INDEX

A
absolute addressing, 129
abstractions, 273–274, 433–434, 435
accumulator register, 103–104
active high and low, 72
active pull-up switch, 58
ADC (analog-to-digital) converters, 162–165
adders, 60–63
addition, 8–10, 10–14
additive color system, 28, 173
addressing
 and I/O devices, 96–97
 memory, 79–81
 modes, 104–105
 with pointers, 184–185
relative and absolute, 128–130
Adleman, Leonard, 368
advisory locks, 339–340
Aho, Alfred, 228, 438
AI. See artificial intelligence (AI)
AJAX (Asynchronous JavaScript and XML), 252
algorithm efficiency vs. performance, 215
aliasing, 170, 180
ALU (arithmetic logic unit), 97–99
American Standard Code for Information Interchange (ASCII), 22–24, 213
Ampère, André-Marie, 44
amplitude, 155, 165
analog comparators, 163, 164
analog devices
 characteristics, 35–36, 37–38
 and transfer functions, 38–40
analog-to-digital (ADC) converters, 162–165
Anathem (Stephenson), xxxv
ancestor node, 243
AND
 logic gates, 53–54, 59
 operation, 4–5, 5–6, 9
 in plumbing example, 42–43
 with relays, 49
Andreesen, Mark, 251
Android operating system, 376
animation, 29–30
anodes, 50
anonymized data mapping, 410–411
anonymous functions, 266
APIs (application program interfaces), 433–436
Apple, 417, 433
application program interfaces (APIs), 433–436
application vs. system programming, 259, 282
approximations and shortcuts
 CORDIC algorithm, 313–318
 efficiency goals, 283
 integer methods, 290–301
 of power series, 313
 quantization, 323–333
 randomness, 318, 322–323
 recursive subdivision, 301–312
 table lookups, 284–290
Arduino, 119
arithmetic logic unit (ALU), 97–99
Armel processors, 142
ARPANET, 157
arrays, 185–187
artificial intelligence (AI)
 concepts, 388
 development, 385–386, 407
 and neural networks, 402
 self-driving ketchup bottle example, 407–409
ASCII (American Standard Code for Information Interchange), 22–24, 213
Asente, Paul, 439
assemblers, 218, 233–234
assembly language, 217–218
asynchronous counters, 77
asynchronous functions and promises, 346–353
Asynchronous JavaScript and XML (AJAX), 252
AT&T, 155
atomic operations, 339, 342, 343
attack surfaces, 355, 373–374
audio
 amplifier transfer function, 39–40
differential signaling applications, 57
digital representation, 165–173
frame layout, 210
audio filters, 168–169
authentication, 356, 358–359, 361–362
authorization, 361
autodialers, 355
autoincrement/autodecrement modes, 114
axon terminals, 401

B
B-trees, 205
Babbage, Charles, 35
back-EMF effect, 48
backdoors and security, 356, 368, 373–374
backpropagation, 404
Backus, John, 222
Backus-Naur form (BNF), 222–223
 examples, 226–227
bandpass filters, 168
bandwidth, 156
Barlow, John Perry, 357
barrel shifters, 100
base-2 system, 6
Base64 encoding, 26–27
bash shell, 437–438
BASIC, 219–220
batch processing, 176
Battle of Midway code breaking, 366–367
Baud rate, 154
Baudot, Émile, 154
Bayer, Bryce, 325
Bayer matrix, 325–326
Bayer, Rudolf, 205
Bayes’ theorem, 389–390
Bayes, Thomas, 389
BCD (binary-coded decimal) system, 18
Bechtolsheim, Andy, 439
Bell, Alexander Graham, 56
bell curve, 390–391
Bell Telephone Laboratories, 150, 179, 209, 220, 225, 416, 442
Bentley, Jon, 228
Barners-Lee, Sir Tim, 159, 239–240
Berryman, Jeff, 134
big data, 387, 409–412
binary-coded decimal (BCD) system, 18
binary, defined, 3
binary numbers
 addition with, 8–10
 coded as decimals, 18
 context notation, 20
 as integers, 6–8
 as negative numbers, 10–14
 octal and hexadecimal forms, 18–20
 as real numbers, 14–18
binary thresholds, 41
binary trees, 199–203
binning, 71
bipolar junction transistors (BJTs), 51
bison program, 226
bit density, 87
bitmaps, 187–188, 204, 312
bits
 as binary numbers, 6, 8
 defined, 3
 groupings, 20–22
 overflow, 10
 page table control, 131
 as right choice for technology, 33–34, 40–41
BJTs (bipolar junction transistors), 51
Blaze, Matt, 373–374
blits (terminals), 209
block storage devices
 addressing, 203–204
 hardware, 85–88
blockchain, 371
blocking mode, 341
Bluetooth, 158, 352–353
Boole, George, 4, 386
Boolean algebra, 4–5
booting, 218
bootstrap, defined, 218
Bourne, Stephen, 438
branch prediction, 135
branching instructions, 105–106
Bray, John, 29
breadth-first traversal, 123
break statement (C), 195, 196
Bresenham, Jack, 294–295
browsers. See web browsers
buffer overflows, 275, 374–375
buffers
 in logic gates, 53
 program, 270–273, 274
 raster frame, 311
bugs. See also errors
 buffer overflow, 275
 likelihood of, 282
 reporting and tracking, 441
 term origin, 50
build tools, 421
Burks, Arthur, 125
buses, 80, 94–95, 96–97
Bush, Vannevar, 159
button circuits, 144–146, 147–148
bytes, defined, 21

C
C programming language
 brief overview, 114, 220
 compiler, 268
 input and output, 274–275
 optimized code examples, 235
 primitive data types, 184–189
 runtime libraries, 275–276
 sorting functions, 213
 unions, 190
C++ language concepts, 211–212
CA (certificate authorities), 370–371
cache management, 134–135
calculator program examples, 226–227, 229–230
Canny, John, 398
canvas, 255, 290–291
card reader technologies, 84, 85
career success
 decision-making, 427–428
 estimating and scheduling, 426–427
 job/career vs. calling, 430
 and open source projects, 442–443
 working with people, 428–429
 and workplace culture, 429–430
Carpenter, Loren, 322–323, 429
carrier waves, 155–156
Cartesian coordinate mapping, 291, 301
Cascading Style Sheets (CSS), 244–248, 267
cat vs. meatloaf image example, 388, 391–393, 396–400
cathode ray tube (CRT) terminals, 177–179
cathodes, 50
CDs, 87–88, 170
cel animation, 29–30
cell phone programs, 425
cell phone systems
 security exposures, 361–362, 373, 376
 surveillance, 359
central processing unit (CPU), 97–102, 118–119
certificate authorities (CAs), 370–371
chaining code, 348–349
Chang Xiao, 363
Changxi Zheng, 363
characters
 classification, 288–290
 control, 23–24
 defined, 22
 graphics display, 311–312
 and language variations, 439
 numbers as, 25–27
 sorting, 213
 and steganography, 362–363
checksum method, 89
chem (language), 228
Cheng Zhang, 363
Cheriton, David, 439
child nodes, 243
chips. See also specific types
 design, 90, 119, 127, 376
 economics, 154
 invention of, 52
chord construction, 166–167, 168
ciphers
 complex, 366–367
 one-time pads, 367
 substitution, 363–365
 transposition, 365–366
ciphertext and cleartext messages, 363
circuit-switched networks, 157
circuit-switched networks, 44, 47
circular buffers, 272–273
CISC. See complicated instruction set computers (CISC)
class attribute (CSS), 267
classifiers
 and artificial intelligence, 387–388
 feature recognition, 399–400
 ketchup bottle example, 406
 naive Bayes classifier, 389–390
 neural networks as, 405
cleartext and ciphertext messages, 363
Clipper chip, 374
clocks, 71, 77
cloud computing, 424
clusters, 87, 203
CMOS (complementary metal oxide semiconductor), 52
CMRR (common-mode rejection ratio), 56
coalescing nodes, 307
code
 data as, 382–384
 maintainable, 441–442
 portable, 439–440
 refactoring, 441
 self-modifying, 407
 source control and distribution, 440
 testing, 440–441
 third-party, 376–378
 writing vs. reusing, 436
code breaking, 366–367
code (machine language) generators, 233–234
codecs, 172
coding tools, 437–439
collisions
 Ethernet, 158
 half-duplex, 154
 in hash tables, 214–215
color displays, 173–174, 181
color gradients, 296–297
color representations, 27–30, 190–191
Colossus: The Forbin Project (film), 409
combinatorial logic, 53
command and control messages, 358
command interpreters, 437–438
command line interface, 268
common-mode rejection ratio (CMRR), 56
communications security, 356–357
compact discs, 87–88, 170
compilers
 defined, 219
 execution, 232–234
 vs. interpreters, 228–229
complicated instruction set computers (CISC), 113, 114
compositing, 30
compound data types
 doubly linked lists, 198–199
 and memory allocation, 195–198
 singly linked lists, 191–195
 suites/structures, 189–190
computer animation, 30
computer architecture
 basic elements, 118–119
 defined, 117–118
computer vision libraries, 399
computers
 brief history, 416–418
 languages, 1–3, 217–218, 219–220
 major components of, 93–94, 109–113
 resource usage efficiencies, 283
 stored-program, 101
computing devices
 analog vs. digital, 35–36, 37–38
 mechanical, 34–35
Concurrent Versioning System (CVS), 440
condition code instructions, 105
condition code register, 10, 98
conductors, 43
constants, 221
constructive solid geometry technique, 304–310
containers, 422
context
 switching, 269–270
 and symbols, 2, 3
continuous values, 36, 37–38
control characters, 23–24
control unit. See execution unit
conversion tables, 284
convolution kernels, 392–393
convolutional neural network, 405
Conway, Lynn, 90
cooked buffer mode, 271
Coordinate Rotation Digital Computer (CORDIC) algorithm, 313–318
coprocessors, 135–136
CORDIC (Coordinate Rotation Digital Computer) algorithm, 313–318
core memory, 82–83
core rope memory, 84
counters, 77–78
CPU. See central processing unit (CPU)
CRCs (cyclic redundancy checks), 89
Creative Commons, 420
crosstalk effect, 38
CRT (cathode ray tube) terminals, 177–179
cryptography. See also ciphers;
ciphering/deciphering
blockchain, 371
concepts, 357, 362
and digital signatures, 370
hash functions, 369–370
and password management, 371–372
public key, 368
steganography, 362–363
Cryptonomicon (Stephenson), 357
crystals, 70–71
CSS. See Cascading Style Sheets (CSS)
CSS selectors, 245–247
Curie, Jacques and Pierre, 70
current (I), 44
cutoff regions, 41
CVS (Concurrent Versioning System), 440
cyclic redundancy checks (CRCs), 89

data centers, 424
Data Encryption Standard (DES) cracker, 216
data mining, 387
data paths, 109–110
data structures
linear vs. hierarchical, 199
and performance, 183–184
spatial, 123
data types. See compound data types;
primitive data types
database management systems (DBMS), 205
databases, 204–206, 216
datagrams, 158–159
date-time structure, 189–190
DBMS (database management systems), 205/DDoS (distributed denial of service) attacks, 357
De Morgan's law, 5–6, 54
deadlocks, 341–342
debouncing, 144–146
debugging practices. See also error
checking, 378
DEC. See Digital Equipment
Corporation (DEC)
decimal number system, 6, 18, 20
decision criteria, 37–38, 54–55
decision-making skills, 427–428
decoders, 63–64
demand paging, 132
demodulation, 156
demultiplexers (dmux), 64–65
dendrites, 401
denial of service (DDoS) attacks, 357
depth-first traversal, 123, 244
DES (Data Encryption Standard) cracker, 216
descendant node, 243
desktop publishing, 254
detents, 38
development methodologies, 430–431
device drivers, 269, 270–273
diff program, 440
difference engine, 35
differential signaling, 55–57
Diffie–Hellman Key Exchange, 368
Diffie, Whitfield, 368
digital audio, 165–173
digital camera technology, 38–39, 82, 325
digital devices, characteristics, 35–36, 37–38
Digital Equipment Corporation (DEC) systems
PDP-10, 407
PDP-11, 21, 114
vs. UNIX, 434
digital images, 173–176
digital signal processors (DSP), 15
digital signatures, 370
digital-to-analog (DAC, D/C) converters, 161–162
digits, 3, 6
digraphs, 365
diodes, defined, 142
direct addressing mode, 104
direct memory access (DMA) units, 136
directed acyclic graphs (DAGs), 123, 229, 242–243
directories, 204
discrete values, 36, 37–38
disk drives, 85–87, 95, 203–204
display lists, 179, 181
displaying
characters, 312
eclipses, 298–300
gasket example, 304–310
images, 173–176
polynomial shapes, 301
spirals, 301–304
straight lines, 292–296
displays
flat-screen, 178
LED, 146–148
distortion, 39–40, 169
distributed denial of service (DDoS) attacks, 357–358
dithering, 325–333
division by zero, 18
DMA (direct memory access) units, 136
DNS (Domain Name System), 159
Document Object Model (DOM)
brief history, 344
and CSS selectors, 245
manipulation, 252–253
structure, 242–244
Document Type Definition (DTD), 250
documentation, 432, 442–443
dog-whistle marketing, 363
DOM. See Document Object Model (DOM)
Domain Name System (DNS), 159
domain-specific languages, 228
doping, 51, 376
DoS (denial of service) attacks, 357
double-pole, double-pole (DPDT) switches, 46
double-precision numbers, 17–18
doubly linked lists, 198–199
DRAM (Dynamic RAM), 82, 134
drawing. See graphics
DSPs (digital signal processors), 15
Duff, Tom, 30, 208
Duff’s Device, 208–209
duty cycle, 148–149
DVDs, 87–88
dynamic data, 136
dynamic memory (DRAM), 82, 134
dynamic memory management, 195–198, 379–381
E
EBCDIC (Extended Binary-coded Decimal Interchange Code), 22
Eccles, William, 76
echoing, 270, 271
edges
detection, 393–398
logic transition, 74
tracking with hysteresis, 398–399
EEC (error checking and correcting) chips, 89
EEPROM (electrically erasable programmable read-only memory), 85, 88
EFF. See Electronic Frontier Foundation (EFF)
electricity
plumbing analogy, 41–44
switches and circuits, 44–47
electromagnetic deflection, 178
electromagnets, 48
Electronic Frontier Foundation (EFF), 216, 360, 363
electrostatic deflection, 177–178
ELF (Executable and Linkable Format), 137
encoding
bit patterns, 24–25
color and light, 30, 149–151
defined, 2
encryption/decryption. See also cryptography
asymmetric, 368
cipher types, 363–367
concepts, 356–357
forward secrecy, 369
key exchange, 367–368
one-time pads, 367
Public Key Infrastructure (PKI), 370–371
standards development, 360
end-around carry, 12
endianness, 96, 184
Engelbart, Douglas, 181
entity references, 241
entropy harvesting, 375–376
EPROM (erasable programmable read-only memory), 85
equation notations, 125
error checking. See also debugging practices
in memory allocation, 276–277
practices, 373
error checking and correcting (ECC) chips, 89
error message output, 274–275, 277
error propagation, 329–333
errors. See also bugs
dynamic memory allocation, 196, 197–198
and logic circuit design, 71
in memory, 88–89
estimation skills, 426
Ethernet, 158, 341
event handlers, 254, 266
event loops, 343
event queues, 344
events, 128
exception handling, 276
exclusive-OR (XOR) operation, 4–5, 9, 53
Executable and Linkable Format (ELF), 137
execution unit, 100–102
expert systems, 407
exponent, 16, 17–18
Extended Binary-coded Decimal Interchange Code (EBCDIC), 22
eXtensible Markup Language (XML), 239, 248–251
F
Fantasia (film), xxx
feedback, 70, 72
feedforward networks, 403
Feldman, Gary, 395
Feldman, Stuart, 414
Fender Bluetooth guitar exposure, 352–353
fetch-execute cycle, 109, 111
FETs (field effect transistors), 51–52
Fibonacci sequence program code, 107–108, 218, 219, 220
field effect transistors (FET), 51–52
field-programmable gate arrays (FPGA), 90, 337
FIFO (first-in, first-out) applications, 162, 270
file descriptors, 271, 274, 435
file pointers, 274
filenames, 203, 271–272
files
as locks, 343
treatments of, 434
filesystems, 204
filters, voltage frequency, 168
finite impulse response (FIR) filters, 145–146
firmware, 90
first-in, first-out (FIFO) applications, 162, 270
fixed-point numbers, 14–15
FLAC (Free Lossless Audio Codec), 172–173
flash converters, 163–164
flash memory, 88, 382
Fleming, Sir John Ambrose, 50
flex program, 225
flight computers, 35
flip-flops, 74–76
floating-point arithmetic, 100, 290, 294
floating-point numbers, 15–18, 221–225
floppy disks, 87
flowcharts, 125–126
Floyd, Robert, 330
Floyd-Steinberg dithering algorithm, 330–331
FM stereo, 171–172
folding. See aliasing
forth (programming language), 124
FORTRAN, 212–213, 219–220, 226
forward secrecy, 369
Fourier, Jean-Baptiste Joseph, 167
Fourier transform, 167
Fournier, Alan, 322
FPGAs (field-programmable gate arrays), 90, 337
fprintf function (C), 277
fractals, 319–323
fragmentation of memory, 196
frame buffers, 311
free function (C), 195–196, 197, 379–381
Free Lossless Audio Codec (FLAC), 172–173
free space tracking, 204
frequencies
 defined, 155
 filtering, 168–170
frequency shift keying (FSK), 155–156
Friedman, Elizbeth Smith, 363
fsck program, 204
FSK (frequency shift keying), 155–156
full adder, 61
full-duplex connection, 154
function calls, 120–121
functions
 and libraries, 137–138
 vs. macros, 290
 trapdoor, 368
Fussell, Don, 322
fuzzing, 375

G

garbage collection, 197–198, 381–382
gate arrays, 90
gated latches, 73–74
Gates, Bill, 358
gates. See logic gates
Gauss, Johann Carl Friedrich, 390
Gaussian blur, 391–393
Gaussian distribution, 390–391, 394
General Data Protection Regulation (GDPR), 379
General Electric, 416
general purpose computers, 15
Generalized Markup Language (GML), 299
genetic algorithms, 407–409
Geschke, Chuck, 254
Ghostbusters (film), 58
gigabytes, defined, 21
Gilmore, John, 418
Git, 440
GLANCE G terminals, 179
glass ttys, 178
glibc function, 436
GML (Generalized Markup Language), 239
GNU project, 415, 418, 421
Goldberg, Adele, 158
Gosling, James, 422, 443
governments and privacy, 359–361, 373–374
GPUs (graphics processing units), 114–115
gradient descent algorithm, 404
gradients
 color, 296–297
 in edge detection, 395–396
granularity of locks, 340–341
graphic equalizers, 168
graphical user interface (GUI), 268, 338
graphics
 canvas, 290–292
 color gradients, 296–297
 constructive solid geometry, 304–311
 drawing curves, 298–304
 drawing straight lines, 292–296
 and randomness, 322–323
 shifting and masking, 311–312
graphics processing units (GPUs), 114–115
graphics rotations, 291
graphics terminals, 177–178
Grateful Dead recordings, 57
Gray code, 150
Gray, Frank, 150
greyscale
displays, 178
quantization, 323–333
Greenblatt, Richard, 407
grep utility (UNIX), 224
“Guess the animal” program, 260–262, 263–266, 276–282
GUI (graphical user interface), 268, 338

H

half adder, 61
half-duplex connection, 154
halftone printing, 325
Hamming codes, 89
Hamming, Richard, 89
Hammond B-3 organ, 168
hard drives, 87
hardware. See also logic gates
and code optimizers, 236
computing technology
components, 47–52
design issues, 36–38, 60, 119
electrical switches and circuits,
44–47
logic gates, 53–60
manufacturing issues, 71
and software, 90
hardware exception handling, 133
Harvard architecture, 118
hash code checking, 89
hash functions, 213–215, 369–370
heap, 136–137
Hellman, Martin, 368
Henkel-Wallace, DV, 418
Hennessey, John, 113
Hertz, Heinrich, 155
Hertz (Hz), 155
Hewlett Packard (HP)
 microcode implementations, 113
 reverse Polish notation
 calculators, 125
hex triplets, 30
hexadecimal representation, 19–20
hi-Z (hi-impedance) state, 60
Hibernate tool (Java), 423
hidden layers, 403
hierarchical data structures, 199–203
hierarchical filesystems, 204
high pass filters, 168
Hilbert curve, 320
Hilbert, David, 320
Hinton, Geoffrey, 404
A History of Personal Workstations
 (Goldberg), 158
hold time, 76
Hollerith cards, 83–84
Hollerith, Herman, 83
Honeywell computers, 20
Hopper, Grace, 50
horizontal partitioning, 216
host (URL), 240
Hough transform, 399
HTML. See HyperText Markup
 Language (HTML)
HTML5, 255
HTTP. See HyperText Transfer Protocol
 (HTTP)
human interface devices, 176–181
humans. See also programmers
 hearing, 170–171, 172–173
 language, 1–3
 nervous system, 387
 thought processing, 386–387
 vision, 29, 147, 174, 291, 393
Hurd, Earl, 29
hypertext, 159, 240
HyperText Markup Language (HTML)
 documents, 240–242, 243
 elements and attributes, 241–242,
 245–248
 evolution, 160, 238, 239
HyperText Transfer Protocol
 (HTTP), 159
hypervisor, 425
hysteresis applications, 54–55, 398–399

I
I/O. See also input and output
 vectored, 210–211
I/O devices
 computer access to, 96–97, 141–142
 mediation, 268–269
 on-chip, 127
 sharing, 337
I/O ports, 142–144
IBM
 Hollerith cards, 83, 84
 Selectric terminals, 177
IDE interface, 152, 154
IDEs (integrated development
 environments), 439
IEEE floating-point numbers, 17–18
If statements, 212–213
image processing and recognition
 edge detection, 393–398
 edge tracking with hysteresis,
 398–399
 feature extraction, 399–400
 Gaussian blur, 390–393
 nonmaximum suppression, 398
ImageMagick, 436
images. See also graphics
 digital representation, 173–176
 texture mapping, 285–288
immediate addressing mode, 105
impedance (Z), 60
index register, 129
indices
 array, 185
 database, 206
 hash table, 214–215
indirect address registers, 110
indirect addressing
 and linked lists, 193–194
 mode, 104
indirect blocks, 204
infix notation, 125, 227
inline styles, 267
inodes, 203–204
input and output
 computer access to, 96–97
 device drivers, 268–269, 270–273
 in UNIX file abstraction, 435
inputs. See also noise
 error-checking, 373, 374
 and transfer functions, 39–40
Institute of Electrical and Electronic Engineers (IEEE), 17
instruction register, 109
instructions. See also code
 addressing modes, 104–105
 as bit patterns, 101
 branching, 105–106
 condition codes, 105
 data as, 382–384, 387–388
 layouts, 102–104, 106–107
insulators, 43
integer methods
 in CORDIC algorithm, 313–318
 drawing curves, 298–300
 drawing gradients, 296–297
 drawing straight lines, 295–296
 and performance, 290
 with polynomials, 301
integer representations, 6–8
integrated circuits. See also chips; logic gates, 52, 53, 100
integrated development environments (IDEs), 439
integrated peripherals, 127
integrity verification, 370
Intel, 90, 113
interface design, 433–436
interference, 37–38
interior node, 243
International Standards Organization (ISO) characters, 24
internet
 accessing, 158–160
 as attack surface, 357–359
interpreters
 vs. compilers, 228–229
 execution, 231–232
 web browsers as, 237
interrupt handlers, 129–130, 375
interrupts, 125–128, 341
inverters, 49, 53–54, 70, 72
IP addresses, 159
isochronous transfers, 156
J
Japanese Industrial Standard (JIS) characters, 24
Java programming language, 198, 416, 422–423
Javadoc, 443
JavaScript language
 and asynchronous issues, 343–346
 function example, 120
 and garbage collection, 198, 381–382
 “Guess the animal” game, 264–266, 276
 and jQuery, 254
 and JSON, 255–256
 promise construct, 346–350
 as self-modifying code, 407
 and web browser, 251–253
JavaScript Object Notation (JSON), 255–256
Johnson, Stephen C., 226
Jordan, Frank, 76
JPEG compression, 122–124, 174
jQuery, 253–254, 345–346
JSON (JavaScript Object Notation), 255–256
K
Kernighan, Brian, 228, 434, 438
ketchup bottle AI example, 406, 408–409
key exchanges, 367–369
keyboards, 181
keyframes, 176
Kilby, Jack, 52
kilobytes, defined, 21
Kleene, Stephen Cole, 224
kleptography, 355, 368
knife switches, 45
Knight, Tom, 407
Knuth, Donald, 435
Koch, Helge von, 319
Koch snowflake, 319

L
L-systems (Lindenmayer systems), 320–322
LAN. See local area networks (LAN)
Landin, Peter, 189
languages. See also programming languages
human vs. computer, 1–3, 267–268
markup, 238–239, 248–251
Lantz, Keith, 439
large-scale integration (LSI) parts, 60
latches, 71–74
LavaRand, 376
Lawson, Harold, 184
layering video, 176
LCD (liquid crystal display), 178
leading zeros, 8
leaf nodes, 123
least recently used (LRU) algorithm, 132
least significant bit (LSB), 8
LEDs. See light-emitting diodes (LEDs)
Lesk, Mike, 225
lex program, 225–226
lexical analysis, 221–226
LFSR (linear feedback shift register), 375
libraries, 137–138, 288–289, 399, 436
LIFO (last in, first out) structure, 124
light-emitting diodes (LEDs), 59,
142–144, 146–148, 160–161
limit registers, 124
Lindenmayer, Aristid, 320
Lindenmayer systems (L-systems), 320–322
linear feedback shift register (LFSR), 375
linear region, 39–40
linked lists, 191–195, 198–199
linker programs, 137–138
<link> element (HTML), 246
links
directory, 204
hypertext, 240
Linux, 418, 437
liquid crystal display (LCD), 178
LISP programming language, 407
living documents, 238
load-store architecture, 113
local area networks (LAN), 156–157, 158
locality of reference, 184
lock authorities, 341
locks
advisory, 339–340
deadlocks, 341–342
granularity, 340–341
implementations, 342–343
logic gates
concepts, 53–54
and hardware design, 60
output variations, 58–60
and propagation delay, 57
Schmitt triggers, 55, 56
logic operations
binary addition as, 9–10
concepts and laws, 3–6
loop-invariant optimization, 235, 288
lossless and lossy compression, 172
low pass filters, 168–169, 170
LRU (least recently used) algorithm, 132
LSB (least significant bit), 8
Łuskasiewicz, Jan, 125

M
MAC (Media Access Control)
addresses, 158
McCarthy, John, 198, 407
McCaulay, Clark, 429
McCreight, Ed, 205
machine intelligence. See also artificial intelligence (AI); big data;
machine learning (ML), 385
machine language, 218, 233–234
machine learning (ML). See also image processing and recognition
corcepts, 386–388
edge detection, 390–399
feature extraction, 399–400
naive Bayes classifier, 389–390
and neural networks, 405
technology trends, 385–386
training data, 406
McIlroy, Doug, 435, 440
Macintosh API, 433
macros, 290
magnetic tape, 87
maintenance, 441–442
malloc function (C), 195–196, 197, 379–381
man-in-the-middle attacks, 357, 368
Mandelbrot, Benoit, 319
mantissa, 15–16, 17–18
MapReduce, 216
mark-space signaling, 153–154, 155–156
markup languages, 238–239, 248–251
mask-programmable ROM, 85
masking. See shifting and masking masks
bitmap, 187
defined, 85
interrupt controls, 128
in raster graphics, 311–312
mass storage, 85–87
Massachusetts Institute of Technology, 407, 416
MD5 hash function, 370
Mead, Carver, 90
Media Access Control (MAC) addresses, 158
medium-scale integration (MSI) parts, 60
megabytes, defined, 21
memory. See also storage technologies arranging data in, 136–137
computer access to, 94–96
error detection and correction, 88–89
hierarchy and performance, 133–135, 138
organization and addressing, 79–81
random access, 82
read-only, 83–85
relative addressing, 129–130
as shared resource, 337
memory chips, 81
memory controller, 134
memory management. See also buffer overflows
bug prevention, 373, 374–375
in C programming, 276–280
dynamic allocation, 195–197, 379–381
garbage collection, 197–198, 381–382
memory management units (MMUs) design and operations, 130–132, 133 and libraries, 138, 195
Men in Black (film), 356
messages, command and control, 358
metadata and security exposure, 359
metal-oxide semiconductor field effect transistors (MOSFETs), 52
Metcalf, Bob, 158
methodology vs. ideology, 430–431
methods, C++, 211–212
microcode, 112–113
microcomputers, 119, 137, 375
microprocessors, 119, 141–142
Microsoft, 339, 355, 358, 417
Miller, Frank, 367
MIP mapping, 285–288
MIT. See Massachusetts Institute of Technology
MKUltra government program, 360
ML. See machine learning (ML)
MMUs See memory management unit (MMUs)
modems, 156
modulation/demodulation, 155–156
moiré artifacts, 328
MOSFETs (metal-oxide semiconductor field effect transistors), 52
most significant bit (MSB), 8
motion compression, 176
mouse technology, 151, 181
MP3 frame layout, 210
MSB (most significant bit), 8
multicore processors, 119
multiplexers (mux), 65–66
multiplexing, examples, 81, 147
multiplication, 100
multiprocessor systems, 118–119, 216
multitasking, 118, 133, 177, 335–336
The Mythical Man-Month: Essays on Software Engineering (Brooks), 219

N
naive Bayes classifier, 389–390
namespaces, 249
NaN (not a number), 18
NAND gates, 53–54
Napier, John, 34
National Security Agency (NSA), 355, 368, 374
Naur, Peter, 222
negative logic, 5–6
negative number representation, 10–14
Nelson, Nils Peter, 288
networking, 156–160
neural networks, 401–406
new operator, 198
nixie tubes, 63
no-execute bit, 131
Node.js, 424
nodes. See also trees
 adding new, 280–281
 in C programming, 276
 coalescing, 307
 leaf, 123
 lexicon, 243
noise
 and differential signaling, 55–57
 immunity, 38, 54–55
nonaligned access, 95
nonblocking mode, 341
nonmaximum suppression, 398
nonrepudiation, 370
NOR gates, 53–54, 72
normalization, of numbers, 17
NOT
 operation, 4–5, 5–6, 11
 with relays, 49
notch filters, 168
Noyce, Robert, 52
NUL terminator, 188, 189
numbers as characters, 25–27
nuxi syndrome, 96
Nyquist, Harry, 169

O
object code, 219
object-oriented programming
 concepts, 211–212
octal representation, 18–19, 20
octets, 24–25
octrees, 310–311
Ohm, Georg Simon, 44
Ohm’s law, 44
one-time pads, 367
one’s complement representation, 11–13
opcodes, 97, 98
open-collector (or open-drain)
 outputs, 58–59, 148
open source software, 377, 418,
 419–420, 436, 442, 443
OpenCV library, 399
OpenGL graphics language, 181
OpenSSL cryptography library, 377, 436
operands, 97, 221
operating systems (OS)
 context switching, 269–270
 and files, 271–272
 and I/O devices, 259–260, 268–269
 locking functionality, in, 341
 operations, 118, 128–129
 with programs vs. browsers, 273–274
 threads, 337–339
 time-sharing, 177
optical disks, 87–88
optimizers, 234–236
OR
 logic gates, 53–54
 operation, 4–5, 5–6
 in plumbing example, 43
 with relays, 49
Ørsted, Hans Christian, 47
OS. See operating systems (OS)
oscillators, 70–71
Ossanna, Joseph, 274
out-of-order execution, 135
outputs
 in differential signaling, 56
 of gates, 58–60
 and transfer functions, 39–40
overclocking, 71
overflow condition, 10

P
package management, 421–422
packet-switched networks, 157
packets (USB), 156
padding, 190
page fault exception, 131
page swapping, 132
page tables, 130–131
pages, 82, 130–131
The Paging Game (Berryman), 134
parallel communications, 152, 154
parallel connections, 43
parallel processing, 119
PARC. See Xerox Palo Alto Research Center (PARC)
parent node, 243
parity checking, 89
parse trees
 construction and evaluation,
 229–230, 231
 examples, 242–243
 optimizing, 234
Pascal (programming language), 220
passive pull-ups, 59
password exposures, 353, 354, 378
password management, 371–372
path (URL), 240
pattern matching, 224–225
Patterson, David, 113
PCs. See personal computers (PCs)
PDF (Portable Document Format), 254–255
Peano, Giuseppe, 319
perceptrons, 402–403
periodic signals, 70
peripherals, 96, 127
personal computers (PCs), 417, 418
personal data
 privacy, 352, 359–361, 410–412
 and trust, 353–355, 361
phase difference, 170
phone security, 359, 361, 362, 373
phones. See cell phone programs; cell phone systems
photolithography, 51
physical security, 355–356
piezoelectric effect, 70
Pike, Robert, 24, 209, 434
pins, defined, 127
pip (Peripheral Interchange Program, DEC), 434
pixels
 in Gaussian blur, 392–393
 as image representation, 27, 173
 and MIP mapping, 286
 unions, 190–191
 in video, 175
 voxels, 310
PKI (public key infrastructure), 370–371
pointers, 114, 184–185, 212
polar coordinates, 301–304
Polish notation, 125
polling, 127
pop and push, 124
portable device programming, 425
Portable Document Format (PDF), 254–255
portable operating system interface (POSIX), 421
portable software, 416, 420–421, 439–440
Porter, Thomas, 30
ports
 I/O, 97, 142–144
 IEEE 1284 parallel, 152
 RS-232 serial, 154
positive logic, 5–6
positive number representation, 6–8
POSIX (portable operating system interface), 421, 439
post function (jQuery), 345–346
postfix notation, 125, 227
PostScript language, 124, 254
power consumption vs. performance, 138
power series approximations, 313
power wall, 119
prefetching, 135
prefix notation, 125
prepress technologies, 29
primitive data types
 arrays, 185–187
 bitmaps, 187–188
 overview, 184–185
 strings, 188–189
Principles of Compiler Design (Aho and Ullman), 228
print servers, 337–338
printers
 color system, 173
 and steganography, 363
printf (print formatted) function (C), 277
priority interrupts, 128
privacy. See also personal data
 and data visibility, 378–379
 as security, 352
privileged instructions, 133
privileges, and security, 356
PRNGs (pseudorandom number generators), 375
procedures. See functions
processes, 337–338
processor cores, 119, 135
processor interrupt handling, 341
production grammars, 320–322
program counter, 101–102
programmable read-only memory (PROM), 85
programmers. See also career success
 adding value, 414–416, 442, 443
 finishing projects, 419
 productive environment for, 437–439
 training, 418, 426
programming. See also software hygiene
discipline of, 428, 443
Linux environment, 437
productivity tools, 437–439
programming languages
assembly language, 217–218
compiler execution, 232–234
compilers vs. interpreters, 228–229
domain-specific, 228
grammar, 226–227
and hardware, 236
high level, 219–220
interpreter execution, 231–232
and lexical analysis, 221–226
optimizers, 234–235
structured vs. unstructured, 220
Programming Pearls (Bentley), 228
programming projects
documentation, 432
fast prototyping, 432–433
interface design, 433–436
and library code, 436
programs. See also user programs
development vs. maintenance, 349
machine learning, 281–282
running, 137–138
testing, 440–441
third-party code, 376–378
and value proposition, 414–416
PROM (programmable read-only
memory), 85
promise construct, 346–350
propagation delay, 43, 57, 70, 71
properties (C++), 211–212
prototyping, 432–433
proxies, 358
pseudo-instructions, 218
pseudocode, 122
pseudorandom number generators
(PRNGs), 375
pseudorandomness, 318–319, 375–376
public key cryptography, 368
public key infrastructure (PKI), 370–371
punched paper tape, 84
push and pop, 124

Q
qsort function (UNIX), 213
quadrature encoding, 150–151
quadtrees, 123, 304–310
quantization, 323–333
queues, 270, 272–273, 344
Quoted Printable (QP) encoding, 26

R
race conditions, 335–336
radial zones, 87
radians, 301
RAM (random-access memory), 82
ramp converters, 165
random back-off-and-retry, 158
random logic, 112
random number generators, 368,
375–376
randomness
approximating, 318, 322–323
dithering as, 325
raster graphics, 180–181, 311–312
raw buffer mode, 271
Raymond, Eric, 434
RCS (Revision Control System), 440
read-only memory (ROM), 83–85
real numbers, 14–18, 283
realloc function (C), 195–196, 379–381
recurrent neural network, 405
recursion, 122–125
recursive subdivision
and constructive solid geometry,
304–311
defined, 122
drawing spirals with, 301–304
reduced instruction set computers
(RISC), 113–114
Reed, Brian, 439–440
refactoring, 441
reference addressing, 101, 185, 198
reference voltages, 163–164
registers
accumulator, 103–104
in computer design, 133–134
condition code, 10, 98
index, 129
indirect address, 110
instruction, 109
limit, 124
memory, 79–81
program counter, 101–102
schematic, 78–79
regression testing, 441
regular expressions, 224–225
relative addressing, 129–130, 186
relays, 47–50
reset bar, 72
Resig, John, 253
resistance (R), 44
resolution
 CRT screen, 178
 digital-analog conversion, 161, 165
 graphics, 180, 291
reverse Polish notation, 125
Revision Control System (RCS), 440
RGB color model, 28
Riemersma dithering algorithm, 332–333
Riemersma, Thiadmer, 332
ring buffers, 272–273
ripple-carry adder, 62
ripple counters, 77
RISC (reduced instruction set computer) machines, 113–114
Ritchie, Dennis, 220, 288–289, 416
Rivest, Ronald, 368
ROM (read-only memory), 83–85
root (tree), 200, 243
rootkits, 354
Rosenblatt, Frank, 402
rotary encoders, 149–151
rotation mode, 316
rotational latency, 87
routers, 158
Rozin, Paul, 429
RSA algorithm, 368
Ruby language, 228
Rumelhart, David, 404
runtime libraries, 138, 274, 275–276

S
S-R (set-reset) latches, 72–73
Samet, Hanan, 123
sample and hold circuit, 162–163
sampling
 audio, 165–166, 168–170, 171
 circuits for, 162–163
 defined, 160
 images, 173–174
SATA interface, 154
saturation regions, 41
Scalable Vector Graphics (SVG), 254–255
scaling (graphic), 291
scan lines, 311
scanners, 180
scatter/gather, 211
SCCS (Source Code Control System), 440
schematic diagrams, 44
scheme (URL), 240
Schmidt, Eric, 225
Schmitt, Otto H., 55
Schmitt triggers, 55, 56
Schwartz, Barry, 429
scientific notation, 15–16
<script> elements (HTML), 252
searching
databases, 205–206
 with hash functions, 213–215
 tree traversing, 199–203
security. See also cryptography; software hygiene
 authentication and authorization, 361–362
 of communications, 356–357
 and internet, 357–359
 metadata and surveillance, 359
 objectives, 351–352
 physical, 355–356
 and society, 359–361
 threat model, 352–353
 trust violations, 353–355
seed, 375
selectors, 65–66
self-similarity, 319
Semi-Automatic Ground Environment (SAGE), 157
semiconductors, 51
sensors
digital camera, 38–39
 rotating shaft, 149–151
sequential logic, defined, 69–70
sequential memory, 85
sequential shift register, 99
serial communications, 152–154
series connections, 43
set-reset (S-R) latches, 72–73
Sethi, Ravi, 228
setup time, 76
SHA-1 algorithm, 369–370
Shamir, Adi, 368
sharding, 216
shared libraries, 138
shared resources, 336, 337
shells, 437–438
shift operations, 99–100, 153
shift-reduce parsers, 226–227
shift registers, 99–100, 153
shifting and masking, 311–312
shortcuts See approximations and shortcuts
sibling node, 243
side-channel attacks, 378
sigmoid neurons, 403–404
sign and magnitude representation, 10–11
SIGSALY voice encryption system, 367
Simple Mail Transfer Protocol (SMTP), 159
sine waves
approximation, 313
characteristics, 155
digital reconstruction, 165–166
single-pole, double-throw (SPDT) switches, 45–46
single-pole, single-throw (SPST) switches, 45, 48
single-precision numbers, 17–18
singly linked lists, 191–195
slide rules, 34–35
small-scale integration (SSI) parts, 60
SMTP (Simple Mail Transfer Protocol), 159
Snowden, Edward, 360, 368
Sobel edge detection, 395–398
Sobel, Irwin, 395
SoC (system on a chip), 119
social attack mechanisms, 358
society and security, 359–361
software distribution, 421–422
software hygiene
and attack surfaces, 373–374
data as code, 382–384
error checking, 373
memory management, 374–375, 379–382
random number generation, 375–376
security measures, 372–373, 378–379
third-party code, 376–378
solid-state disk drives, 88, 382
sorting, 212–213
source code control, 440
Source Code Control System (SCCS), 440
space-filling curves, 319–320
spaghetti code, 220
spam filters, 387, 389–390
spatial data structures, 123
spectrum analyzers, 168
spinning, 341
SQL implementations, 423
SQL injection, 382–384
square waves, 165–166
SRAM (static RAM), 82
stacks, 122–125
Stallman, Richard, 418, 419
standards proliferation, 238, 415
Star Trek II: The Wrath of Khan (film), 322–323
state machines, 109, 112, 223–224
state tables, 223, 224–226
static data, 136
static linking, 138
static RAM (SRAM), 82, 95
statistical analysis applications, 387, 410–411
stderr file pointer, 274–275
stdio (standard input/output) library, 271–272, 274
stdlib library, 271–272, 274, 275
steganography, 362–363
Steinberg, Louis, 330
stepper relays, 49
stereo, 170–172
stochastic processes, 322–323
Stone, Maureen, 29
storage technologies
block devices, 85–88
mixed devices, 88
read-only memory, 83–85
storage tubes, 179
stored procedures, 423
strcmp function (C), 213
strength reduction, 235
string library, 275
string terminators, 188–189
strings
in C, 276–280
data structure, 188–189
sorting, 213
strobe signals, 152
Stroustrup, Bjarne, 212
student projects, 419
The Stuff of Thought (Pinker), 432
<style> element (HTML), 246–247
subroutines. See functions
substrates, 51
subtractive color system, 28–29, 173
successive approximation converters, 165
Sun Microsystems, 420, 439
supersampling, 174
surveillance, 359
SVG (Scalable Vector Graphics), 254–255
switches
 electrical, 44–47
 networking, 157
 in plumbing example, 43
symbols, 2, 3, 221
symmetric encryption, 364, 367–368
synchronous counters, 77–78
syntactic sugar, 189, 346, 347
system calls, 133, 269–271, 343
system integrators, 377
system on a chip (SoC), 119
system programming vs. application programming, 259, 282
system space, 133

T

table lookups
 character classification, 288–290
 conversion tables, 284
 texture mapping, 285–288
tags, 241–242, 248
Talbot, Henry, 325
tape technologies, 84, 85, 87
Taylor series, 313
TCP/IP (Transmission Control Protocol/Internet Protocol), 158–159
Tektronix storage tubes, 179
telephone networks, 157
telephone technologies, 155
teletype technology, 155–154, 176–177
The Ten Commandments for C Programmers (Spencer), 372
terabytes, defined, 21
terminal node, 243
terminals
 blit, 209
 and buffering, 270–271
 as coding interface, 437
 hardcopy output, 176–177
 screen based, 177–178
 software implemented, 268–269
test and set instruction, 342
testing, 440–441
Texas Instruments, 53
text editors, 438–439
text. See characters
texture mapping, 285–288
third-party code, 376–378, 436

This Is Spinal Tap (film), 39
Thompson, Ken, 24, 224, 377, 416, 417, 434
thrashing, 177
threads, 338–339
threat model, 352–353, 378
thresholds
 binary vs. decimal, 41
 in graphics, 324
 in hyperesis, 55
 negative- and positive-going, 55–56
 and transfer functions, 49
Tiemann, Michael, 418
time and date structure, 189–190
time division multiplexing, 154, 157
time references, 70–71
time-sharing systems, 177
timers, 128, 133
timing attacks, 378
tokens, 221, 225–226
Torvalds, Linus, 418
totem-pole outputs, 58
touch devices, 181
traffic control unit, 110–113
transactions, 340–341
transfer functions, 38–40, 49, 54–55, 168
transformations (graphic), 291
transistors, 51–52
translations (graphic), 291
Transmission Control Protocol/Internet Protocol (TCP/IP), 158–159, 211
transparency
 color, 29–30
 open source code, 376–378
 and security, 355
transposition ciphers, 365–366
trapdoor functions, 368
tree balancing, 202–203
tree lexicon, 243
tree of knowledge, 260, 262
tree traversal, 123, 244, 280–281
trees. See also nodes; octrees; quadtrees
 B-tree, 205
 binary, 199–203
 defined, 123
 examples, 229–230, 242–243
tri-state outputs, 60
trigonometric functions, 301, 313–318
triodes, 50–51
troff (typesetting language), 228, 239, 274–275
trust
 and third-party code, 376–378
 violations, 353–354, 361
truth tables, 4
Turing, Alan, 101
twisted-pair cabling, 56
two-factor authentication (2FA), 361–362, 373
2001: A Space Odyssey (film), xxii, 386
two’s complement adder, 60–63
two’s complement representation, 13–14
typeballs, 177
typesetting languages, 228, 239, 274–275

U
UART (Universal Asynchronous Receiver-Transmitter), 154
Ullman, Jeffrey, 228
underflow condition, 10
Unicode standards, 24
Unicode Transformation Format 8-bit (UTF-8), 24–25, 439
Uniform Resource Locators (URLs), 27, 159, 239–240
unions, 190
Universal Asynchronous Receiver-Transmitter (UART), 154
Universal Serial Bus (USB), 152, 156
UNIX
 API, 433–435
 brief history, 415, 416–418
 derivative operating systems, 437
 interrupt mechanism, 128
 sorting functions, 213
 tools, 421
The UNIX Programming Environment (Kernighan and Pike), 434
UNIX-to-UNIX copy (UUCP), 157
URL. See Uniform Resource Locator (URL)
USB (Universal Serial Bus), 152, 156
user interfaces (UI), 433
user programs. See also C programs;
 “Guess the animal” program
 vs. browsers, 259–260, 273–274, 282
 and operating system, 268–269
user space, 133, 337
UTF-8 (Unicode Transformation Format 8-bit), 24–25, 439
UUCP (UNIX-to-UNIX copy), 157

V
vacuum tubes, 50–51
van Eck phreaking, 378
Vannini, Walter, 428
variables
 FORTRAN naming conventions, 219
 local, 124
 and size assumptions, 374
vector graphics, 178–181
vectored I/O, 210–211
vectoring mode, 316
video, 174–176
virtual machines, 229, 237, 425
virtual memory, 132
voice encryption, 367
volatile keyword (C), 236
Volder, Jack, 313
Volta, Alessandro, 44
voltage (V), 43–44
von Neumann architecture, 118
von Neumann, John, 118
voxels, 310

W
Wall of Sound concert audio system, 57
WAN (wide area networks), 156–157
WarGames (film), 383–384
Warnock, John, 254
wave characteristics, 154–157
waveform generation, 162
web browsers
 overview, 256–257
 vs. programs, 259–260, 273–274, 282
 and standards, 238
 as virtual machines, 237
 and World Wide Web, 159
web pages. See also Cascading Style Sheets (CSS)
 advertising pixels in, 363
 asynchronous issues, 344
 canvas, 290–291
 comment sanitization, 384
 Document Object Model, 242–244
 “Guess the animal” game, 263–267
 HTML documents, 240–242
 and markup languages, 238–239
 overview, 159–160
 styling, 244–248, 267
Weinberger, Peter, 438
whitespace, 228
Wi-Fi, 158
wide area networks (WAN), 156–157
Williams, Lance, 285–286
Williams, Roland, 404
wired-AND gates, 59
Wizard of Oz, The (film), xxiv
word, defined, 21
World War II code breaking, 357, 366–367, 378
World Wide Web, 159
writable control store, 113
Wrzesniewski, Amy, 429

<table>
<thead>
<tr>
<th>X</th>
<th>X Window System, 341, 439–440</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x-y coordinates. See Cartesian coordinate mapping</td>
</tr>
<tr>
<td></td>
<td>Xerox Palo Alto Research Center (PARC), 158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>yacc program, 226–227, 229–230</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Z</th>
<th>Zim, Herbert, 364</th>
</tr>
</thead>
</table>