
2
H O W T H E I N T E R N E T W O R K S

To become an expert on web security, you
need a firm grasp of the internet’s under-

lying web technologies and protocols. This
chapter examines the Internet Protocol Suite,

which dictates how computers exchange data over the
web. You’ll also learn about stateful connections and
encryption, which are key elements of the modern web. I’ll highlight where
security holes tend to appear along the way.

The Internet Protocol Suite
In the early days of the internet, data exchange wasn’t reliable. The first
message sent over the Advanced Research Projects Agency Network (ARPANET),
the predecessor to the internet, was a LOGIN command destined for a remote
computer at Stanford University. The network sent the first two letters,
LO, and then crashed. This was a problem for the US military, which was

6 Chapter 2

looking for a way to connect remote computers so that they could continue
to exchange information even if a Soviet nuclear strike took various parts of
the network offline.

To address this problem, the network engineers developed the Transmission
Control Protocol (TCP) to ensure a reliable exchange of information between
computers. TCP is one of about 20 network protocols that are collectively
referred to as the internet protocol suite. When a computer sends a message
to another machine via TCP, the message is split into data packets that are
sent toward their eventual destination with a destination address. The com-
puters that make up the internet push each packet toward the destination
without having to process the whole message.

Once the recipient computer receives the packets, it assembles them
back into a usable order according to the sequence number on each packet.
Every time the recipient receives a packet, it sends a receipt. If the recipient
fails to acknowledge receipt of a packet, the sender resends that packet, pos-
sibly along a different network path. In this way, TCP allows computers to
deliver data across a network that is expected to be unreliable.

TCP has undergone significant improvements as the internet has grown.
Packets are now sent with a checksum that allows recipients to detect data
corruption and determine whether packets need to be resent. Senders also
preemptively adjust the rate at which they send data according to how fast
it’s being consumed. (Internet servers are usually magnitudes more power-
ful than the clients that receive their messages, so they need to be careful
not to overwhelm the client’s capacity.)

N O T E TCP remains the most common protocol because of its delivery guarantees, but
nowadays, several other protocols are also used over the internet. The User Datagram
Protocol (UDP), for instance, is a newer protocol that deliberately allows packets to
be dropped so that data can be streamed at a constant rate. UDP is commonly used for
streaming live video, since consumers prefer a few dropped frames over having their
feed delayed when the network gets congested.

Internet Protocol Addresses
Data packets on the internet are sent to Internet Protocol (IP) addresses, num-
bers assigned to individual internet-connected computers. Each IP address
must be unique, so new IP addresses are issued in a structured fashion.

At the highest level, the Internet Corporation for Assigned Names and
Numbers (ICANN) allots blocks of IP addresses to regional authorities. These
regional authorities then grant the blocks of addresses to internet service pro-
viders (ISPs) and hosting companies within their region. When you connect
your browser to the internet, your ISP assigns your computer an IP address
that stays fixed for a few months. (ISPs tend to rotate IP addresses for clients
periodically.) Similarly, companies that host content on the internet are
assigned an IP address for each server they connect to the network.

IP addresses are binary numbers, generally written in IP version 4
(IPv4) syntax, which allows for 232 (4,294,967,296) addresses. Google’s

How the Internet Works 7

domain name server, for instance, has the address 8.8.8.8. Because IPv4
addresses are getting used up at a rate that isn’t sustainable, the internet is
shifting to IP version 6 (IPv6) addresses to allow for more connected devices,
represented as eight groups of four hexadecimal digits separated by colons
(for example: 2001:0db8:0000:0042:0000:8a2e:0370:7334).

The Domain Name System
Browsers and other internet-connected software can recognize and route
traffic to IP addresses, but IP addresses aren’t particularly memorable for
humans. To make website addresses friendlier to users, we use a global
directory called the Domain Name System (DNS) to translate human-readable
domains like example.com to IP addresses like 93.184.216.119. Domain names
are simply placeholders for IP addresses. Domain names, like IP addresses,
are unique, and have to be registered before use with private organizations
called domain registrars.

When browsers encounter a domain name for the first time, they use a
local domain name server (typically hosted by an ISP) to look it up, and then
cache the result to prevent time-consuming lookups in the future. This
caching behavior means that new domains or changes to existing domains
take a while to propagate on the internet. Exactly how long this propaga-
tion takes is controlled by the time-to-live (TTL) variable, which is set on the
DNS record and instructs DNS caches when to expire the record. DNS cach-
ing enables a type of attack called DNS poisoning, whereby a local DNS cache
is deliberately corrupted so that data is routed to a server controlled by an
attacker.

In addition to returning IP addresses for particular domains, domain
name servers host records that can describe domain aliases via canonical name
(CNAME) records that allow multiple domain names to point to the same IP
address. DNS can also help route email by using mail exchange (MX) records.
We’ll examine how DNS records can help combat unsolicited email (spam)
in Chapter 16.

Application Layer Protocols
The technical standards used for communication on the internet, including
TCP, are defined and developed by the Internet Engineering Task Force (IETF).
These standards are called the internet protocol suite. TCP allows two comput-
ers to reliably exchange data on the internet, but it doesn’t dictate how the
data being sent should be interpreted. For that to happen, both computers
need to agree to exchange information through another, higher-level pro-
tocol in the suite. Protocols that build on top of TCP (or UDP) are called
application layer protocols. Figure 2-1 illustrates how application layer proto-
cols sit above TCP in the internet protocol suite.

The lower-level protocols of the internet protocol suite provide basic
data routing over a network, while the higher-level protocols in the applica-
tion layer provide more structure for applications exchanging data. Many
types of applications use TCP as a transport mechanism on the internet.

8 Chapter 2

For example, emails are sent using the Simple Mail Transport Protocol
(SMTP), instant messaging software often uses the Extensible Messaging
and Presence Protocol (XMPP), file servers make downloads available
via the File Transfer Protocol (FTP), and web servers use the HyperText
Transfer Protocol (HTTP). Because the web is our chief focus, let’s look
at HTTP in more detail.

Application layer DNS FTP HTTP IMAP POP SMTP SSH XMPP

Transport layer TCP UDP

Internet layer IPv4 IPv6

Network layer ARP MAC NDP OSPF PPP

Figure 2-1: The various layers that make up the internet protocol suite

HyperText Transfer Protocol
Web servers use the HyperText Transfer Protocol (HTTP) to transport web
pages and their resources to user agents such as web browsers. In an HTTP
conversation, the user agent generates requests for particular resources. Web
servers, expecting these requests, return responses containing either the
requested resource, or an error code if the request can’t be fulfilled. Both
HTTP requests and responses are plaintext messages, though they’re often
sent in compressed and encrypted form. All of the exploits described in this
book use HTTP in some fashion, so it’s worth knowing how the requests
and responses that make up HTTP conversations work in detail.

HTTP Requests

An HTTP request sent by a browser consists of the following elements:

Method Also known as a verb, this describes the action that the user
agent wants the server to perform.

Universal resource locator (URL) This describes the resource being
manipulated or fetched.

Headers These supply metadata such as the type of content the user
agent is expecting or whether it accepts compressed responses.

Body This optional component contains any extra data that needs to
be sent to the server.

Listing 2-1 shows an HTTP request.

GETu http://example.com/v
w User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36
x Accept: text/html,application/xhtml+xml,application/xml; */*

How the Internet Works 9

Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

Listing 2-1: A simple HTTP request

The method u and the URL v appear on the first line. These are fol-
lowed by HTTP headers on separate lines. The User-Agent header w tells the
website the type of browser that is making the request. The Accept header x
tells the website the type of content the browser is expecting.

GET requests are the most common type of request on the internet—
they request a particular resource on the web server, identified by a specific
URL. The response to a GET request will contain a resource: perhaps a
web page, an image, or even the results of a search request. The example
request in Listing 2-1 represents an attempt to load the home page of
example.com, and would be generated when a user types example.com in the
browser’s navigation bar.

If the browser needs to send information to the server, rather than just
fetch data, it typically uses a POST request. When you fill out a form on a web
page and submit it, the browser sends a POST request. Because POST requests
contain information sent to the server, the browser sends that information
in a request body, after the HTTP headers.

In Chapter 8, you’ll see why it’s important to use POST rather than GET
requests when sending data to your server. Websites that erroneously use
GET requests for doing anything other than retrieving resources are vul-
nerable to cross-site request forgery attacks.

When writing a website, you may also encounter PUT, PATCH, and DELETE
requests. These are used to upload, edit, or delete resources on the server,
respectively, and are typically triggered by JavaScript embedded in a web
page. Table 2-1 documents a handful of other methods that are worth
knowing about.

Table 2-1: The Lesser-Known HTTP Methods

HTTP method Function and implementation

HEAD A HEAD request retrieves the same information as a GET request, but
instructs the server to return the response without a body (in other
words, the useful part). If you implement a GET method on your web
server, the server will generally respond to HEAD requests automatically.

CONNECT CONNECT initiates two-way communications. You’ll use it in your HTTP
client code if you ever have to connect through a proxy.

OPTIONS Sending an OPTIONS request lets a user agent ask what other methods
are supported by a resource. Your web server will generally respond
to OPTIONS requests by inferring which other methods you have
implemented.

TRACE A response to a TRACE request will contain an exact copy of the origi-
nal HTTP request, so the client can see what (if any) alterations were
made by intermediate servers. This sounds useful, but it’s generally
recommended that you turn off TRACE requests in your web server,
because they can act as a security hole. For instance, they can allow
malicious JavaScript injected into a page to access cookies that have
been deliberately made inaccessible to JavaScript.

10 Chapter 2

Once a web server receives an HTTP request, it replies to the user agent
with an HTTP response. Let’s break down how responses are structured.

HTTP Responses

HTTP responses sent back by a web server begin with a protocol descrip-
tion, a three-digit status code, and, typically, a status message that indicates
whether the request can be fulfilled. The response also contains headers
providing metadata that instructs the browser how to treat the content.
Finally, most responses contain a body that itself contains the requested
resource. Listing 2-2 shows the contents of a simple HTTP response.

HTTP/1.1u 200v OKw
x Content-Encoding: gzip

Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Type: text/html
Content-Length: 606

y <!doctype html>
<html>
 <head>
 <title>Example Domain</title>

 z <style type="text/css">
 body {
 background-color: #f0f0f2;
 font-family: "Open Sans", "Helvetica Neue", Helvetica, sans-serif;
 }
 div {
 width: 600px;
 padding: 50px;
 background-color: #fff;
 border-radius: 1em;
 }
 </style>
 </head>

 { <body>
 <div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples.</p>
 <p>
 More information...
 </p>
 </div>
 </body>
</html>

Listing 2-2: An HTTP response from example.com, the world’s least interesting website

The response begins with the protocol description u, the status code v,
and the status message w. Status codes formatted as 2xx indicate that the
request was understood, accepted, and responded to. Codes formatted as

How the Internet Works 11

3xx redirect the client to a different URL. Codes formatted as 4xx indicate
a client error: the browser generated an apparently invalid request. (The
most common error of this type is HTTP 404 Not Found). Codes formatted as
5xx indicate a server error: the request was valid, but the server was unable
to fulfill the request.

Next are the HTTP headers x. Almost all HTTP responses include a
Content-Type header that indicates the kind of data being returned. Responses
to GET requests also often contain a Cache-Control header to indicate that the
client should cache large resources (for example, images) locally.

If the HTTP response is successful, the body contains the resource the
client was trying to access as well as HyperText Markup Language (HTML) y
describing the structure of the requested web page. In this case, the response
contains styling information z as well as the page content itself {. Other
types of responses may return JavaScript code, Cascading Style Sheets
(CSS) used for styling HTML, or binary data in the body.

Stateful Connections
Web servers typically deal with many user agents at once, but HTTP does
nothing to distinguish which requests are coming from which user agent.
This wasn’t an important consideration in the early days of the internet,
because web pages were largely read-only. Modern websites, however, often
allow users to log in and will track their activity as they visit and interact
with different pages. To allow for this, HTTP conversations need to be
made stateful. A connection or conversation between a client and a server
is stateful when they perform a “handshake” and continue to send packets
back and forth until one of the communicating parties decides to terminate
the connection.

When a web server wants to keep track of which user it’s responding to
with each request, and thus achieve a stateful HTTP conversation, it needs
to establish a mechanism to track the user agent as it makes the subsequent
requests. The entire conversation between a particular user agent and a
web server is called an HTTP session. The most common way of tracking ses-
sions is for the server to send back a Set-Cookie header in the initial HTTP
response. This asks the user agent receiving the response to store a cookie,
a small snippet of text data pertaining to that particular web domain. The
user agent then returns the same data in the Cookie header of any subse-
quent HTTP request to the web server. If implemented correctly, the con-
tents of the cookie being passed back and forth uniquely identify the user
agent and hence establish the HTTP session.

Session information contained in cookies is a juicy target for hackers.
If an attacker steals another user’s cookie, they can pretend to be that user
on the website. Similarly, if an attacker successfully persuades a website to
accept a forged cookie, they can impersonate any user they please. We’ll
look at various methods of stealing and forging cookies later in the book.

12 Chapter 2

Encryption
When the web was first invented, HTTP requests and responses were sent in
plaintext form, which meant they could be read by anyone intercepting the
data packets; this kind of interception is known as a man-in-the-middle attack.
Because private communication and online transactions are common on
the modern web, web servers and browsers protect their users from such
attacks by using encryption, a method of disguising the contents of messages
from prying eyes by encoding them during transmission.

To secure their communications, web servers and browsers send requests
and responses by using Transport Layer Security (TLS), a method of encryp-
tion that provides both privacy and data integrity. TLS ensures that packets
intercepted by a third party can’t be decrypted without the appropriate
encryption keys. It also ensures that any attempt to tamper with the packets
will be detectable, which ensures data integrity.

HTTP conversations conducted using TLS are called HTTP Secure
(HTTPS). HTTPS requires the client and server to perform a TLS hand-
shake in which both parties agree on an encryption method (a cipher) and
exchange encryption keys. Once the handshake is complete, any further
messages (both requests and responses) will be opaque to outsiders.

Encryption is a complex topic but is key to securing your website. We’ll
examine how to enable encryption for your website in Chapter 13.

Summary
In this chapter, you learned about the plumbing of the internet. TCP
enables reliable communication between internet-connected computers
that each have an IP address. The Domain Name System provides human-
readable aliases for IP addresses. HTTP builds on top of TCP to send
HTTP requests from user agents (such as web browsers) to web servers,
which in turn reply with HTTP responses. Each request is sent to a specific
URL, and you learned about various types of HTTP methods. Web servers
respond with status codes, and send back cookies to initiate stateful con-
nections. Finally, encryption (in the form of HTTPS) can be used to secure
communication between a user agent and a web server.

In the next chapter, you’ll take a look at what happens when a web
browser receives an HTTP response—how a web page is rendered, and how
user actions can generate more HTTP requests.

