sectors]
Offset: 0 Signature: 0x0
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: A6 0 0 1 - 2088 167 63 [0: 33554304] OpenBSD
 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused

Notice that the entry for partition 0 is type A6 and extends from
cylinder 0, head 0, sector 1, to cylinder 2088, head 167, sector 63. It fills
33,554,304 sectors—the same as the number of sectors in the disk. This
MBR partition fills the entire disk.

If you had recycled this disk from another operating system, it would
probably have a partition already on it. To remove a partition, edit the
partition and set its partition ID to 0.

Making a Partition Bootable
In order to boot from a hard drive, you’ll need to mark a partition as active.
Use the flag command and a partition number to do this.

fdisk: 1> flag 0
Partition 0 marked active.

Include this hard drive in your BIOS boot order, and the computer
should try to boot from it. Simply marking a partition as active doesn’t
mean that the computer can boot from it; however, you will still need a
kernel, boot loader, and all the other things that go into bootstrapping a
computer.

To mark a partition as no longer active, delete and re-create it. (There
is no unflag command.)

Exiting fdisk
Once you’re satisfied with your work, enter quit or q, and fdisk should write
the new MBR table to disk and exit. If you changed your mind, and don’t
want to make any changes, enter abort or exit, and fdisk should exit without
saving changes to the MBR partition table.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

132 Chapter 8

Labeling Disks
OpenBSD uses disklabel to set up partitions on all hardware platforms. We
used disklabel(8) as part of the installation process, but you need to parti-
tion new disks before you can use them. (You can also use disklabel to back
up, restore, and duplicate partition tables.)

Viewing Labels
To view the current disklabel, just give the disk name as an argument. Here’s
how to see the disklabel of the empty disk from the previous section:

disklabel wd1
! # /dev/rwd1c:

...
" duid: 0000000000000000

...
16 partitions:
size offset fstype [fsize bsize cpg]

c: 33554304 0 unused

This looks much like the disklabel we saw in Chapter 2, with a few criti-
cal differences.

First, note the device at !. The disklabel command accesses the raw
device, but you should use the block device at the command line.

This label at " has no DUID. This is the default empty disklabel. We
will generate a DUID later.

At #, we see that this disk has only one partition, c, which represents
the entire disk. You could create and use a filesystem on partition c, but it’s
not standard practice to do so.

Creating Disklabel Partitions
The simplest way to create partitions is to use the same interactive disklabel
editor that we used to install OpenBSD. Give the disklabel editor the -E flag
and the disk name:

disklabel -E wd1
Label editor (enter '?' for help at any prompt)
>

Now you can add, remove, and edit partitions, just as in Chapter 3.
Throughout the rest of the book, we’ll edit disklabels as needed to

change partition and filesystem characteristics.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 133

Backing Up and Restoring Disklabels
Before messing with a disk, back up its disklabel so that you can fall back
to the old label if you screw up. You can back up the disklabel with this
command:

disklabel wd1 > wd1.disklabel.saved

To apply a saved disklabel to a disk, give disklabel the -R flag, the disk
device, and the label file:

disklabel -R wd1 wd1.disklabel.saved

This writes the saved label to the disk. You can use saved disklabels to
duplicate partitioning across identical disks.

Now that you have partitions, let’s put a filesystem on them.

The Fast File System
OpenBSD’s filesystem, FFS, is an improved version of the filesystem shipped
with BSD 4.4. FFS is sometimes called UFS (for Unix File System), and many
system utilities still use UFS.2

FFS is designed to be fast, reliable, and able to handle the most common
situations effectively while still supporting weird configurations. By default,
OpenBSD tunes FFS for general use, but you can optimize it to fit your
needs—whether you need to hold trillions of tiny files or a half dozen 30GB
files. You don’t need to know much about FFS internals, but you should at
least understand blocks, fragments, and inodes.

FFS Versions
The original FFS was written in the 1980s and included hard-coded limits
that were ample for the day. Filesystems could have up to 231-1 blocks, or just
under a terabyte (TB). In 1983, a 1TB filesystem was unthinkable. In 2013,
1TB drives are cheap.

For larger file systems, we have FFS version 2. FFS2 can support file-
systems up to 8 zettabytes—unthinkable by 2013 standards. (FFS2 is likely
to reach other limits before hitting the filesystem size limit, mind you.)
OpenBSD supports both FFS and FFS2.

The i386 and amd64 boot floppies support only FFS, not FFS2. The
installation CD, however, supports both. Most machines that need to boot
from floppy don’t need FFS2, and probably don’t have a BIOS that can sup-
port 2TB drives anyway. The filesystem creation program newfs(1) is smart

2. OpenBSD is not the only operating system that still uses the BSD 4.4 filesystem or a
descendant thereof. If a Unix vendor doesn’t specifically tout its “improved and advanced”
filesystem, it’s almost certainly running a derivative of FFS.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

134 Chapter 8

enough to use FFS2 on filesystems large enough to need it, so for most
installations, you don’t need to worry about the difference between FFS
and FFS2.

N O T E In the exceedingly unlikely event that you actually require FFS2 on a machine that
must be installed via floppy, be sure to format the critical system partitions of root (/),
/var, and /usr as FFS, not FFS2. Use FFS2 only for partitions that are not critical to
the system. Otherwise, you won’t be able to use the installation disk for upgrades or
emergency repairs.

Blocks, Fragments, and Inodes
Both FFS and FFS2 are managed through blocks, fragments, and inodes.
This arrangement isn’t unique to FFS and FFS2; filesystems such as NTFS
use data blocks and index nodes, too. The indexing system used by each
filesystem is largely unique, however.

Blocks
Blocks are sections of disk that contain data. Files are placed in one or more
blocks. OpenBSD’s FFS uses a default block size of 16KB, or eight times the
fragment size, whichever is smaller. Not all files are even multiples of 16KB,
so leftover bits go in fragments. A fragment is one-eighth of the block size, or
2KB by default. A 20KB file fills one block and two fragments.

Inodes
Inodes, or index nodes, contain basic data about files, such as the file’s size,
permissions, and the list of blocks that contain the file. Collectively, the
data in an inode is known as metadata, or data about data.

Superblocks
You’ll also see references to superblocks, which are blocks that contain vital
information about the filesystem’s size and specifications. Superblocks are
so important that FFS makes many backup copies of them. If you need to
meddle with superblocks, you’ve probably done something wrong or your
filesystem is FUBAR.

Creating FFS Filesystems
Use newfs(8) to create FFS and FFS2 filesystems and make sure that the
disk has a disklabel. The newfs command takes one argument: the partition
device node.

newfs wd1a
/dev/rwd1a: 16383.9MB in 33554304 sectors of 512 bytes
81 cylinder groups of 202.47MB, 12958 blocks, 25984 inodes each
super-block backups (for fsck -b #) at:

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 135

 32, 414688, 829344, 1244000, 1658656, 2073312, 2487968, 2902624, 3317280,
3731936,
 ...

You’ll see details about the filesystem size, how many blocks it includes,
and so on. The location of each superblock backup is printed as newfs pro-
ceeds. (When computers and disks were much slower, this told the operator
that the computer was actually doing something and hadn’t seized up.)

The partition size determines which filesystem newfs uses. Partitions
smaller than 1TB are formatted with FFS; larger partitions with FFS2. If you
want to specify a particular filesystem format (yes, you can even specify the
old-fashioned 4.3BSD format if you like), use the -O flag. It makes no sense
to demand an FFS filesystem on a large partition, but you might have a rea-
son to use FFS2 on a small partition.

newfs -O 2 wd1a

If you think you need to specify which filesystem format to use on a new
filesystem, you’re probably wrong.

FFS Mount Options
OpenBSD can handle FFS partitions in several special ways, controlling what
sorts of changes the filesystem supports and what sorts of files may exist.
These are called mount options. You can specify mount options either when
you mount partitions on the command line, as we’ll discuss in “Mounting
and Unmounting Partitions” on page 140, or in /etc/fstab.

Mount Options and /etc/fstab
Specify a filesystem’s mount options in a comma-separated list in the fourth
field of the filesystem’s /etc/fstab entry. For example, here’s an /etc/fstab entry
for the partition that contains my /home directory:

244f6d3acd6374ad.k /home ffs rw,nodev,nosuid,softdep 1 2

I’ve specified the options rw (read-write), nodev (device nodes forbidden),
nosuid (setuid programs forbidden), and softdep (soft updates). I’ll cover
these and other common mount options, and explain why you might want
to use them.

Read-Only Mounts
If you only want to read the contents of a partition, and never write to it,
you can mount the partition as read-only. In most cases, this is the safest way
to mount a disk because you cannot alter the data on the disk or write any
new data. If a filesystem should never change, mounting it read-only might
make sense.

Read-only mounts are especially valuable when a particular filesystem
is damaged. While OpenBSD won’t let you perform a standard read-write

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

136 Chapter 8

mount on a damaged or dirty filesystem, it can often mount those filesystems
read-only. This gives you a chance to recover some data from the partition.
(Not a large chance, but a chance.)

To mount a filesystem read-only, use the option rdonly or ro.

Read-Write Mounts
If you want to both read from and write to the disk, you’ll want to mount
the partition as read-write. By default, OpenBSD mounts all partitions as
read-write.

Use the option rw to explicitly configure read-write mounts.
On modern hardware, I recommend using soft updates in conjunction

with read-write mounts.

Synchronous Mounts
Using a synchronous mount is the safest way to mount a filesystem. OpenBSD
can read data from a synchronous-mounted partition as fast as the hard-
ware permits. Whenever you write to the disk, however, the kernel feeds a
chunk of data to the disk, waits to receive confirmation that the disk has
accepted the data and written it to disk, and then tells the program that
requested the write that the data is now on disk.

You should know that even if you’re using a synchronous mount, most
hard drives lie about whether they have actually written the data to disk.
These drives perform write caching, where writes are cached in a small flash
or RAM buffer on the disk itself before the drive actually writes the data.
This raises the question: Is a synchronous mount really synchronous? Hard
drive vendors usually claim that in the event of a power failure, these disks
retain just enough power to write the cache to disk.

Although they provide the greatest data integrity in the case of a crash,
synchronous mounts are slow. You might use synchronous mounts when
data integrity is crucial, but in most cases, it’s overkill and you have little
ability to verify that the mount is truly synchronous.

Activate synchronous mounts with the sync keyword.

Asynchronous Mounts
To write data quickly, but with a higher risk of data loss, mount partitions
asynchronously. When using asynchronous mounts, the kernel informs
software that all disk writes are successful before the disk confirms that the
data was written. This is fast, but a system failure can leave inconsistent data
on your disk.

Asynchronous mounts are useful when restoring a filesystem from
backup, because if you get a power failure halfway through the restore
procedure, you’ll need to start over anyway. Don’t use asynchronous mounts
in production if you care about your data or would object to re-creating
the filesystem.

Activate asynchronous mounts with the async keyword.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 137

Soft Update Mounts
Soft update mounts organize and arrange disk writes so that filesystem
metadata remains consistent at all times. This gives performance similar to
that of an asynchronous mount with the reliability of a synchronous mount.
While that doesn’t mean that all data will be written to disk—a power failure
at the wrong moment will result in lost data—using soft updates prevents
a lot of filesystem integrity problems caused by that lost data. It’s not the
default because some older, smaller hardware doesn’t have enough memory
to support it, but if you’re using modern i386 and amd64 hardware, I rec-
ommend enabling soft updates for all FFS partitions.

To mount a filesystem with soft updates, use the softdep option.

“Don’t Track Access Time” Mounts
FFS records the last time a file was read, executed, or otherwise viewed.
Updating these access times consumes a small but measurable amount of
disk I/O and performance. You can use the noatime mount option to tell
OpenBSD to not update the access time on any file.

Using noatime makes sense on laptops, where minimizing power usage
is critical. If you’re tempted to use this option on your server to squeeze out
a little extra performance, you should buy a faster disk instead. Some soft-
ware, such as the Mutt mail client, will break if run on filesystems mounted
noatime.

No Device Nodes Permitted Mount
By using the nodev mount option, you can tell OpenBSD to not interpret
any device nodes on any given filesystem. Intruders can try to create
“rogue” device nodes and use them to write files or attack the network,
but if the kernel won’t recognize those device nodes, it cuts off this whole
category of attacks.

This type of mount is also useful if you have hard drives from mul-
tiple operating systems on your computer. For example, if you dual-boot
OpenBSD and Linux on your computer, but you don’t want to accidentally
access a Linux device node when using OpenBSD, the nodev option will
prevent you from doing so. (You might think you would notice that you had
typed /linux/dev/hda rather than /dev/wd1, but never underestimate your
ability to screw up.) In most cases, the partition containing /dev is the only
one that should contain device nodes.

Execution Forbidden Mounts
The noexec mount option prevents any binaries on the partition from being
executed. Mounting /home with the noexec option helps prevent users from
installing and running their own programs, but for it to be effective, you’ll
need to make sure users can’t install binaries in any shared areas, such as
/tmp and /var/tmp.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

138 Chapter 8

Note that forbidding execution of binaries doesn’t prevent users from
running interpreted scripts from that partition. Maybe the users can’t run
a compiled C program, but if they can run perl $HOME/rootkit.pl, then noexec
won’t slow them down very much.

setuid Forbidden
The nosuid option disallows setuid behavior from programs on this filesystem.
Many partitions should not have setuid files, and setting this is an easy way
to disrupt them. OpenBSD sets this on partitions such as /home and /tmp by
default. You must carefully place this option on all user-writable filesystems
for it to prevent undesired behavior.

Do Not Automatically Mount This Filesystem
noauto isn’t actually a mount option, but rather a way of telling OpenBSD
to not mount a given partition listed in /etc/fstab at boot. I frequently make
/etc/fstab entries for removable media drives, but the system should not
try to mount these at boot. The boot will hang if a partition required by
/etc/fstab is not available, and I don’t want my computer to refuse to boot
just because I unplugged a flash drive.

Filesystem Integrity
Both versions of FFS go to a great deal of trouble to ensure that the data on
disk is correct and intact. The blocks that contain a file should be recorded
in an inode, the inodes should all be referenced by directory entries, and so
on. When you remove a file, all references to that file should be removed.

After a system failure, however, data might not be consistent. Metadata
might reference blocks that were previously erased; a file might be in a dif-
ferent location than the inode record specifies; and the filesystem might
have all kinds of references pointing to things that have moved, changed, or
disappeared. These inconsistent, or dirty, filesystems cannot be trusted and
must be rationalized, or cleaned, before you can mount them read-write. If
you mount a dirty filesystem read-only, it might only panic your system, but
if you force OpenBSD to mount a dirty filesystem read-write, you will dam-
age the dirty filesystem even more.

At boot, OpenBSD performs a minimal inspection and cleaning, or
preening, of the filesystems and will automatically correct any minor prob-
lems found. If preening cannot fully clean the filesystem, the boot will hang
until you intervene.

When confronted with a dirty filesystem, you have a few options: use
the filesystem checking tool fsck(8), debug the filesystem with fsdb(8) and
clri(8), or throw the filesystem away and run newfs(8). Most of the time, you’ll
attempt to repair the filesystem with fsck. Using fsdb successfully requires
more knowledge about FFS innards than I possess, so I recommend it to only
those who really want to develop an in-depth knowledge of FFS and have

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 139

a whole bunch of time to devote to it. Rebuilding the filesystem with newfs
destroys everything on the filesystem, but it’s a decent choice for partitions
that contain only ephemeral data, such as /usr/obj.

You can use dump(8) to copy the damaged filesystem before trying any
of the repairs. This gives you the option to fall back to the current state
if attempts at repairing the disk fail. (If you have to do this, though, you
should probably reevaluate your backup strategy.)

Running fsck
If you try to mount a dirty filesystem either at boot time or during routine
operation, you’ll see a message that looks like this:

/dev/rwd1a: UNEXPECTED INCONSISTENCY; RUN fsck_ffs MANUALLY

The fsck(8) program is a frontend for several filesystem-specific integrity-
checking programs. When you run it, fsck identifies the type of filesystem
and calls the correct integrity checker for you. Run fsck by giving it the
device name of the filesystem you want to check:

fsck /dev/wd1a

You can use either the raw or cooked device name; fsck is smart enough
to use the raw node even if you give the cooked device name.

Examining the filesystem can take quite a while, so be patient.
When run on a dirty filesystem, fsck will probably find a number of

problems: blocks that have become disassociated from their inodes, inodes
that reference empty blocks, and so on. It can often make a good guess as
to how everything fits together.

When fsck finds a problem that it isn’t absolutely sure about, it will
suggest a fix and ask if you want to make the change. If you answer y, fsck
makes the change. If you answer n, fsck leaves the filesystem unchanged. If
you tell fsck not to make the change it suggests, the filesystem will still be
dirty, and you’ll need to fire up fsdb or clri and make the change you think
more appropriate.

Sometimes, fsck can’t identify the name or directory of a file recovered
from a damaged filesystem. These files go into the partition’s lost+found
directory (for example, /usr/lost+found). You’ll need to use programs such
as grep and strings to try to identify these files by their contents.

Blindly Trusting fsck
Those of us who lack the skills to debug a filesystem find ourselves in a
difficult situation, where we can either accept that fsck(8) knows what’s
best or just restore from backup. If your filesystem was performing a lot of
disk I/O just before system failure, fsck might need to make dozens or hun-
dreds of changes. You could spend an hour sitting at the console pressing y
repeatedly.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

140 Chapter 8

If you decide to trust fsck and hope it’s right, run fsck -y. This means
“answer y to every question.” You might wind up with the entire contents of
the filesystem in the lost+found directory, or you might lose every file on the
filesystem. But unless you’re intimately familiar with the innards of FFS, you
would need to restore from backup anyway.

If you run fsck and realize partway through that you would like to answer
y to all the questions that follow, enter F. That tells fsck to answer y to all
remaining questions.

At the end of the procedure, you’ve either recovered your system or
need to restore from backup.

What’s Currently Mounted?
While performing routine work, inevitably you’ll need to check which disks
are currently mounted and which are not. To see a list of all mounted file-
systems and their mount options, run mount(8) without any options:

$ mount
/dev/wd0a on / type ffs (local)
/dev/wd0k on /home type ffs (local, nodev, nosuid)
/dev/wd0d on /tmp type ffs (local, nodev, nosuid)
/dev/wd0f on /usr type ffs (local, nodev)
/dev/wd0g on /usr/X11R6 type ffs (local, nodev)
/dev/wd0h on /usr/local type ffs (local, nodev)
/dev/wd0j on /usr/obj type ffs (local, nodev, nosuid)
/dev/wd0i on /usr/src type ffs (local, nodev, nosuid)
/dev/wd0e on /var type ffs (local, nodev, nosuid)

Both FFS and FFS2 partitions show up as type ffs. The word local means
that the partition is on a physical drive attached to this machine. We covered
the various mount options (nodev, nosuid, and so on) earlier in this chapter.

Note that mount displays the device node mounted at each partition, not
the DUID. If you want to see the DUID of a disk, check the disklabel.

Mounting and Unmounting Partitions
To attach filesystems to your directory tree, or mount them, use mount(8).
If you’ve never manually mounted filesystems before, boot your OpenBSD
machine into single-user mode (see Chapter 5) and follow along.

In single-user mode, OpenBSD mounts only one partition: the root par-
tition, which it mounts read-only. The root partition contains just enough
of the system to perform basic setup, establish core services, and find the
other filesystems.

Because filesystems other than the root are not mounted, their content is
not accessible. Look in, say, /usr on a system in single-user mode, and you’ll
find that it’s empty. OpenBSD hasn’t lost the files; it just hasn’t mounted the
partition containing those files.

To get any real work done in single-user mode, you probably need to
mount other filesystems.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 141

Mounting Standard Filesystems
To manually mount a single filesystem listed in /etc/fstab, give mount(8) the
name of the filesystem you want to mount. Here, we’ll mount our /usr
partition:

mount /usr

This mounts the partition exactly as described in /etc/fstab, with all the
options specified therein.

To mount all of the partitions listed in /etc/fstab, give mount the -a flag:

mount -a

All of your filesystems (except those not listed in /etc/fstab and those
with the noauto option) should now be mounted.

Mounting at Nonstandard Locations
Perhaps you must mount a filesystem at a location not specified in /etc/fstab.
I do this most commonly when adding a disk to a machine. To mount a
partition at a location other than that specified in /etc/fstab, or to mount
a partition without an /etc/fstab entry, give the partition device name and
the mount point.

mount /dev/sd0d /mnt

You must use the full path for the device node, not just the brief device
node name.

Instead of the path to the device node, you could use the DUID, a
period, and the partition letter, but on the command line, that’s more
painful than using the path to the device node.

Unmounting Partitions
To disconnect a filesystem from the directory tree, use umount(8) on a mount
point. (Note that there is only one n in this command.) Here, we’ll use umount
to unmount our /usr partition:

umount /usr

You cannot unmount filesystems that are in use by any program.
Even a command prompt in the mounted directory will prevent you from
unmounting the partition.

To unmount all partitions except the root partition, pass umount the
-a flag:

umount -a

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

142 Chapter 8

As programs almost certainly have files open on every partition, this
probably works only in single-user mode. Note that you don’t need to
unmount all partitions to leave single-user mode.

Mounting with Options
Suppose you pull a disk from a decommissioned OpenBSD machine and
you need to retrieve some files from it. You want to mount the disk read-
only so that you don’t change any of the files on the disk. To manually
mount a partition with options not specified in /etc/fstab, use the -o flag.

For example, if the disk shows up as /dev/sd0 and you want to mount
partition a, run this command:

mount -o ro /dev/sd0a /mnt

To prevent old software from running on your newer system, it might
be a good idea to use some of the options we covered earlier, such as noexec,
nodev, and nosuid.

How Full Is That Partition?
To get an idea how much free space remains on your partitions, use df(1).
This program displays the total number of filesystem blocks on each parti-
tion, how many blocks are in use, and how many blocks are free. It also
gives you the percent in use.

One annoying thing about df is that it offers this information in 512-byte
blocks by default. This was fine when disks were much smaller, but today,
it’s like measuring the distance of an airplane flight in yards. Some people
have done this for so long that they automatically perform block transfor-
mations in the back of their mind. 3 For the rest of us, the -h flag tells df to
provide human-readable output, such as megabytes or gigabytes, giving us
something like this:

df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/sd0a 1005M 39.1M 916M 4% /
/dev/sd0k 26.9G 27.0G -104M -1% /home
/dev/sd0d 3.5G 12.0K 3.3G 0% /tmp
...

You might wonder why the /home partition in this example has negative
free space. How is that possible? By default, FFS reserves 5 percent of each
partition for moving files and reducing fragmentation. When you exceed
100 percent disk utilization, you begin tapping into this reserved space.

FFS performance degrades quickly when the partition is overfull. It’s
best to keep some free space on your disk so that FFS can defragment itself.

3. Hi, Henning!

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 143

You can reduce the amount of space FFS reserves, but doing so will
impact performance. See tunefs(8) for instructions on how to shoot yourself
in the foot.

What’s All That Stuff?
When you see a partition is full, the obvious question is “What’s filling
up my disk?” Every hard drive I’ve ever owned has gradually filled up for
no apparent reason. You can identify individual large files with ls -l, but
recursively examining every directory in the filesystem is impractical and
tedious (not to mention annoying).

To check the number of filesystem blocks used within each directory
below the current directory, use du(1).

$ du
164 ./.ssh
2 ./old
6 ./.mozilla/firefox/bcpuv16e.default/chrome
80 ./.mozilla/firefox/bcpuv16e.default/Cache/0/B0
354 ./.mozilla/firefox/bcpuv16e.default/Cache/0/31
28 ./.mozilla/firefox/bcpuv16e.default/Cache/0/7A
...

When I run du in my home directory, I get 700 entries; of those, 563 are
related to some Mozilla tool. This kind of list intimidates the new sysadmin
and makes the experienced sysadmin work too hard. Rather than cull
through this list manually, tell du to show only the total for directories in the
current directory, and then sort the output so that the largest directories
appear first.

$ du -s * | sort -rnk 1
25224805 Dark_Shadows_Complete_Series
141104 mibs
14948 tarballs
4668 work
1864 pix
...

I now know why my /home partition is full.
You can tell du to display human-readable values with the -h flag, but

doing so will show values in a mix of gigabytes, megabytes, and kilobytes,
making sort far less useful.

Setting $BLOCKSIZE
Many disk tools—including, but not limited to, du(1) and df(1)—display
information in 512-byte blocks. If you’re accustomed to working in blocks,
you probably won’t mind seeing them. If you’re not used to working in
blocks, however, they’ll probably make you want to tear out your hair.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

144 Chapter 8

The environment variable BLOCKSIZE tells these programs to display
information using blocks of a different size. If you set BLOCKSIZE to K, df
and du will display totals in kilobytes. If you set it to M, these tools will show
megabytes instead. Check your shell manual page or the dotfiles in your
home directory for examples of setting environment variables.

Adding New Hard Disks
The OpenBSD installer walks you through formatting and partitioning
your initial hard disks. If you need to add a disk to an existing system, how-
ever, you must run these commands yourself. The good news is that if you
can install OpenBSD, you already know how to use the commands, and the
only hard part is learning which commands to run.

I’ll show you how to move /home to a new disk as an example. You could
create a new partition on your existing disk if you have some empty space,
but that would eliminate the need for this example, so I’m going to pretend
I never gave you that advice. (Also, moving partitions to a separate disk con-
troller channel will improve performance.)

W A R N I N G Before touching anything involving disk partitioning or filesystems, back up your sys-
tem. Verify that backup before starting. You have been warned.

Creating an MBR Partition
The i386 and amd64 platforms require disks to have MBR partitions as well
as OpenBSD partitions. A standard new disk needs a single OpenBSD MBR
partition covering the entire disk. Passing the -i argument to fdisk does
exactly this. Let’s create a new MBR partition on wd1, our new disk:

fdisk -i wd1
Do you wish to write new MBR and partition table? [n] y
Writing MBR at offset 0.

Once you have an MBR partition on your disk, you can create disklabel
partitions.

Creating a Disklabel
All OpenBSD platforms use disklabel partitions. To activate the same disk-
label editor we used during the install process, give disklabel the -E flag and
the disk name:

disklabel -E wd1

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

Disks and Filesystems 145

This should look familiar from earlier in this chapter. Use the interactive
disklabel editor to create your new partitions. For a single /home directory,
we’ll use one large partition, wd1a. The new label should look like this:

size offset fstype [fsize bsize cpg]
 a: 33543648 64 4.2BSD 2048 16384 1
 c: 33554304 0 unused

When you’ve finished editing partitions, check your work by printing
the disklabel. This should also give you the DUID of the new disk.

When you’re satisfied with the partitioning, use newfs to create a file-
system on the new partition:

newfs wd1a

You’re now ready to add the filesystem to your computer.

Moving Partitions
Moving data from one disk to another is slightly more complex than adding
new partitions. You must first mount the new drive in a temporary location,
copy files to that location, remove them from the old location, and mount
the new drive in its previous home.

Our new /home filesystem is on disk partition wd1a. The default “tempo-
rary mount” location is /mnt, so mount it there. This is strictly temporary, so
there’s no need to mount it via the DUID or make an /etc/fstab entry for this.

mount wd1a /mnt

You can then use tar(1), cpio(1), or dump(8) and restore(8) to copy the
files to the temporary location. Here, we copy everything in /home to /mnt.

(cd /home && tar cf - .) | (cd /mnt && tar xpf -)

You could also use cp(1) or mv(1) for this, but these commands don’t
guarantee that file permissions and ownership will copy intact. OpenBSD’s
versions of these programs have never given me errors when I copy or move
files, but I’ve learned from other Unix-like operating systems that tar and
cpio are both more reliable when moving entire file hierarchies. If you’re
using file flags for security (see Chapter 10), you must use dump(8) and
restore(8) to retain those flags.

Using tar or cpio does not delete files from their original location. This
means that if a user changes files in his home directory after you copy them
but before you change the mount point, he will lose his changes as you
shuffle disks around. 4

Now update /etc/fstab to reflect your new disk.

4. Presumably you warn your users before doing maintenance. Or at least during maintenance.
Or . . . maybe afterward.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

146 Chapter 8

Adding New Filesystems
Look at the disklabel for the new disk and get the disk’s DUID. This new
disk has a DUID of fea9194ee78362d8. Use the DUID and the partition letter
to make an /etc/fstab entry for your new partitions.

fea9194ee78362d8.a /home ffs rw,nodev,nosuid,softdep 1 2

You might want to keep the old partition available at a new location,
such as /oldhome.

If you’re not sure about the mount options to use for your new parti-
tions, the options nodev, nosuid, and softdep are generally safe. You probably
want the partition mounted read-write (rw) as well.

Now unmount the old and mount the new.

umount /home
mount /oldhome
mount /home

When you unmount a partition, umount doesn’t check /etc/fstab. You tell
it to unmount a partition, and it unmounts that partition.

Stackable Mounts
OpenBSD filesystems are stackable, which means that you can mount one
partition over another. The partition on top hides any files in the filesystem
below.

Look at your system in single-user mode. By default, only the root parti-
tion is mounted. You can go look in the /home directory, and it will be empty.
There’s no reason you can’t put files in the /home directory, even when /home
isn’t mounted. Suppose you copy a couple of core files into /home while in
single-user mode, and then go into multiuser mode. All the usual partitions
are mounted. If you then look in /home, you won’t find your core files.

What happened? Where did those files go?
The files are in the directory /home, but on the root partition. The /home

partition is mounted above that directory, so the /home partition obscures
the files in the /home directory on the root partition. To access those hidden
files, you must unmount the /home partition. Those hidden files continue to
take up space on the root partition, however.

This happens more commonly when splitting a partition. For example,
if you find that your /var partition is too small, you might move /var/www
into its own partition on a separate disk. To free up space on the original
/var, delete the files you copied to /var/www.

With the basics of filesystem management under your belt, you’re now
ready to look at some of OpenBSD’s more interesting filesystem tricks.

!"#$%&'()*+(,-./0)1,2)(23'3$,)
415670)839:;(%)<=)>&9;#

