
In the late 1960s, it was clear that train-
ing more programmers would not alleviate 

the software crisis. The only solution was to 
increase programmer productivity—that is, 

enable existing programmers to write more code—
which is how the software engineering field originated. 
Therefore, a good place to start studying software 
engineering is with an understanding of productivity.

2.1  What Is Productivity?
Although the term productivity is commonly described as the basis for soft-
ware engineering, it’s amazing how many people have a distorted view of it. 
Ask any programmer about productivity, and you’re bound to hear “lines 
of code,” “function points,” “complexity metrics,” and so on. The truth is, 

2
P R O D U C T I V I T Y



18   Chapter 2

there is nothing magical or mysterious about the concept of productivity on 
a software project. We can define productivity as:

The number of unit tasks completed in a unit amount of time or 
completed for a given cost.

The challenge with this definition is specifying a unit task. One con-
venient unit task might be a project; however, projects vary wildly in terms 
of size and complexity. The fact that programmer A has completed three 
projects in a given amount of time, whereas programmer B has worked 
only on a small portion of a large project, tells us nothing about the rela-
tive productivity of these two programmers. For this reason, the unit task is 
usually much smaller than an entire project. Typically, it’s something like a 
function, a single line of code, or an even smaller component of the project. 
The exact metric is irrelevant as long as the unit task is consistent between 
various projects and a single programmer would be expected to take the 
same amount of time to complete a unit task on any project. In general, if 
we say that programmer A is n times more productive than programmer B, 
programmer A can complete n times as many (equivalent) projects in the 
same amount of time as it would take programmer B to complete one of 
those projects.

2.2  Programmer Productivity vs. Team Productivity
In 1968, Sackman, Erikson, and Grant published an eye-opening article 
claiming that there was a 10 to 20 times difference in productivity among 
programmers.1 Later studies and articles have pushed this difference even 
higher. This means that certain programmers produce as much as 20 (or 
more) times as much code as some less capable programmers. Some com-
panies even claim a two-order-of-magnitude difference in productivity 
between various software teams in their organizations. This is an astound-
ing difference! If it’s possible for some programmers to be 20 times more 
productive than others (so-called Grand Master Programmers [GMPs]), is 
there some technique or methodology we can use to improve the productiv-
ity of a typical (or low-productivity) programmer?

Because it’s not possible to train every programmer to raise them to the 
GMP level, most software engineering methodologies use other techniques, 
such as better management processes, to improve the productivity of a large 
team. This book series takes the other approach: rather than attempting to 
increase the productivity of a team, it teaches individual programmers how 
to increase their own productivity and work toward becoming a GMP.

Although the productivity of individual programmers has the largest 
impact on a project’s delivery schedule, the real world is more concerned 
with project cost—how long it takes and how much it costs to complete the 

1. Harold Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies 
Comparing Online and Offline Programming Performance,” Communications of the ACM 11, 
no. 1 (1968): 3–11.



Productivity   19

project—than with programmer productivity. Except for small projects, the 
productivity of the team takes priority over the productivity of a team member.

Team productivity isn’t simply the average of the productivities of 
each member; it’s based on complex interactions between team members. 
Meetings, communications, personal interactions, and other activities can 
all have a negative impact on team members’ productivity, as can bringing 
new or less knowledgeable team members up to speed and reworking exist-
ing code. (The lack of overhead from these activities is the main reason a 
programmer is far more productive when working on a small project than 
when working on a medium- or large-sized project.) Teams can improve 
their productivity by managing overhead for communication and training, 
resisting the urge to rework existing code unless it’s really necessary, and 
managing the project so code is written correctly the first time (reducing 
the need to rework it).

2.3  Man-Hours and Real Time
The definition given earlier provides two measures for productivity: one 
based on time (productivity is the number of unit tasks completed in a 
unit amount of time) and one based on cost (productivity is the number 
of unit tasks completed for a given cost). Sometimes cost is more important 
than time, and vice versa. To measure cost and time, we can use man-hours 
and real time, respectively.

From a corporation’s view, the portion of a project’s cost related to 
programmer productivity is directly proportional to its man-hours, or the 
number of hours each team member spends working on the project. A man-
day is approximately 8 man-hours, a man-month is approximately 176 man-
hours, and a man-year is approximately 2,000 man-hours. The total cost of a 
project is the total number of man-hours spent on that project multiplied by 
the average hourly wage of each team member.

Real time (also known as calendar time or wall clock time) is just the pro-
gression of time during a project. Project schedules and delivery of the final 
product are usually based on real time.

Man-hours are the product of real time multiplied by the number of 
team members concurrently working on the project, but optimizing for one 
of these quantities doesn’t always optimize for the other. For example, sup-
pose you’re working on an application needed in a municipal election. The 
most critical quantity in this case is real time; the software must be com-
pletely functional and deployed by the election date regardless of the cost. 
In contrast, a “basement programmer” working on the world’s next killer 
app can spend more time on the project, thus extending the delivery date 
in real time, but can’t afford to hire additional personnel to complete the 
app sooner.

One of the biggest mistakes project managers make on large projects 
is to confuse man-hours with real time. If two programmers can complete 
a project in 2,000 man-hours (and 1,000 real hours), you might conclude 
that four programmers can complete the project in 500 real hours. In other 



20   Chapter 2

words, by doubling the staff on the project, you can get it done in half the 
time and complete the project on schedule. In reality, this doesn’t always 
work (just like adding a second oven won’t bake a cake any faster). 

Increasing staff to increase the number of man-hours per calendar 
hour is generally more successful on large projects than on small and 
medium-sized projects. Small projects are sufficiently limited in scope 
that a single programmer can track all the details associated with the 
project; there’s no need for the programmer to consult, coordinate with, 
or train anyone else to work on the project. Generally speaking, adding 
programmers to a small project eliminates these advantages and increases 
the costs dramatically without significantly affecting the delivery schedule. 
On medium-sized projects, the balance is delicate: two programmers may 
be more productive than three,2 but adding more programming resources 
can help get an understaffed project finished sooner (though, perhaps, at a 
greater cost). On large software projects, increasing the team size reduces 
the project’s schedule accordingly, but once the team grows beyond a cer-
tain point, you might have to add two or three people to do the amount of 
work usually done by one person. 

2.4  Conceptual and Scope Complexity
As projects become more complex,3 programmer productivity decreases, 
because a more complex project requires deeper (and longer) thought to 
understand what is going on. In addition, as project complexity increases, 
there’s a greater likelihood that a software engineer will introduce errors 
into the system, and that defects introduced early in the system will not be 
caught until later, when the cost of correcting them is much higher.

Complexity comes in a couple of forms. Consider the following two 
definitions of complex :

1.	 Having a complicated, involved, or intricate arrangement of parts so as 
to be hard to understand

2.	 Composed of many interconnected parts

We can call the first definition conceptual complexity. For example, con-
sider a single arithmetic expression in a high-level language (HLL), such as 
C/C++, which can contain intricate function calls, several weird arithmetic/
logical operators with varying levels of precedence, and lots of parentheses 
that make the expression difficult to comprehend. Conceptual complexity 
can occur in any software project.

We can call the second definition scope complexity, which occurs when 
there is too much information for a human mind to easily digest. Even if 
the individual components of the project are simple, the sheer size of the 

2. Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt, “Prototyping Versus Specifying: 
A Multiproject Experience,” IEEE Transactions on Software Engineering 10, no. 3 (1984): 290–303.

3. Generally, this means larger, although conceptual complexity applies as well.



Productivity   21

project makes it impossible for one person to understand the whole thing. 
Scope complexity occurs in medium- and large-scale projects (indeed, it’s 
this form of complexity that differentiates small projects from the others).

Conceptual complexity affects programmer productivity in two ways. 
First, complex constructs require more thought (and therefore more time) 
to produce than simple constructs. Second, complex constructs are more 
likely to contain defects that must be corrected later, producing a corre-
sponding loss in productivity.

Scope complexity introduces different problems. When the project 
reaches a certain size, a programmer on the project might be completely 
unaware of what is going on in other parts of the project, and might dupli-
cate code already in the system. Clearly, this reduces programmer produc-
tivity, because the programmer wasted time writing that code.4 Inefficient 
use of system resources can also occur as a result of scope complexity. When 
working on a part of the system, a small team of engineers might be testing 
their piece by itself, but they don’t see its interaction with the rest of the sys-
tem (which might not even be ready yet). As a result, problems with system 
resource usages (such as CPU cycles or memory) might not be uncovered 
until later.

With good software engineering practices, it’s possible to mitigate 
some of this complexity. But the general result is the same: as systems 
become more complex, people must spend more time thinking about 
them and the opportunity for defects increases dramatically. The end 
result is reduced productivity.

2.5  Predicting Productivity
Productivity is a project attribute that you can measure and attempt to 
predict. When a project is complete, it’s fairly easy to determine the team’s 
(and its members’) productivity, assuming the team kept accurate records 
of the tasks accomplished during project development. Though success or 
failure on past projects doesn’t guarantee success or failure on future proj-
ects, past performance is the best indicator available to predict a software 
team’s future performance. If you want to improve the software develop-
ment process, you need to track the techniques that work well and those 
that don’t, so you’ll know what to do (or not to do) on future projects. To 
track this information, programmers and their support personnel must 
document all software development activities. This is a good example of 
pure overhead introduced by software engineering: the documentation does 
almost nothing to help get the current project out the door or improve 
its quality, but it’s an investment in future projects to help predict (and 
improve) productivity.

4. Some large projects appoint a “librarian” whose job is to keep track of reusable code com-
ponents. Programmers looking for a particular routine can ask the librarian about its avail-
ability and spare themselves from having to write that code. The productivity loss is limited to 
the time the librarian spends to maintain the library and the time the programmer and the 
librarian spend communicating.



22   Chapter 2

Watts S. Humphrey’s A Discipline for Software Engineering (Addison-Wesley 
Professional, 1994) is a great read for those interested in learning about 
tracking programmer productivity. Humphrey teaches a system of forms, 
guidelines, and procedures for developing software that he calls the Personal 
Software Process (PSP). Although the PSP is targeted at individuals, it offers 
valuable insight into where a programmer’s problems lie in the software 
development process. In turn, this can greatly help them to determine how 
to attack their next major project.

2.6  Metrics and Why We Need Them
The problem with predicting a team’s or an individual’s productivity by 
looking at their past performance on similar projects is that it applies only 
to similar projects. If a new project is significantly different than a team’s past 
projects, past performance might not be a good indicator. Because projects 
vary greatly in size, measuring productivity across whole projects might not 
provide sufficient information to predict future performance. Therefore, 
some system of measurement (a metric) at a granularity level below a whole 
project is needed to better evaluate teams and team members. An ideal met-
ric is independent of the project (team members, programming language 
chosen, tools used, and other related activities and components); it must 
be usable across multiple projects to allow for comparison between them. 
Several metrics do exist, but none is perfect—or even very good. Still, a poor 
metric is better than no metric, so software engineers will continue to use 
them until a better measurement comes along. In this section, I’ll discuss sev-
eral of the more common metrics and the problems and benefits of each.

2.6.1  Executable Size Metric
One simple metric that programmers use to specify a software system’s com-
plexity is the size of the executables in the final system.5 The assumption is 
that complex projects produce large executable files. 

The advantages of this metric are:

•	 It is trivial to compute (typically, you need only look at a directory list-
ing and compute the sum of one or more executable files).

•	 It doesn’t require access to the original source code.

Unfortunately, the executable size metric also has deficiencies that 
disqualify it for most projects:

•	 Executable files often contain uninitialized data whose contribution to 
the file size have little or nothing to do with the complexity of the system.

5. Note that a project might contain multiple executable files. In such a case, the “executable 
file size” is the sum of all the executable components in the system.



Productivity   23

•	 Library functions add to the executable’s size, yet they actually reduce 
the complexity of the project.6

•	 The executable file size metric is not language-independent. For exam-
ple, assembly language programs tend to be much more compact than 
HLL executables, yet most people consider assembly programs much 
more complex than equivalent HLL programs.

•	 The executable file size metric is not CPU-independent. For example, 
an executable for an 80x86 CPU is usually smaller than the same pro-
gram compiled for an ARM (or other RISC) CPU.

2.6.2  Machine Instructions Metric
A major failing of the executable file size metric is that certain executable file 
formats include space for uninitialized static variables, which means trivial 
changes to the input source file can dramatically alter the executable file size. 
One way to solve this problem is to count only the machine instructions in a 
source file (either the size, in bytes, of the machine instructions or the total 
number of machine instructions). While this metric solves the problem of 
uninitialized static arrays, it still exhibits all the other problems of the execut-
able file size metric: it’s CPU-dependent, it counts code (such as library code) 
that wasn’t written by the programmer, and it’s language-dependent.

2.6.3  Lines of Code Metric
The lines of code (LOC, or KLOC for thousands of lines of code) metric 
is the most common software metric in use today. As its name suggests, it’s 
a count of the number of lines of source code in a project. The metric has 
several good qualities, as well as some bad ones.

Simply counting the number of source lines appears to be the most 
popular form of using the LOC metric. Writing a line count program is 
fairly trivial, and most word count programs available for operating systems 
like Linux will compute the line count for you. 

Here are some common claims about the LOC metric:

•	 It takes about the same amount of time to write a single line of source 
code regardless of the programming language in use. 

•	 The LOC metric is not affected by the use of library routines (or other 
code reuse) in a project (assuming, of course, you don’t count the num-
ber of lines in the prewritten library source code).

•	 The LOC metric is independent of the CPU.

The LOC metric does have some drawbacks:

•	 It doesn’t provide a good indication of how much work the programmer 
has accomplished. One hundred lines of code in a VHLL accomplishes 
more than 100 lines of assembly code.

6. Assuming, of course, that the library routines existed prior to the project and were not part 
of the project’s development.



24   Chapter 2

•	 It assumes that the cost of each line of source code is the same. However, 
this isn’t the case. Blank lines have a trivial cost, simple data declara-
tions have a low conceptual complexity, and statements with complex 
Boolean expressions have a very high conceptual complexity.

2.6.4  Statement Count Metric
The statement count metric counts the number of language statements in 
a source file. It does not count blank lines or comments, nor does it count a 
single statement spread across multiple lines as separate entities. As a result, it 
does a better job than LOC of calculating the amount of programmer effort.

Although the statement count metric provides a better view of program 
complexity than lines of code, it suffers from many of the same problems. 
It measures effort rather than work accomplished, it isn’t as language-
independent as we’d like, and it assumes that each statement in the pro-
gram requires the same amount of effort to produce.

2.6.5  Function Point Analysis
Function point analysis (FPA) was originally devised as a mechanism for pre-
dicting the amount of work a project would require before any source code 
was written. The basic idea was to consider the number of inputs a program 
requires, the number of outputs it produces, and the basic computations it 
must perform, and use this information to determine a project schedule.7 

FPA offers several advantages over simplistic metrics like line or state-
ment count. It is truly language- and system-independent. It depends upon 
the functionality of the software rather than its implementation.

FPA does have a few serious drawbacks, though. First, unlike line count 
or even statement count, it’s not straightforward to compute the number 
of “function points” in a program. The analysis is subjective: the person 
analyzing the program must decide on the relative complexity of each func-
tion. Additionally, FPA has never been successfully automated. How would 
such a program decide where one calculation ends and another begins? 
How would it apply different complexity values (again, a subjective assign-
ment) to each function point? Because this manual analysis is rather time-
consuming and expensive, FPA is not as popular as other metrics. Largely, 
FPA is a postmortem (end-of-project) tool applied at the completion of a proj-
ect rather than during development.

2.6.6  McCabe’s Cyclomatic Complexity Metric
As mentioned earlier, a fundamental failure of the LOC and statement count 
metrics is that they assume each statement has equivalent complexity. FPA 
fares a little better but requires an analyst to assign a complexity rating to 
each statement. Unfortunately, these metrics don’t accurately reflect the 

7. True function point analysis is based on five components: external inputs, external out-
puts, external inquiries, internal logical file operations, and external file interfaces. But this 
basically boils down to tracking the inputs, outputs, and computations.



Productivity   25

effort that went into the work being measured, and, therefore fail to docu-
ment programmer productivity.

Thomas McCabe developed a software metric known as cyclomatic com-
plexity to measure the complexity of source code by counting the number 
of paths through it. It begins with a flowchart of the program. The nodes 
in the flowchart correspond to statements in the program, and the edges 
between the nodes correspond to nonsequential control flow in the pro-
gram. A simple calculation involving the number of nodes, the number of 
edges, and the number of connected components in the flowchart provides 
a single cyclomatic complexity rating for the code. Consider a 1,000-line 
printf program (with nothing else); the cyclomatic complexity would be 1, 
because there is a single path through the program. Now consider a second 
example, with a large mixture of control structures and other statements; it 
would have a much higher cyclomatic complexity rating.

The cyclomatic complexity metric is useful because it’s an objective 
measure, and it’s possible to write a program to compute this value. Its 
drawback is that the bulk size of a program is irrelevant; that is, it treats a 
single printf statement the same as 1,000 printf statements in a row, even 
though the second version clearly requires more work (even if that extra 
work is just a bunch of cut-and-paste operations). 

2.6.7  Other Metrics
There’s no shortage of metrics we could devise to measure some facet of 
programmer productivity. One common metric is to count the number of 
operators in a program. This metric recognizes and adjusts for the fact that 
some statements (including those that don’t involve control paths) are more 
complex than others, taking more time to write, test, and debug. Another 
metric is to count the number of tokens (such as identifiers, reserved words, 
operators, constants, and punctuation) in a program. No matter the metric, 
though, it will have shortcomings.

Many people attempt to use a combination of metrics (such as line 
count multiplied by cyclomatic complexity and operator count) to create a 
more “multidimensional” metric that better measures the amount of work 
involved in producing a bit of code. Unfortunately, as the complexity of the 
metric increases, it becomes more difficult to use on a given project. LOC 
has been successful because you can use the Unix wc (word count) utility, 
which also counts lines, to get a quick idea of program size. Computing a 
value for one of these other metrics usually requires a specialized, language-
dependent application (assuming the metric is automatable). For this 
reason, although people have proposed a large number of metrics, few 
have become as universally popular as LOC.

2.6.8  The Problem with Metrics
Metrics that roughly measure the amount of source code for a project 
provide a good indication of the time spent on a project if we assume that 
each line or statement in the program takes some average amount of time 
to write, but only a tenuous relationship exists between lines of code (or 



26   Chapter 2

statements) and the work accomplished. Unfortunately, metrics measure 
some physical attributes of the program but rarely measure what we’re 
really interested in knowing: the intellectual effort needed to write the 
code in the first place. 

Another failure of almost every metric is that they all assume that more 
work produces more (or more complex) code. This is not always true. For 
example, a great programmer will often expend effort to refactor their 
code, making it smaller and less complex. In this case, more work produces 
less code (and less complex code).

Metrics also fail to consider environmental issues concerning the code. 
For example, are 10 lines of code written for a bare-metal embedded device 
equivalent to 10 lines of code written for a SQL database application?

All these metrics fail to consider the learning curve for certain proj-
ects. Are 10 lines of Windows device driver code equivalent to 10 lines 
of Java code in a web applet? The LOC values for these two projects are 
incomparable.

Ultimately, most metrics fail because they measure the wrong thing. They 
measure the amount of code a programmer produces rather than the program-
mer’s overall contribution to the complete project (productivity). For example, 
one programmer could use a single statement to accomplish a task (such as a 
standard library call), whereas a second programmer could write several hun-
dred lines of code to accomplish the same task. Most metrics would suggest 
the second programmer is the more productive of the two.

For these very reasons, even the most complex software metrics cur-
rently in use have fundamental flaws that prevent them from being com-
pletely effective. Therefore, choosing a “better” metric often produces 
results that are no better than using a “flawed” metric. This is yet another 
reason the LOC metric continues to be so popular (and why this book uses 
it). It’s an amazingly bad metric, but it’s not a whole lot worse than many 
of the other existing metrics, and it’s very easy to compute without writing 
special software. 

2.7  How Do We Beat 10 Lines per Day?
Early texts on software engineering claim that a programmer on a major 
product produces an average of ten lines of code per day. In a 1977 article, 
Walston and Felix report about 274 LOC per month per developer.8 Both 
numbers describe the production of debugged and documented code over 
the lifetime of that product (that is, LOC divided by the amount of time all 
the programmers spent on the product from first release to retirement), 
rather than simply time spent writing code from day to day. Even so, the 
numbers seem low. Why?

At the start of a project, programmers might quickly crank out 1,000 
lines of code per day, then slow down to research a solution to a particular 

8. Claude E. Walston and Charles P. Felix, “A Method of Programming Measurement and 
Estimation,” IBM Systems Journal 16, no. 1 (1977): 54–73.



Productivity   27

portion of the project, test the code, fix bugs, rewrite half their code, and 
then document their work. By the product’s first release, productivity has 
dropped tenfold since that first day or two: from 1,000 LOC per day to 
fewer than 100. Once the first release is out the door, work generally begins 
on the second release, then the third, and so on. Over the product’s lifetime, 
several different developers will probably work on the code. By the time the 
project is retired, it has been rewritten several times (a tremendous loss in 
productivity), and several programmers have spent valuable time learning 
how the code operates (also sapping their productivity). Therefore, over 
the lifetime of the product, programmer productivity is down to 10 LOC 
per day.

One of the most important results from software engineering produc-
tivity studies is that the best way to improve productivity is not by inventing 
some scheme that allows programmers to write twice as many lines of code 
per unit time, but to reduce the time wasted on debugging, testing, documenting, 
and rewriting the code, and on educating new programmers about the code once the 
first version exists. To reduce that loss, it’s much easier to improve the pro-
cesses that programmers use on the project than it is to train them to write 
twice as much code per unit time. Software engineering has always recog-
nized this problem and has attempted to solve it by reducing the time spent 
by all programmers. Personal software engineering’s goal is to reduce the 
time spent by individual programmers on their portion of the project.

2.8  Estimating Development Time
As noted earlier, while productivity is of interest to management for award-
ing bonuses, pay raises, or verbal praise, the real purpose for tracking it is 
to predict development times on future projects. Past results don’t guaran-
tee future performance, so you also need to know how to estimate a project 
schedule (or at least the schedule for your portion of a project). As an indi-
vidual software engineer, you typically don’t have the background, educa-
tion, and experience to determine what goes into a schedule, so you should 
meet with your project manager, have them explain what needs to be con-
sidered in the schedule (which is more than just the time required to write 
code), and then build the estimate that way. Though all the details needed 
to properly estimate a project are beyond the scope of this book (see “For 
More Information” on page 37 for suggested resources), it’s worthwhile 
to briefly describe how development time estimates differ depending on 
whether you’re working on a small, medium, or large project, or just a por-
tion of a project.

2.8.1  Estimating Small Project Development Time
By definition, a small project is one that a single engineer works on. The 
major influence on the project schedule will be the ability and productivity 
of that software engineer. 

Estimating development time for small projects is much easier and 
more accurate than for larger projects. Small projects won’t involve 



28   Chapter 2

parallel development, and the schedule only has to consider a single devel-
oper’s productivity. 

Without question, the first step in estimating the development time for 
a small project is to identify and understand all the work that needs to be 
done. If some parts of the project are undefined at that point, you intro-
duce considerable error in the schedule when the undefined components 
inevitably take far more time than you imagined.

For estimating a project’s completion time, the design documentation 
is the most important part of the project. Without a detailed design, it’s 
impossible to know what subtasks make up the project and how much time 
each will take to accomplish. Once you’ve broken down the project into 
suitably sized subtasks (a suitable size is where it’s clear how long it will take 
to complete), all you need to do is add the times for all the subtasks to pro-
duce a decent first estimate.

One of the biggest mistakes people make when estimating small proj-
ects, however, is that they add the times for the subtasks and call that their 
schedule, forgetting to include time for meetings, phone calls, emails, and 
other administrative tasks. They also forget to add in testing time, plus time 
to correct (and retest) the software when defects are found. Because it’s 
difficult to estimate how many defects will be in the software, and thus how 
much time it will take to resolve them, most managers scale a schedule’s 
first approximation by a factor of 2 to 4. Assuming the programmer (team) 
maintains reasonable productivity on the project, this formula produces a 
good estimate for a small project.

2.8.2  Estimating Medium and Large Project Development Time
Conceptually, medium and large projects consist of many small projects 
(assigned to individual team members) that combine to form the final 
result. So a first approximation on a large project schedule is to break it 
down into a bunch of smaller projects, develop estimates for each of those 
subprojects, and then combine (add) the estimates. It’s sort of a bigger ver-
sion of the small project estimate. Unfortunately, in real life, this form of 
estimate is fraught with error.

The first problem is that medium and large projects introduce prob-
lems that don’t exist in small projects. A small project typically has one 
engineer, and, as noted previously, the schedule completely depends upon 
that person’s productivity and availability. In a larger project, multiple 
people (including many nonengineers) affect the estimated schedule. One 
software engineer who has a key piece of knowledge might be on vacation 
or sick for several days, holding up a second engineer who needs that infor-
mation to make progress. Engineers on larger projects usually have sev-
eral meetings a week (unaccounted for in most schedules) that take them 
offline—that is, they’re not programming—for several hours. The team 
composition can change on large projects; some experienced programmers 
leave and someone else has to pick up and learn the subtasks, and new pro-
grammers join the project and need time to get up to speed. Sometimes 
even getting a computer workstation for a new hire can take weeks (for 



Productivity   29

example, in a large company with a bureaucratic IT department). Waiting 
for software tools to be purchased, hardware to be developed, and support 
from other parts of the organization also creates scheduling problems. The 
list goes on and on. Few schedule estimates can accurately predict how the 
time will be consumed in these myriad ways.

Ultimately, creating medium and large project schedule estimates 
involves four tasks: breaking down the project into smaller projects, run-
ning the small project estimations on those, adding in time for integration 
testing and debugging (that is, combining the small tasks and getting them 
to work properly together), and then applying a multiplicative factor to that 
sum. They’re not precise, but they’re about as good as it gets today.

2.8.3  Problems with Estimating Development Time
Because project schedule estimates involve predicting a development team’s 
future performance, few people believe that a projected schedule will be 
totally accurate. However, typical software development schedule projec-
tions are especially bad. Here are some of the reasons why:

They’re research and development projects.  R&D projects involve 
doing something you’ve never done before. They require a research 
phase during which the development team analyzes the problem and 
tries to determine solutions. Usually, there’s no way to predict how long 
the research phase will take.

Management has preconceived schedules.  Typically, the marketing 
department decides that it wants to have a product to sell by a certain 
date, and management creates project schedules by working backward 
from that date. Before asking the programming team for their time 
estimates of the subtasks, management already has some preconceived 
notions about how long each task should take.

The team’s done this before.  It’s common for management to assume 
that if you’ve done something before, it will be easier the second time 
around (and therefore will take less time). In certain cases, there’s an 
element of truth to this: if a team works on an R&D project, it will be 
easier to do a second time because they only have to do the develop-
ment and can skip (at least most of) the research. However, the assump-
tion that a project is always easier the second time is rarely correct.

There isn’t enough time or money.  In many cases, management sets 
some sort of monetary or time limit within with a project must be com-
pleted or else it will be canceled. That’s the wrong thing to say to some-
one whose paycheck depends on the project moving forward. If given a 
choice between saying, “Yes, we can meet that schedule,” or looking for 
a new job, most people—even knowing the odds are against them—will 
opt for the first.

Programmers overstate their efficiency.  Sometimes when a software 
engineer is asked if they can complete a project within a certain time-
frame, they don’t lie about how long it will take, but instead make opti-
mistic estimates of their performance—which rarely hold up during 



30   Chapter 2

the actual work. When asked how much they can produce when really 
pushed, most software engineers give a figure that represents their maxi-
mum output ever achieved over a short period of time (for example, 
while working in “crisis mode” and putting in 60–70 hours per week) 
and don’t consider unexpected hindrances (such as a really nasty bug 
that comes along).

Schedules rely on extra hours.  Management (and engineers) often 
assume that programmers can always put in “a few extra hours” when the 
schedule starts to slip. As a result, schedules tend to be more aggressive 
than they should be (ignoring the negative repercussions of having engi-
neers put in massive overtime).

Engineers are like building blocks.  A common problem with project 
schedules is that management assumes it can add programmers to a 
project to achieve an earlier release date. However, as mentioned ear-
lier, this isn’t necessarily true. You can’t add or remove engineers from a 
project and expect a proportional change in the project schedule.

Subproject estimates are inaccurate.  Realistic project schedules are 
developed in a top-down fashion. The whole project is divided into 
smaller subprojects. Then those subprojects are divided into sets of sub-
subprojects, and so on until the subproject size is so small that someone 
can accurately predict the time needed for each tiny part. However, 
there are three challenges with this approach: 

•	 Being willing to put in the effort to create a schedule this way 
(that is, to provide a correct and accurate top-down analysis of 
the project)

•	 Obtaining accurate estimates for the tiny subprojects (particu-
larly from software engineers who may not have the appropri-
ate management training to understand what must go into their 
schedule estimates)

•	 Accepting the results the schedule predicts

2.9  Crisis Mode Project Management
Despite the best intentions of everyone involved, many projects fall signifi-
cantly behind schedule and management must accelerate development to 
meet some important milestone. To achieve the deadline, engineers often 
are expected to put in more time each week to reduce the (real time) deliv-
ery date. When this occurs, the project is said to be in “crisis mode.”

Crisis mode engineering can be effective for short bursts to handle 
(rapidly) approaching deadlines, but in general, crisis mode is never that 
effective, and results in lower productivity, because most people have things 
to take care of outside of work, and need time off to rest, decompress, and 
allow their brains to sort out all the problems they’ve been collecting while 
putting in long hours. Working while you’re tired leads to mistakes that 
often take far more time to correct later on. It’s more efficient in the long 
run to forgo the crisis mode and stick to 40-hour weeks.



Productivity   31

The best way to handle crisis mode schedules is to add milestones 
throughout the project to generate a series of “small crises” rather than one 
big crisis at the end. Putting in an extra day or a couple of long days once 
a month is infinitely better than having to put in several seven-day weeks 
at the end of the project. Working one or two 16-hour days to meet a dead-
line won’t adversely affect the quality of your life or lead you to the point 
of exhaustion.

Beyond the health and productivity issues, operating in crisis mode can 
cause scheduling, ethical, and legal problems:

•	 A poor schedule can affect future projects as well. If you work 60-hour 
weeks, management will assume that future projects can also be done 
in the same amount of (real) time, expecting this pace from you in the 
future without any additional compensation. 

•	 Technical staff turnover is high on projects that operate for lengthy 
periods of time in crisis mode, further reducing team productivity.

•	 There is also the legal issue of putting in lots of extra hours without 
being paid overtime. Several high-profile lawsuits in the video game 
industry have shown that engineers are entitled to overtime pay (they 
are not salary exempt employees). Even if your company can survive such 
lawsuits, the rules for time reporting, administrative overhead, and 
work schedules will become much more restrictive, leading to produc-
tivity drops.

Again, operating in crisis mode can help you meet certain deadlines if 
managed properly. But the best solution is to work out better schedules to 
avoid crisis mode altogether.

2.10  How to Be More Productive
This chapter has spent considerable time defining productivity and metrics 
for measuring it. But it hasn’t devoted much time to describing how a pro-
grammer can increase their productivity to become a great programmer. 
Whole books can be (and have been) written on this subject. This section 
provides an overview of techniques you can use to improve your productiv-
ity on individual and team projects.

2.10.1  Choose Software Development Tools Wisely
As a software developer, you’ll spend most of your time working with soft-
ware development tools, and the quality of your tools can have a huge impact 
on your productivity. Sadly, the main criterion for selecting development 
tools seems to be familiarity with a tool rather than the applicability of the 
tool to the current project.

Keep in mind when choosing your tools at the start of the project 
that you’ll probably have to live with them for the life of the project (and 
maybe beyond that). For example, once you start using a defect tracking 
system, it might be very difficult to switch to a different one because of 



32   Chapter 2

incompatible database file formats; the same goes for source code control 
systems. Fortunately, software development tools (especially IDEs) are rela-
tively mature these days, and a large number of them are interoperable, so 
it’s hard to make a bad choice. Still, careful thought at the beginning of a 
project can spare you a lot of problems down the road.

The most significant tool choice for a software development project is 
which programming language and which compilers/interpreters/transla-
tors to use. Optimal language choice is a difficult problem to solve. It’s easy 
to justify some programming language because you’re familiar with it and 
you won’t lose productivity learning it; however, future engineers new to 
the product might be far less productive because they’re learning the pro-
gramming language while trying to maintain the code. Furthermore, some 
language choices could streamline the development process, sufficiently 
improving productivity to make up for lost time learning the language. As 
noted earlier, a poor language choice could result in wasted development 
time using that language until it becomes clear that it is unsuitable for the 
project and you have to start over.

Compiler performance (how many lines per second it takes to process 
a common source file) can have a huge impact on your productivity. If your 
compiler takes two seconds to compile an average source file rather than 
two minutes, you’ll probably be far more productive using the faster com-
piler (though the faster compiler might be missing some features that com-
pletely kill your productivity in other ways). The less time your tools take to 
process your code, the more time you’ll have for designing, testing, debug-
ging, and polishing your code.

It’s also important to use a set of tools that work well together. Today, we 
take for granted integrated development environments (IDEs), which combine an 
editor, compiler, debugger, source code browser, and other tools into a single 
program. Being able to quickly make small changes in an editor, recompile 
a source code module, and run the result in a debugger all within the same 
window onscreen provides a phenomenal boost in productivity. 

However, you’ll often have to work on parts of your project outside the 
IDE. For example, some IDEs don’t support source code control facilities 
or defect tracking directly in the IDE (though many do). Most IDEs don’t 
provide a word processor for writing documentation, nor do they provide 
simple database or spreadsheet capabilities to maintain requirements lists, 
design documentation, or user documentation. Most likely, you’ll have 
to use a few programs outside your IDE—word processing, spreadsheet, 
drawing/graphics, web design, and database programs, to name a few—
to do all the work needed on your project. 

Running programs outside an IDE isn’t a problem. Just make sure the 
applications you choose are compatible with your development process and 
the files your IDE produces (and vice versa). Your productivity will decrease 
if you must constantly run a translator program when moving files between 
your IDE and an external application. 

Can I recommend tools for you to use? No way. There are too many 
projects with different needs to even consider such suggestions here. My 
recommendation is to simply be aware of the issues at the start of the project.



Productivity   33

But one recommendation I can make is to avoid the “Gee whiz, why 
don’t we try this new technology” approach when choosing a development 
tool. Discovering that a development tool can’t do the job after spending six 
months working with it (and basing your source code on it) can be disastrous. 
Evaluate your tools apart from your product development, and work in new 
tools only after you’re confident that they’ll work for you. A classic example 
of this is Apple’s Swift programming language. Until Swift v5.0 was released 
(about four years after Swift was first introduced), using Swift was an exercise 
in frustration. Every year Apple would release a new version that was source 
code–incompatible with earlier releases, forcing you to go back and change 
old programs. In addition, many features were missing in early versions of 
the language, and several features weren’t quite ready for “prime time.” By 
version 5.0 (released as this book was being written), the language seems rela-
tively stable. However, the poor souls who jumped on the Swift bandwagon 
early on paid the price for the immature development of the language.9

Sadly, you don’t get to choose the development tools on many projects. 
That decision is an edict from on high, or you inherit tools from earlier 
products. Complaining about it wastes time and energy, and reduces your 
productivity. Instead, make the best of the tool set you have, and become an 
expert at using it.

2.10.2  Manage Overhead
On any project, we can divide the work into two categories: work that is 
directly associated with the project (such as writing lines of code or docu-
mentation for the project) and work that is indirectly related to the project. 
Indirect activities include meetings, reading and replying to emails, filling 
out time cards, and updating schedules. These are overhead activities: they 
add time and money to a project’s cost but don’t directly contribute to get-
ting the work done.

By following Watts S. Humphrey’s Personal Software Engineering guidelines, 
you can track where you spend your time during a project and easily see how 
much is spent directly on the project versus on overhead activities. If your 
overhead climbs above 10 percent of your total time, reconsider your daily 
activities. Try to decrease or combine those activities to reduce their impact 
on your productivity. If you don’t track your time outside the project, you’ll 
miss the opportunity to improve your productivity by managing overhead.

2.10.3  Set Clear Goals and Milestones
It’s a natural human tendency to relax when no deadlines are looming, and 
then go into “hypermode” as one approaches. Without goals to achieve, 
very little productive work ever gets done. Without deadlines to meet, 
rarely is there any motivation to achieve those goals in a timely manner. 

9. Today, I don’t have a problem recommending Swift. It’s a great language, and version 5.0 
and later seem relatively stable and reliable. It’s moved beyond the “Gee whiz, ain’t this a 
great new language” stage and is now a valid software development tool for real projects.



34   Chapter 2

Therefore, to improve your productivity, be sure to have clear goals and 
subgoals, and attach hard milestones to them.

From a project management viewpoint, a milestone is a marker in a proj-
ect that determines how far work has progressed. A good manager always sets 
goals and milestones in the project schedule. However, few schedules provide 
useful goals for individual programmers. This is where personal software 
engineering comes into play. To become a superproductive programmer, 
micromanage your own goals and milestones on your (portion of the) proj-
ect. Simple goals, such as “I’ll finish this function before I take lunch” or “I’ll 
find the source of this error before going home today” can keep you focused. 
Larger goals, such as “I’ll finish testing this module by next Tuesday” or “I’ll 
run at least 20 test procedures today” help you gauge your productivity and 
determine if you’re achieving what you want.

2.10.4  Practice Self-Motivation
Improving your productivity is all about attitude. Although others can help 
you manage your time better and aid you when you’re stuck, the bottom 
line is that you must have the initiative to better yourself. Always be con-
scious of your pace and constantly strive to improve your performance. By 
keeping track of your goals, efforts, and progress, you’ll know when you 
need to “psych yourself up” and work harder to improve your productivity.

A lack of motivation can be one of the greatest impediments to your 
productivity. If your attitude is “Ugh, I have to work on that today,” it will 
probably take you longer to complete the task than if your attitude is “Oh! 
This is the best part! This will be fun!” 

Of course, not every task you work on will be interesting and fun. This 
is one area where personal software engineering kicks in. If you want to 
maintain higher-than-average productivity, you need to have considerable 
self-motivation when a project makes you feel “less than motivated.” Try 
to create reasons to make the work appealing. For example, create mini-
challenges for yourself and reward yourself for achieving them. A produc-
tive software engineer constantly practices self-motivation: the longer you 
remain motivated to do a project, the more productive you’ll be.

2.10.5  Focus and Eliminate Distractions
Staying focused on a task and eliminating distractions is another way to 
dramatically improve your productivity. Be “in the zone.” Software engi-
neers operating this way are more productive than those who are mentally 
multitasking. To increase your productivity, concentrate on a single task for 
as long as possible.

Focusing on a task is easiest in a quiet environment without any visual 
stimulation (other than your display screen). Sometimes, work environ-
ments aren’t conducive to an extreme focus. In such cases, putting on head-
phones and playing background music might help remove the distractions. 
If music is too distracting, try listening to white noise; there are several 
white noise apps available online.



Productivity   35

Whenever you’re interrupted in the middle of a task, it will take time to 
get back in the zone. In fact, it could take as long as half an hour to become 
fully refocused on your work. When you need to focus and complete a task, 
put up a sign saying that you should only be interrupted for urgent busi-
ness, or post “office hours”—times when you can be interrupted—near 
your workstation; for example, you could allow interruptions at the top of 
the hour for five minutes. Saving your coworkers 10 minutes by answering 
a question they could figure out themselves could cost you half an hour of 
productivity. You do have to work as part of the team and be a good team-
mate; however, it’s just as important to ensure that excessive team interac-
tions don’t impair your (and others’) productivity.

During a typical workday, there will be many scheduled interruptions: 
meal breaks, rest breaks, meetings, administrative sessions (for example, 
handling emails and time accounting), and more. If possible, try to schedule 
other interruptions around these events. For example, turn off any email 
alerts; answering emails within a few seconds is rarely imperative, and some-
one can find you in person or call you if it’s an emergency. Set an alarm to 
remind you to check email at fixed times if people do expect quick responses 
from you (ditto with text messages and other interruptions). If you can get 
away with it, consider silencing your phone if you get a lot of nonurgent 
phone calls, checking your messages every hour or so during your breaks. 
What works for you depends on your personal and professional life. But the 
fewer interruptions you have, the more productive you’ll become. 

2.10.6  If You’re Bored, Work on Something Else
Sometimes, no matter how self-motivated you are, you’ll be bored with what 
you’re working on and have trouble focusing; your productivity will plum-
met. If you can’t get into the zone and focus on the task, take a break from 
it and work on something else. Don’t use boredom as an excuse to flitter 
from task to task without accomplishing much. But when you’re really stuck 
and can’t move forward, switch to something you can be productive doing.

2.10.7  Be as Self-Sufficient as Possible
As much as possible, you should try to handle all tasks assigned to you. This 
won’t improve your productivity; however, if you’re constantly seeking help 
from other engineers, you might be damaging their productivity (remem-
ber, they need to stay focused and avoid interruptions, too).

If you’re working on a task that requires more knowledge than you cur-
rently possess, and you don’t want to constantly interrupt other engineers, 
you have a few options:

•	 Spend time educating yourself so you can do the task. Although you 
might hurt your short-term productivity, the knowledge you gain will 
help you with similar future tasks.

•	 Meet with your manager and explain the problems you’re having. 
Discuss the possibility of their reassigning the task to someone more 
experienced and assigning you a task you’re better able to handle.



36   Chapter 2

•	 Arrange with your manager to schedule a meeting to get help from 
other engineers at a time that won’t impact their productivity as much 
(for example, at the beginning of the workday).

2.10.8  Recognize When You Need Help
You can take the self-supporting attitude a little too far. You can spend an 
inordinate amount of time working on a problem that a teammate could 
solve in just a few minutes. One aspect of being a great programmer is rec-
ognizing when you’re stuck and need help to move forward. When you’re 
stuck, the best approach is to set a timer alarm. After some number of min-
utes, hours, or even days being stuck on the problem, seek help. If you know 
who to ask for help, seek that help directly. If you’re not sure, talk to your 
manager. Most likely, your manager can direct you to the right person so 
you don’t interrupt others who wouldn’t be able to help you anyway.

Team meetings (daily or weekly) are a good place to seek help from 
team members. If you have several tasks on your plate and you’re stuck on 
one particular task, set it aside, work on other tasks (if possible), and save 
your questions for a team meeting. If you run out of work before a meeting, 
ask your manager to keep you busy so you don’t have to interrupt anyone. 
Further, while working on other tasks, the solution just might come to you.

2.10.9  Overcome Poor Morale
Nothing can kill a project faster than an infestation of bad morale among team 
members. Here are some suggestions to help you overcome poor morale:

•	 Understand the business value of your project. By learning about, or 
reminding yourself of, the real-world practical applications of your proj-
ect, you’ll become more invested and interested in the project.

•	 Take ownership and responsibility for (your portion of) a project. 
When you own the project, your pride and reputation are on the line. 
Regardless of what else might happen, ensure that you can always talk 
about the contributions you made to the project.

•	 Avoid becoming emotionally invested in those project components 
over which you have no control. For example, if management has made 
some poor decisions that affect the project’s schedule or design, work 
as best as you can within those confines. Don’t just sit around thinking 
bad thoughts about management when you could be putting that effort 
into solving problems.

•	 If you’re faced with personality differences that are creating morale 
problems, discuss those issues with your manager and other affected 
personnel. Communication is key. Allowing problems to continue will 
only lead to larger morale problems down the road.

•	 Always be on the lookout for situations and attitudes that could damage 
morale. Once morale on a project begins to decline, it’s often very dif-
ficult to restore what was lost. The sooner you deal with morale issues, 
the easier it will be to resolve them.



Productivity   37

Sometimes, financial, resource, or personnel issues decrease morale 
among the project’s participants. Your job as a great programmer is to step 
in, rise above the issues, and continue writing great code—and encourage 
those on the project to do the same. This isn’t always easy, but no one ever 
said that becoming a great programmer was easy.

2.11  For More Information
Bellinger, Gene. “Project Systems.” Systems Thinking, 2004. http://systems​

-thinking.org/prjsys/prjsys.htm.

Heller, Robert, and Tim Hindle. Essential Managers: Managing Meetings. 
New York: DK Publishing, 1998.

Humphrey, Watts S. A Discipline for Software Engineering. Upper Saddle River, 
NJ: Addison-Wesley Professional, 1994.

Kerzner, Harold. Project Management: A Systems Approach to Planning, 
Scheduling, and Controlling. Hoboken, NJ: Wiley, 2003.

Lencioni, Patrick. Death by Meeting: A Leadership Fable . . . About Solving the 
Most Painful Problem in Business. San Francisco: Jossey-Bass, 2004.

Levasseur, Robert E. Breakthrough Business Meetings: Shared Leadership in 
Action. Lincoln, NE: iUniverse.com, Inc., 2000.

Lewis, James P. Project Planning, Scheduling, and Control. New York: McGraw-
Hill, 2000.

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft 
Press, 1997.

Mochal, Tom. “Get Creative to Motivate Project Teams When Morale Is 
Low.” TechRepublic, September, 21, 2001. http://www.techrepublic.com​
/article/get-creative-to-motivate-project-teams-when-morale-is-low/.

Wysocki, Robert K., and Rudd McGary. Effective Project Management. 
Indianapolis: Wiley, 2003.


