
10
BRAINFUCK

Brainfuck, or BF as we’ll call it, is more
or less the grandfather of all esolangs. It’s

one of the earliest and probably the most
extended, modified, discussed, and parodied

esolang in existence. In this chapter, we’ll see what
all the fuss is about it–there’s more to it than just the
name!

WTF is BF

BF is the brainchild of Urban Müller, who loosed it upon an unsuspecting
world in 1993. His goal was to create a tiny language leading to a tiny com
piler for the Amiga computer. His compiler was 296 bytes long. Later in the
chapter, we’ll encounter a BF compiler that’s only 166 bytes long.

How can BF compilers be so tiny? Because BF itself is tiny (see Table 10
1, which describes all eight commands). As a certain pig might say, “Thth
that’s all, folks!”

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

Table 10-1: BF in all its glory

Command Action

> increment memory pointer
< decrement memory pointer
. print memory as a character
, input a character to memory
+ increment memory
- decrement memory
[begin loop if memory not zero
] continue loop if memory not zero

The machine BF expects is quite similar to a Turing machine. The BF
machine is a vector of cells, each of which holds a single value. Originally,
there were 30,000 cells, each capable of holding a single byte [0, 255]. The
interpreters we’ll use in this chapter have 32bit cells. BF is analogous to
what’s called a Harvard architecture, a hardware architecture in which the pro
gram space and memory are distinct. No selfmodifying code here, though I
wouldn’t be surprised if someone hasn’t created a Von Neumann version of
BF just to explore what selfmodifying BF code might be able to accomplish.
Recall, a Von Neumann architecture combines program space and memory.
Modern PCs are Von Neumann machines.

A Turing machine has a tape head that moves along a tape to read and
write symbols. BF does the same, but in this case we’ll call the “tape head” a
memory or cell pointer. The > and < instructions move the memory pointer
from cell to cell and the remaining BF instructions operate on the current
memory cell. When a BF program starts, it assumes each memory cell has a
value of zero and the pointer is looking at cell zero.

We now know what two of BF’s eight instructions do. The , (comma)
and . (period) are input and output, respectively. The + increments the cell
and - decrements it.

What makes BF interesting as a language are the [and] loop instruc
tions. Loops begin with [and end with], but both are commands. When BF
executes the [instruction, it looks at the current cell and asks: “is the value
zero?” If the answer is “yes,” BF skips ahead to the] instruction and contin
ues with the instruction after it. If the answer is “no,” BF moves to the next
instruction to begin the loop.

When BF encounters a] instruction, it doesn’t automatically jump to
the corresponding [. Instead, it examines the current memory cell and jumps
back if that cell isn’t zero. Otherwise, the loop ends and BF continues with
the next instruction.

Think about this for a bit. The [command is a gatekeeper to decide
whether a loop begins, but it doesn’t check anything after that. The deci
sion about continuing a loop falls to the matching] instruction. Also, the
cell that initiated the loop need not be the cell that decides whether the loop
continues. BF is very flexible when it comes to looping, as we might expect
from such a provocatively named language—it’s messing with our brains. BF
loops are neither toptested nor bottomtested, but rather are a mix of both.

278 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

There is a top test to decide whether the loop even begins, but from then
on, the loop is bottomtested. In C, we can accomplish something similar by
nesting loops,

int cond1=1, cond2=1;

while (cond1) {

cond1 = 0;

do {

} while(cond2);

}

To begin the loop, cond1 must be true; however, after cond1 begins the loop, it
isn’t examined again, the loop runs until cond2 is no longer true. To get the
desired effect in C, cond1 must be made false (cond1 = 0) so the entire struc
ture exits when cond2 becomes false.

BF code isn’t particularly easy to write, but it is complete enough to im
plement interesting, nontrivial programs. BF is more than ABC. We need an
interpreter to see that’s the case; we’ll leave compiler design for another day.

The Two Implementations
BF implementations abound. Let’s investigate two in this section. The first
is a slightly updated version of Urban Müller’s original 1993 C code for the
Amiga computer. The second we’ll build from scratch in SNOBOL because
an unusual, minimalist esoteric language deserves an equally unusual imple
mentation. If you skipped Chapter 5 on SNOBOL, now’s a good time to go
back and read it.

The Original
The original Amiga LHA archive with the first version of BF is in the file
brainf2.lha. Müller’s implementation is in plain C. To work with the code on
a modern Linux system, I took the liberty of updating it to compile without
warnings, changed the cell size from 8bits (unsigned char) to 32bits (int), and
increased the program space to 70,000 cells. Using 32bit cells matches the
SNOBOL implementation we’ll develop in the next section.

Listing 101 shows the interpreter in its entirety.

#include <stdio.h>

#include <stdlib.h>

#define MAXPROG 70000

#define MAXMEM 30000

int p, r, q;

int a[MAXMEM];

char f[MAXPROG], b, o, *s=f;

void interpret(char *c) {

char *d;

Brainfuck 279

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

r++;

while(*c) {

switch(o=1,*c++) {

case '<': p--; break;

case '>': p++; break;

case '+': a[p]++; break;

case '-': a[p]--; break;

case '.': putchar(a[p]); fflush(stdout); break;

case ',': a[p]=getchar();fflush(stdout); break;

case '[':

for(b=1,d=c; b && *c; c++)

b+=*c=='[', b-=*c==']';

if(!b) {

c[-1]=0;

while(a[p])

¶ interpret(d);

c[-1]=']';

break;

}

case ']':

puts("UNBALANCED BRACKETS"), exit(0);

case '#':

if(q>2)

printf("%2d %2d %2d %2d %2d %2d %2d %2d %2d %2d\n%*s\n",

*a,a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],3*p+2,"^");

break;

default: o=0;

}

if(p<0 || p>(MAXMEM-1))

puts("RANGE ERROR"), exit(0);

}

r--;

}

int main(int argc,char *argv[]) {

FILE *z;

q=argc;

if(z=fopen(argv[1],"r")) {

while((b=getc(z))>0)

*s++=b;

*s=0;

interpret(f);

}

}

Listing 10-1: Urban Müller’s original BF interpreter (updated)

280 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

This implementation is quite compact and handles loops via recursion
(notice the recursive call to interpret ¶). Our SNOBOL implementation
will process loops without recursion. Also, notice that # is a supported com
mand. It prints basic debugging information if the interpreter is called with
a second command line argument. The # command was dropped from later
versions of BF. My modifications introduce MAXMEM and MAXPROG and the addi
tion of int before main to avoid a gcc warning.

The interpreter processes the input BF program loaded into f. The
interpret function loops over the characters in f, or the characters of the
nested loop enclosed in brackets via the recursive call. If the character is a
BF command, the command is performed; otherwise, it is ignored.

Building the interpreter is straightforward,

> gcc bfi.c -o bfi

As is testing it,

> bfi examples/hello.b

Hello World!

All the BF examples in the book’s GitHub repository work with this in
terpreter. However, not every BF example you’ll find on the web does. Take
a look at the README file in the examples directory as it contains attribution
and license information. Credit is given to code authors where authorship is
known. I’ll leave working through the operation of hello.b as an exercise as
there are explanatory comments in the file. As you might expect, it involves
generating and printing the required sequence of ASCII values.

SNOBOL Meets BF
The seductive elegance of BF requires, indeed, almost demands we make
our own interpreter. We’ll use SNOBOL because SNOBOL provides all the
facilities we need. Besides, it’s fun. The full interpreter is in bf.sno. Let’s be
gin with the parser:

MAXPROG = 70000

MAXMEM = 30000

prog = array('0:' MAXPROG)

¶ mem = array('0:' MAXMEM, 0)

jump = table()

define('parse(name)c,n,pat') :(eparse)

parse pat = break('><+-.,[]')

input('reader', 10, 'B,1', name)

parse_l0 c = reader :f(parse_l1)

c pat :f(parse_l0)

prog[n] = c

n = ne(n,MAXPROG) n + 1 :s(parse_l0)

parse_l1 endfile(10)

Brainfuck 281

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

parse = n :(return)

eparse

Listing 10-2: Parsing the input file

Listing 102 presents global memory definitions and the parse func
tion to read the input file and keep only actual program commands. Code
is stored in the array prog with memory in mem, a second array. BF expects
memory to be initialized to zero, which SNOBOL does for us via the second
argument to array ¶. We’ll discuss the jump table momentarily.

The parse function accepts the name of the input text file, defines a pat
tern to match valid program characters (pat), and opens the file for input,
reading one character at a time.

The loop (parse_l0) reads a character into c and applies the pattern. If
the pattern succeeds, then c contains one of the allowed command charac
ters; therefore, prog is set and its index is incremented. Notice the SNOBOL
idiom of embedding the ne predicate to test for maximum program length.
If the predicate fails, the increment to n does not happen and execution falls
through to endfile.

When parse finishes processing the input file, prog contains the valid
commands and only the valid commands. The number of commands read is
returned by assigning n to parse.

A BF program is executed sequentially until the interpreter encounters
a loop. The original BF interpreter used recursion to handle loops; however,
we’ll take a more literal approach. Every time we see an opening bracket
([), we’ll scan the program text forward to find the corresponding closing
bracket (]). Similarly, for a closing bracket, we’ll scan backward to find the
matching opening bracket. We could do this while interpreting the code,
but that’s hideously inefficient—imagine a loop running tens of thousands of
times.

A moment’s thought makes it clear that a single pass through the code
before starting the interpreter is sufficient to locate each opening bracket
and its corresponding closing bracket. This is where the jump table comes
into play. Recall, a SNOBOL table is like a Python dictionary; it’s an asso
ciative array. The index into the table is the index of an opening bracket in
prog. Closing brackets also go in jump as their index values are unique. With
jump built ahead of time, a single reference to jump during program execution
returns the proper index into prog for both the opening and closing brack
ets.

Consider Listing 103, which shows buildtable and its helper function,
closing.

define('closing(pc,plen)n,p') :(eclosing)

closing n = 1

p = pc

closing_l0 p = p + 1

eq(p,plen) :s(bad0)

ident(prog[p],']') :s(closing_l1)

ident(prog[p],'[') :s(closing_l2)

282 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

closing_l3 eq(n,0) :f(closing_l0)

closing = p :(return)

closing_l1 n = n - 1 :(closing_l3)

closing_l2 n = n + 1 :(closing_l3)

eclosing

define('buildtable(plen)n,m') :(ebuildtable)

buildtable n = 0

build_l0 ident(prog[n],'[') :s(build_l1)

build_l2 n = n + 1

eq(n,plen) :f(build_l0)s(return)

build_l1 m = closing(n,plen)

jump[m] = n

jump[n] = m :(build_l2)

ebuildtable

Listing 10-3: Building the jump table

Here, buildtable scans the program text looking for an opening bracket.
When it finds one, it calls closing to return the index of the corresponding
closing bracket. Next, buildtable sets the jump table to the opening and clos
ing locations for rapid lookup during program execution.

The closing function locates the matching closing bracket by scanning
forward and incrementing n each time a new opening bracket is found. When
a closing bracket is found, n is decremented. When n is zero, the closing
bracket matching the initial opening bracket has been found, so its index
is returned.

BF accepts singlecharacter input that it stores in memory as an ASCII
value. SNOBOL has a char function to return the character associated with a
given ASCII value; however, it lacks what many languages call ord, a function
to return the ASCII value of a given character. No matter, we’ll make our
own,

define('ord(c)v') :(eord)

ord &alphabet break(c) . v

ord = size(v) :(return)

eord

SNOBOL includes a special variable, &alphabet, which is the full range of
ASCII characters, [0, 255]. The ord function uses pattern matching to locate
all the characters of this special variable up to the given character, c. The
pattern stores this substring in v and the length of the substring is the ASCII
code for the character.

We’re now ready to run the BF program in prog. Let’s walk through the
main portion of the interpreter. We’ll add some debugging abilities to help
us later. BF is hard, so we’ll take all the help we can get.

The main portion of the interpreter is in Listing 104.

plen = parse(host(2,2))

Brainfuck 283

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

buildtable(plen)

input('cin', 10, 'B,1', '-')

output('cout', 11, 'WB,1', '-')

pc = 0

mp = 0

gmp = 0

loop ident(prog[pc],'-') :s(dec)

ident(prog[pc],'+') :s(inc)

ident(prog[pc],'<') :s(decp)

ident(prog[pc],'>') :s(incp)

ident(prog[pc],',') :s(gchar)

ident(prog[pc],'.') :s(pchar)

ident(prog[pc],'[') :s(begin)

ident(prog[pc],']') :s(again)

cont pc = pc + 1

ne(pc,plen) :f(pend)s(loop)

dec mem[mp] = mem[mp] - 1 :s(cont)f(bad1)

inc mem[mp] = mem[mp] + 1 :s(cont)f(bad1)

decp mp = mp - 1 :(cont)

incp mp = mp + 1

gmp = gt(mp,gmp) mp :(cont)

gchar ch = ord(cin) :f(pend)

¶ eq(ch,13) :f(gchar0)

ch = 10

cout = char(ch)

gchar0 mem[mp] = ch :s(cont)f(bad1)

pchar cout = char(mem[mp]) :s(cont)f(bad1)

· begin pc = eq(mem[mp],0) jump[pc] :(cont)

again pc = ne(mem[mp],0) jump[pc] :(cont)

Listing 10-4: The main BF interpreter loop

Listing 104 consists of some preliminaries followed by a loop that moves
through the program in prog. The preliminaries call parse to process the in
put file and buildtable to configure the jump table. BF expects singlecharacter
input and output with the console, which SNOBOL supports using the given
input and output incantations.

The current program counter is pc and the memory pointer is mp. We’ll
use gmp to track the highest memory cell accessed by the program. Doing
this simplifies dumping relevant memory when the program ends.

The loop executes the current instruction depending on its character.
Recall that ident is the SNOBOL predicate to compare two strings. Execut
ing an instruction is a jump to the relevant line. Most instructions are a sin
gle statement. For example, > moves the cell pointer to the right (mp=mp+1).
When incrementing the cell pointer, there’s an extra check to see if gmp should
be updated.

SNOBOL has one quirk requiring a bit of extra code. Take a look at
gchar, which reads a single character of input. The cin variable reads the

284 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

character and places its ASCII value in ch. The problem is when the user
presses enter. On Unix systems, this should return the ASCII value 10; how
ever, the SNOBOL interpreter returns ASCII value 13. So, a quick check
converts ASCII 13 to ASCII 10 before assigning the character to the current
memory location (gchar0) ¶. Notice that each instruction ends with a jump
to cont to continue processing the next instruction.

Additionally, observe how opening and closing brackets are handled as
begin and again respectively ·. Even though there is a single statement for
each, a bit of explanation is in order. For example, the code for an opening
bracket is,

pc = eq(mem[mp],0) jump[pc] :(cont)

The BF standard says to begin a loop if the currently active memory cell
is not zero; otherwise, skip the loop. Here, the SNOBOL predicate eq will
succeed if the current memory cell is zero. In that case, the assignment hap
pens and pc is set to jump[pc], which is the end of the loop that we’re currently
considering. In contrast, if the memory cell is not zero, eq fails and the as
signment does not happen. Therefore, the interpreter enters the loop as it
should. The test in again is much the same; only the logic is reversed so we
jump to the beginning of the loop if the memory cell is not zero.

Take another look at the statement to decrement the current cell,

dec mem[mp] = mem[mp] - 1 :s(cont)f(bad1)

If the decrement succeeds, flow continues with the next instruction, s(cont).
However, if mp is negative or too large, the statement fails and the interpreter
jumps to bad1,

bad1 output = 'memory access error, mp = ' mp :(end)

This prints an error message and exits. A similar error happens if an open
ing bracket has no matching closing bracket.

If the second command line argument is dump, the interpreter will dump
the final value of all memory locations accessed by the program before exit
ing. The code for this is in Listing 105.

pend ident(host(2,3),'dump') :f(end)

output =

output = 'Memory: (mp = ' mp ')'

n = 0

ploop ascii = ''

gt(mem[n],31) :f(print)

lt(mem[n],127) :f(print)

ascii = ' ' char(mem[n])

print s = dupl(' ', 6 - size(n)) n

s = s ':' dupl(' ', 6 - size(mem[n])) mem[n]

output = s ascii

n = n + 1

gt(n,gmp) :f(ploop)

output = :(end)

Brainfuck 285

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

Listing 10-5: Dumping memory

Memory values are dumped, one per line. If the value is in the range
31 < v < 127, the corresponding character is displayed.

The BF interpreter is now complete. Let’s test it.

> snobol4 bf.sno examples/hello.b dump

Hello World!

Memory: (mp = 6)

0: 0

1: 0

2: 72 H

3: 100 d

4: 87 W

5: 33 !

6: 10

The memory dump shows that cells zero through six were used at some
point in the program, and that the program ended with the memory pointer
looking at cell 6. Knowing which memory cell is active is critical to successful
BF programming.

Our implementation appears to work. Now, let’s do stuff with it.

BF in Action
Let’s explore BF with worked examples. I encourage you to consider the
other examples included on the Github site. However, the more complex
ones like mandelbrot.b and hanoi.b are the output of programs that generate
BF code. They were not written by hand.

We’ll start with some basic examples and then develop more advanced
examples that require a bit of thought. For example, we’ll end with a pro
gram to multiply two numbers.

Baby Steps
Consider the following code.

+++++[-]

It increments cell 0 five times then starts a loop: [-]. Incrementing five times
is obvious, so let’s work through the loop to see what it does. The first com
mand is [. It checks to see whether the current cell is zero. In this case, the
cell is five and not zero, so [succeeds and the loop begins.

The next instruction, -, decrements the value in the current memory
cell (cell 0), so the value is now four. The closing bracket,], asks if cell 0 is
zero, which it isn’t, so it jumps to the beginning of the loop. Note, the begin
ning of the loop isn’t [, but the first instruction after it (-). Cell 0 is decre

286 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

mented again and] runs again. When the value of cell 0 is zero,] will fail
and the program will end. Therefore, the snippet of code above zeros a cell.
You’ll see [-] in many BF programs.

Now that we have a basic loop under our belt, let’s contemplate the fol
lowing bit of code,

,+[-.,+]

What do you think it might be doing? The code itself is in cat.b. Let’s run it
and see what it produces. To run it, use this command line,

> snobol4 bf.sno examples/cat.b <bf.sno

Do you see the text of bf.sno? The filename is a clue, of course, but this sim
ple program acts like the Unix cat command to display the contents of a file.
Let’s add comments to the code to explain what is happening,

, read a character; mem(0) = ch

+ inc mem(0)

[loop if mem(0) is not zero

- dec mem(0)

. print mem(0) as a character

, read another character to mem(0)

+ inc mem(0)

] loop if mem(0) is not zero

Reading a character, printing, and looping until there are no more char
acters to read is a good idea in this case, but what’s with + and -? These extra
commands handle the case where a zero character has been read. They are
present to deal with how different systems process endoffile (EOF). For
example, this version of the program works nicely with our SNOBOL inter
preter,

,[.,]

but hangs at EOF when using the C interpreter.
Let’s look at another loop example. Honestly, all our examples will be

loop examples as that’s all BF has to offer that isn’t quickly boring. This ex
ample is in countdown0.b,

++++++++++[-.]

It’s only slightly more interesting than our first example. Beyond counting
down, we also print the value of cell 0. However, BF’s print (.) expects an
ASCII character, so this example won’t print anything visible, only a set of
control characters. We can see this by using the Unix xxd command to dump
binary files,

> snobol4 bf.sno examples/countdown0.b | xxd

00000000: 0908 0706 0504 0302 0100

Brainfuck 287

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

The xxd command dumps binary data as hexadecimal values. Looking at
the output you’ll see the countdown (09, 08, 07, ..., 00). To get a countdown
we must convert the current value of cell 0 to a digit. The offset between a
digit value and the ASCII code for the digit is 48, so we must add 48 before
printing and subtract 48 afterward.

Listing 106 shows us countdown1.b. We’ve included comments to ex
plain the code.

++++++++++ mem(0) = 10

> look at mem(1)

++++++++++ mem(1) = 10

[enter loop if mem(1) not zero

- decrement mem(1)

++++++++++

++++++++++

++++++++++

++++++++++

++++++++ add 48

. print

-------- sub 48

< look at mem(0)

. print it

> look at mem(1)

] loop if mem(1) is not zero

Listing 10-6: Countdown with ASCII output

Running Listing 106 produces a countdown as output (9, 8, 7, ..., 0). To
output newline repeatedly, it’s easiest to store it somewhere, so we set cell 0
to 10. Next, > moves the cell pointer to look at cell 1. As you write BF code,
pay very close attention to where the cell pointer is looking. Cell 1 is set to
10 as well, but in this case, it is the value to count down.

The loop begins by incrementing the value in cell 0 with 48 + commands.
This is boring but quick to implement. The current loop count is now a valid
ASCII digit, so we print it and subtract 48 to get back to the actual count.
The bottom of the loop looks at cell 0, which is always 10, and prints it to get
the newline character. The code then looks again at cell 1, where our count
lives, and loops until zero.

Bunches O’Bits
Bit twiddling, meaning fiddling around with the bits of a byte, is the goal
of this section. Here we’ll implement two examples. The first calculates the
ones’ complement of a byte. The second calculates the even parity bit. Don’t be
concerned if these terms are new to you, I’ll clarify as we go.

288 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

A Complimentary Complement
Internally, computers represent integers as a set number of bits, that is, as
a base2 number. One method for encoding negative numbers is to use the
ones’ complement, where each bit is the opposite of what it would be for a pos
itive value. For example, if a number is 000011012 = 11, then 111100102 =
–11 where each one is now a zero and vice versa. In this encoding, the lead
ing bit will be one when the number should be interpreted as a negative
value. Our goal is to write a BF program to calculate the ones’ complement
of an input byte. The byte will be entered as a string of eight characters (each
zero or one).

Let’s think about this task for a bit (or eight). We know we’ll likely want
a loop to read eight bits. After reading a bit, we need to subtract 48 to map
the ASCII value read to its actual value (0 or 1). Once we have the actual
value, we then output a 0 if the value is 1 or a 1 if the value is 0. In typical
languages, a simple IF statement would do the trick. Of course, we’re not
working with an ordinary language, but rather in the strange world world of
BF.

A loop to read a byte’s worth of bits could be written as,

++++++++[->,<]

In this code, we first set cell 0 to eight and then start a loop. The loop decre
ments cell 0, moves to cell 1, and inputs something. It then moves the mem
ory pointer back to cell 0 and loops if the count isn’t zero. This reads eight
characters and then exits. Adding a period after the comma echoes the in
put. Of course, we need a zero or one in memory, not the ASCII code for
zero or one, so somewhere we’ll have to subtract 48. We’ll use a sequence of
48 - instructions.

Alright, we have the input bit, but how do we decide whether we should
output a zero or a one? If the bit is one, we could enter a loop that is other
wise skipped if the bit is zero. How can we use that? Well, we might be able
to set another memory location to one, read the input bit, and if it is one,
decrement the preset memory location. If we do that, we’ll be in business.
However, before we go too far, it’s a good idea to make a map of how we are
using BF memory. So far, we have this setup:

cell : 0 1 2

value : 8 0|1 1

pointer: ^

where our loop counter is in cell 0, the bit entered by the user is in cell 1,
cell 2 holds a one, and the memory pointer is looking at cell 1.

If the user’s bit is one, we want to enter a loop to decrement cell 2. If
the bit is zero, the loop will be skipped and cell 2 will remain one. Then, we
print cell 2 and we have it: a one is changed into a zero and a zero is changed
into a one. We then move the memory pointer back to cell 0 to decrement
the bit counter and repeat until we’re done.

Listing 107 shows ones.b, which implements the above algorithm. Let’s
walk the code to see that it does what I claim.

Brainfuck 289

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

++++++++[

-> decrement mem(0); look at mem(1)

>+<, look at mem(2); inc; mem(1); input

-------- sub 48

[->-<] if one then dec mem(2)

> look at mem(2)

++++++++++

++++++++++

++++++++++

++++++++++

++++++++. add 48; print

[-]< zero mem(2); look at mem(1)

< look at mem(0)

]

++++++++++. mem(0) = 10; print newline

Listing 10-7: Ones’ complement

First, the outermost loop uses cell 0 to count down from eight. Inside
this loop, after decrementing the count, the memory pointer is moved to
cell 2, which is then incremented. We know that cell 2 was initially zero, so it
must be one now. We then move back to cell 1 to get the user’s input, which
we’ll assume is a zero or a one. This much is ->>+<, if the comments are re
moved. Look at the commands until you are sure you follow what’s going
on.

The next block of code is an uninspired sequence of 48 - commands to
change the user’s input into either a zero or a one. Recall that we’re looking
at cell 1. At this point, we have memory as we want it: cell 1 is zero or one
and cell 2 is one. The next set of commands are key to the entire program:
[->-<]>. The small loop ([->-<]) executes if the user’s bit is 1 because we are
looking at cell 1 and it isn’t zero; therefore, [enters the loop. Cell 1 is imme
diately decremented to make it zero because we only want the code in the
loop to execute once. Next, > looks at cell 2 and - decrements it to change
it from one to zero. Lastly, < looks again at cell 1, which is now zero, so the
loop exits, and the final > executes to look at cell 2. If the user’s bit is a zero,
then [fails, skipping the entire loop and moving directly to the final > to also
look at cell 2. At this point, cell 2 is the focus, and it contains a one if the in
put bit was a zero or a zero if the input bit was a one. The next block of 48
+ commands increments the value in cell 2 to get the corresponding ASCII
code and . prints it.

What does [-] do? As we saw above, [-] is the BF idiom to zero a mem
ory location. This is necessary to make sure cell 2 is zero when the outer
loop comes around for the next input bit. Right now, cell 2 is either 48 or
49. The final two << instructions move focus back to cell 0, the loop counter.

290 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

The outer] then loops if cell 0 isn’t zero. When it is, the final line, ++++++++++.
outputs ASCII 10, a newline, and the program exits.

Whew! Let’s see Listing 107 in action. Run ones.b like so,

> echo 00001101 | snobol4 bf.sno examples/ones.b dump

11110010

Memory: (mp = 0)

0: 10

1: 0

2: 0

The echo command is a convenient way to send input to a program without
typing it directly. Notice that the input is 11 as we saw it above, 000011012.
The output is 111100102, which is 11 in ones’ complement, as we wanted.
The memory dump tells us we end the program looking at cell 0, which con
tains 10 for the final newline. The other two cells used by the program are
both zero.

One note before moving on. Listing 107 excludes a comment block at
the top of ones.b. The BF interpreter ignores noncommand characters; how
ever, the comments must not include any command characters. That gets
a bit annoying at times. The comments at the top of ones.b are enclosed in
brackets ([and]). This means the entire comment block (at least the char
acters that are valid BF commands) is a loop. But this doesn’t matter. The
comment block is the first loop in the program, and we know cell 0 is always
zero, so the loop will never execute and we are free to enter whatever text we
want in the comments. This was not my idea, but it is another illustration of
the creativity present in the esolang community.

Achieving Parity
Serial communication protocols sometimes use a parity bit, an extra bit trans
mitted with the data that makes it easier to detect transmission errors. For
example, if the data fits in seven bits, as standard ASCII characters do, then
an eighth bit can be added to make the number of one bits (i.e., bits with
a value of 1) in the 8bit byte even. This is known as even parity. If the re
ceived byte does not have an even number of one bits, the receiver immedi
ately knows there is an error and can request the byte again. A single parity
bit can capture a singlebit error, which is sufficient in most cases.

Our mission is to write a BF program to accept seven input bits and out
put the proper even parity bit. We’ll input bits as a sequence of seven ASCII
characters as before and then output either ASCII 0 or ASCII 1 to make the
number of one bits even. The following are some examples of bytes with
parity bits:

0000000 → 00000000
0000010 → 00000101
0011001 → 00110011
1111111 → 11111111

The bold output bit ensures that every byte has an even number of ones.

Brainfuck 291

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

How should we go about getting BF to do this for us? There are likely
multiple approaches, but the approach we’ll use here is first to tally the num
ber of ones present in the seven inputs. Then we’ll decide which bit to out
put based on this tally. As with ones.b above, we need an outer loop to read
the ASCII bits and subtract 48. To tally the one bits, we’ll increment a mem
ory cell each time the bit is a one.

Listing 108 presents a loop to read seven bits and tally the number of
one bits.

+++++++[mem(0) = 7

>,. mem(1) = input; echo

-------- sub 48

[inner loop if bit is one

- subtract the bit from mem(1)

>+ look at mem(2); increment mem(2)

< look at mem(1)

] exit loop because mem(1) is zero

<- look at mem(0); decrement mem(0)

] loop if mem(0) not zero

Listing 10-8: Adding the input bits

As always, tracking memory use is essential. In this case, cell 0 holds the
bits read counter, cell 1 is the input bit, and cell 2 the tally of one bits. The
first part of the loop is >,., which moves to cell 1, reads the input bit, and
echoes it. Next comes a block of 48 - commands to turn the ASCII character
code into a 0 or 1.

If the bit is a one, [begins the inner loop. The loop body, ->+<, decre
ments cell 1, looks at cell 2 and increments it, and looks again at cell 1. Be
cause cell 1 is now zero,] fails and the loop ends. If the input bit is zero, [
skips ahead to <-. In both cases, the memory pointer is looking at cell 1, so <

looks at cell 0, which - then decrements. The final] fires to repeat the loop
six more times. When the loop ends, cell 2 contains a tally of the number of
one bits read and the memory pointer is looking at cell 0. It’s important to
note that cell 0 and cell 1 are both zero when the outer loop exits.

Cell 2 contains the number of one bits in the input. If this number is
odd, the output bit should be one. Otherwise, it should be zero. How do we
tell if cell 2 is even or odd? Here’s where things get a bit tricky. Our solution
is in Listing 109, but we must walk through it to understand it.

>> look at mem(2)

[loop if mem(2) not zero

[if mem(2) not zero

- subtract one

> look at mem(3)

+ increment it

> look at mem(4); which is zero

292 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

] do not loop

¶ << look back to mem(2)

[if mem(2) not zero

- subtract one

> look at mem(3)

- decrement

> look at mem(4); which is zero

] do not loop

<< look at mem(2) or mem(0) if sum exhausted

] loop if not zero

Listing 10-9: Using the ones tally to decide the parity bit

In essence, when the outer loop of Listing 109 ends, the memory pointer
will be looking at cell 0 if the output bit should be one or cell 2 if the output
bit should be zero. Additionally, cell 3 will be one if we end at cell 0 and cell
5 will be its default value of zero.

The code before the main loop of Listing 109 is simple enough. Move
the memory pointer twice to look at cell 2, which has the one bits tally. If
this tally is zero, the loop is skipped by [and we move to the final bit of code
with the memory pointer looking at cell 2. We’ll get to the final bit of code
below.

If the tally in cell 2 isn’t zero, we enter the main loop of Listing 109.
The body of this loop has two inner loops, one after the other. The body
of the first inner loop is ->+>. It subtracts one from cell 2, looks at and in
crements cell 3, and then looks at cell 4, which is always zero. Because cell
4 is zero,] exits the loop, meaning the loop never actually loops. Notice
that when the loop exits, the memory pointer is looking at cell 4 and cell 3
is one.

If we assume that cell 2 was initially one, ¶ cell 2 is now zero, cell 3 is
one, and we are looking at cell 4, which is also zero. The << between the in
ner loops moves back to cell 2, which, as it is zero, skips the second inner
loop and hits the final << to move back from cell 2 to cell 0. Because cell 0 is
zero, the outer loop exits, meaning we are looking at cell 0 and cell 3 is still
one.

This situation happens every time cell 2 contains an odd value. What if
cell 2 contains two? After the first inner loop of Listing 109, cell 2 contains
one, cell 3 contains one, and we are looking at cell 2. Therefore, the second
inner loop fires to decrement cell 2 and cell 3, making them both zero. The
loop then moves to cell 4, which is always zero, exits, and moves back to cell
2, which is now also zero. The outer loop then exits, and we are looking at
cell 2 this time, not cell 0. Whenever cell 2 is initially even, both inner loops
will repeatedly fire to make cell 2 zero. Cell 3 is also decremented by the sec
ond inner loop to make sure it only ever contains a one.

We’re almost done. The code in Listing 109 ends, leaving BF in one of
two states. If the tally in cell 2 was even, we’re looking at cell 2. If the tally is
odd, we’re looking at cell 0 and cell 3 is one. To output the proper bit, we
need the code in Listing 1010.

Brainfuck 293

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

>>> look at mem(3) or mem(5)

++++++++++++++++++++

++++++++++++++++++++

++++++++. add 48 and print

> look at the next location which is zero

++++++++++. set to 10 and print the newline

Listing 10-10: Printing the proper parity bit

We use >>> to move to either cell 3 or cell 5. Cell 3 would be one if we
ended at cell 0 and that’s the value we want to output. If we ended at cell
2, we move to cell 5, which is initialized to be zero and is also the value we
want. All that remains is to add 48 to convert the value to the ASCII char
acter code for either 1 or 0, print it, and then move to either cell 4 or cell 6,
both of which are initially zero, to output the final newline character.

Let’s try parity.b with the example inputs above,

> echo 0000000 | bfi examples/parity.b

00000000

> echo 0000010 | bfi examples/parity.b

00000101

> echo 0011001 | bfi examples/parity.b

00110011

> echo 1111111 | bfi examples/parity.b

11111111

The output is as expected, meaning that parity.b works. You’ll get the same
results if you use the SNOBOL interpreter as well.

Now, let’s work on our final BF example, multiplication.

Multiplicative Multiplicity
Multiplication is repeated addition. Let’s use that fact to write a BF program
to accept two singledigit numbers and compute their product. We’ll write
two versions. The first version implements multiplication but leaves the
product in memory. This is unsatisfying, so the second version uses freely
available code from https://esolangs.org/ to output the product as ASCII char
acters. The full source code for both examples is in mult.b and mult2.b, re
spectively.

We require two inputs which we’ll store cells 0 and 1. We’ll use cells 2
and 3 while multiplying and place the final product in cell 3. Reading the
input characters is straightforward; see Listing 1011.

,--------------------

-------------------- mem(0) = input

-------- sub 48

>++++++++++++++++ mem(1) = 32 (space)

++++++++++++++++. print

++++++++++. add 10; print *

294 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

https://esolangs.org/

----------. sub 10; print space

,-------------------- mem(1) = input

-------- sub 48

Listing 10-11: Reading and printing the inputs

The first character is read and converted to its numeric value. Then cell
1 is used to output * before reading the second digit.

To multiply, we must increment a memory location as many times as the
value in cell 1 dictates (that is, increment it cell 1 times), and repeat until cell
0 is zero. For example, if cell 0 is five and cell 1 is four, the algorithm is to
calculate,

5× 4 = 4 + 4 + 4 + 4 + 4 = 20

which we might write in a language like Python as,

ans = 0

for i in range(5):

for j in range(4):

ans += 1

Let’s duplicate this code in BF. However, we have a minor issue. We
need two loops, an outer loop running until cell 0 is zero, and an inner loop
to increment cell 3 cell 1 times. Recall that BF loops are destructive. For ex
ample, if we write ++++[.-] we’ll print the current value of cell 0 four times,
from four down to one. When the loop exits, cell 0 is zero, meaning its orig
inal value has been lost. Thus, we must preserve the value of cell 1 to use it
again on the next pass.

Listing 1012 shows us the multiplication algorithm. Let’s see how it pre
serves the inner loop counter.

<[- dec mem(0)

>[- look at mem(1); dec

>+>+<< inc mem(2); inc mem(3); look at mem(1)

] continue until mem(1) is zero

>[-<+>] look at mem(2); copy back to mem(1)

<< look at mem(0)

] loop until mem(0) is zero

Listing 10-12: Multiplying the two digits

The first < moves us back to cell 0 as the code in Listing 1011 ends with
the memory pointer looking at cell 1. Cell 0 isn’t zero, generally, so the
outer loop begins, and cell 0 is immediately decremented. Next, > moves
to cell 1, and the first inner loop begins if cell 1 isn’t zero. Cell 1 is also im
mediately decremented.

The body of the first inner loop is >+>+<<. The >+ instructions move to
cell 2 and increment it. The following >+ does the same to cell 3. Lastly, <<
moves back to cell 1 so] can decide whether to continue the loop or not.

Brainfuck 295

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

When the loop exits, memory looks like this assuming the user entered 5

and 4,

cell : 0 1 2 3

value : 4 0 4 4

pointer: ^

Recall that cell 3 holds our product. It’s currently 4 because the first inner
loop ran four times. We now must restore cell 1. That’s why the loop incre
mented both cell 2 and cell 3. We use cell 3 for the product and can use cell
2 to restore the inner loop counter. That’s what >[-<+>] does, it decrements
cell 2 while incrementing cell 1. The final << ensures that the outer loop’s]
instruction is looking at cell 0.

Each pass through the outer loop adds cell 1 to cell 3, using cell 2 to
restore cell 1 for the next pass. When cell 0 is finally zero, cell 3 holds the
product. Note that we entered single digits, but this multiplication routine
is generic and will work for any two values. Also, the trick of double incre
menting memory to have a place to restore from is another BF idiom. We
saw similar code in Chapter 8 when we implemented multiplication in FRAC
TRAN.

Let’s take mult.b out for a test drive. We’ll use our interpreter’s ability to
dump memory to see if it is working. For example,

> snobol4 bf.sno examples/mult.b dump

3 * 5

Memory: (mp = 0)

0: 10

1: 5

2: 0

3: 15

> snobol4 bf.sno examples/mult.b dump

9 * 8

Memory: (mp = 0)

0: 10

1: 8

2: 0

3: 72 H

In both cases, we see that cell 3 contains the correct product.
To print the product as a number, we add the code in Listing 1013 to

the end of the multiplication routine in Listing 1012. See mult2.b.

>>> move to mem(3)

>[-]>[-]+>[-]+< set n and d to one to start loop

[loop on 'n'

>[-<- on the first loop

296 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

<<[->+>+<<] copy V into N (and Z)

>[-<+>]>> restore V from Z

]

++++++++++>[-]+>[-]>[-]>[-]<<<<< init for the division by 10

[->-[>+>>]>[[-<+>]+>+>>]<<<<<] full division

>>-[-<<+>>] store remainder into n

<[-]++++++++[-<++++++>] make it an ASCII digit; clear d

>>[-<<+>>] move quotient into d

<< shuffle; new n is where d was and

old n is a digit

] end loop when n is zero

<[.[-]<] Move to were Z should be and

output the digits till we find Z

< back to V

<++++++++++. newline

Listing 10-13: The print routine

As mentioned, this routine comes from https://esolangs.org/. What is par
ticularly nice about this routine is that it works with any memory location,
so we move from cell 0 to cell 3 prior to running it. The provided comments
give some indication of what the routine is doing. Notice that the second
line of Listing 1013 uses the “clear a cell” idiom three times to initialize
memory. We won’t walk through Listing 1013 in any detail as it is quite
challenging. Motivated readers will find the code, with some additional de
tails, at https://esolangs.org/wiki/Brainfuck_algorithms/ under the heading be
ginning with “Print value of cell x as number.”

Let’s review a couple examples to see that the routine works as adver
tised.

> snobol4 bf.sno examples/mult2.b

3 * 5 = 15

> snobol4 bf.sno examples/mult2.b

9 * 8 = 72

The examples of this section, ones.b, parity.b, mult.b, and mult2.b serve as
our introduction to BF. There’s much more we might say, but we covered
the essentials. Let’s turn now to outside resources to see additional exam
ples, learn more about BF programming, and gain insight on how BF has
influenced esolangs as a whole, to say nothing of genuine academic research
involving BF.

The BF Multiverse
If Piet generated a universe, then to be fair, we must say that BF has created
a multiverse. Let’s briefly investigate some of those universes in this section:
examples, tutorials, implementations, inspirations, and academic BF. Enjoy!

Brainfuck 297

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

https://esolangs.org/
https://esolangs.org/wiki/Brainfuck_algorithms/

Examples
The best way to learn a language is to use it. We did that in the previous sec
tion. The next best way to learn a language is to see how others have used it.
Let’s take a cursory look at the BF examples included with this book. I did
not write these examples. See the README file for attribution information.

The most impressive set of BF programs written by hand and not gen
erated by another system producing BF code as output I’ve found are by
Daniel B. Cristofani. You’ll find them at https://brainfuck.org/, which alone
tells you Cristofani’s a serious BF coder—he registered the domain name. I
suspect you’ll learn much from the examples and even more from the tuto
rial information on his site.

The book repository contains the following, all of which run with both
the C and SNOBOL interpreters:

squares.b Print n2 for [0, 100].

fib.b Generate an endless stream of Fibonacci numbers. We encoun
tered the Fibonacci sequence in Chapter 1 and again in Chapter 7. This
version does not use a single cell to hold the number, but rather han
dles arbitrarysized numbers. This is a good example of how compact
BF code can be while still doing something interesting.

factorial2.b Another gem. This one calculates an endless stream of fac
torials.

sierpinski.b The Sierpinski triangle is a common fractal, one that a
straightforward algorithm can generate. This version produces ASCII
output. We’ll work with the Sierpinski triangle again in Chapter 14.
Consider this example a preview.

random.b Implements Wolfram’s Rule 30, a onedimensional cellular
automaton. This automaton, especially the center bit, passes many tests
for randomness and formed the basis for Mathematica’s first pseudo
random generator. To experiment more with Rule 30 and other one
dimensional automatons, see Chapter 7 of my book, Random Numbers
and Computers.

golden.b Calculates the decimal expansion of ϕ = 1+
√
5

2 .

e.b Calculates the decimal expansion of e, the base of the natural loga
rithm. The natural log can be defined via an integral, ln x =

∫ x
1

1
t dt with e

the limit such that the log is one, 1 =
∫ e
1

1
t dt.

tictactoe.b Tictactoe in BF. You against the computer. Good luck.

The remaining examples, beyond cat.b and hello.b which we saw above,
include:

prime.b Calculate prime numbers less than the given number. This
commented example was written by hand, but I have not succeeded in
identifying the author.

298 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

https://brainfuck.org/

hanoi.b An animated Towers of Hanoi. This example is the output of
Claire Wolf’s BF compiler suite (see below). It’s fun to watch, but run it
with the C interpreter or you’ll be waiting a very long time indeed.

mandelbrot.b Creates an ASCII version of the Mandelbrot set. The
README file gives the URL of the code. It appears to be the output
of Wolf’s BF compiler as well. If you use the SNOBOL interpreter, you’ll
eventually finish, but it runs at about a hundred times slower than the C
interpreter.

Tutorials
The tutorials here offer plenty of good BF programming insights, idioms,
and explanations.

Daniel B Cristofani’s BF Pages Mentioned above but worth mention
ing again because of the helpful programming advice. You’ll even find
advice on how to write a “compliant” interpreter. Our SNOBOL inter
preter is not compliant, but we’re happy with it. (https://brainfuck.org/)

Frans Faase’s BF Pages You’ll find many good reference/tutorial
pages here. Some are Faase’s whereas others are links to still more in
formation about BF. The World Wide Web is a web, after all. (https:
//www.iwriteiam.nl/Ha_BF.html)

Katie Ball’s BF Tutorial Ball’s tutorial is another good reference.
(https://gist.github.com/roachhd/dce54bec8ba55fb17d3a)

Implementations
The implementations of BF are legion, which is somehow fitting. A tiny se
lection is referenced here, and I’m completely ignoring all the hardware im
plementations.

Compilers
The phrase BF compiler has multiple meanings. For example, a BF compiler
might be a program that takes a higherlevel language and produces BF
code. In that case, BF is the machine code for the compiler. Alternatively,
a BF compiler might be just that, a program that takes BF as input and pro
duces executable code from it. I offer an example of each kind here.

Brian Raiter’s Native BF Compiler As promised above, here’s Brian
Raiter’s 166 byte BF compiler. It’s written in assembly language (in
stall nasm on Linux) and produces standalone executables. Not every
example in the repository works with this compiler, but many do, and
the results are significantly faster than even the C interpreter. Try e.b,
golden.b, and tictactoe.b. There are many comments in the source code,
bf.asm. Hopefully, your x86 assembly is much stronger than mine. (http:
//www.muppetlabs.com/~breadbox/software/tiny/bf.asm.txt)

Brainfuck 299

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

https://brainfuck.org/
https://www.iwriteiam.nl/Ha_BF.html
https://www.iwriteiam.nl/Ha_BF.html
https://gist.github.com/roachhd/dce54bec8ba55fb17d3a
http://www.muppetlabs.com/~breadbox/software/tiny/bf.asm.txt
http://www.muppetlabs.com/~breadbox/software/tiny/bf.asm.txt

Claire Wolf’s Compiler to BF This compiler takes a higherlevel macro
language and produces executable BF code. It produced two of our
examples: hanoi.b and mandelbrot.b. (http://bygone.clairexen.net/bfcpu/
bfcomp.html)

Interpreters
We saw how easy it is to write a BF interpreter, even in SNOBOL. The two
links here point to large lists of BF interpreters in all kinds of languages.

Esolangs.org’s BF Implementations This page has a long list of BF
and BFrelated goods and services, er, implementations. (https://esolangs.
org/wiki/Brainfuck_implementations)

Rosetta Code’s BF Implementations BF interpreters in a plethora of
languages. Neither Jefe nor I are responsible for time or bits lost due
to incomplete or erroneous code. (http://rosettacode.org/wiki/Execute_
Brain****)

Inspirations
Perhaps the greatest tribute to BF is that it has inspired many other esolangs.
Some are serious, genuine extensions to core BF. Others are less serious or
even outright jokes. If you browse the (long) language list at esolangs.org/
wiki/Language_list, you’ll recognize many BFrelated languages from nothing
more than the colorful, if not sometimes offensive, names.

Academic BF
BF isn’t all just fun and games. The language is elementary, yet Turing com
plete. This makes it attractive to researchers looking for a target or other
language to use in their systems. The references here are to academic papers
that use BF, either actively or as an example. What’s particularly interesting
is that not all of the references are from traditional computer science jour
nals. BF’s useful even in relation to more traditional human pursuits, like
poetry. This list is by no means exhaustive, merely illustrative, and favoring
more recent references to BF.

BF++: A Language for Generalpurpose Program Synthesis, Vadim Liventsev,
Aki Härmä, and Milan Petkovic�(2021).

Neural Program Synthesis with Priority Queue Training, Daniel A. Abolafia,
Mohammad Norouzi, Jonathan Shen, Rui Zhao, and Quoc V Le (2018).

Resisting Clarity/Highlighting Form: Comparing Vanguard Approaches in
Poetry and Programming, Irina Lyubchenko (2020).

Fully Human, Fully Machine: Rhetorics of Digital Disembodiment in Program
ming, Brandee Easter (2020).

50,000,000,000 Instructions per Second: Design and Implementation of a 256
Core BrainFuck Computer, SangWoo Jun (2016).

300 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

http://bygone.clairexen.net/bfcpu/bfcomp.html
http://bygone.clairexen.net/bfcpu/bfcomp.html
https://esolangs.org/wiki/Brainfuck_implementations
https://esolangs.org/wiki/Brainfuck_implementations
http://rosettacode.org/wiki/Execute_Brain****
http://rosettacode.org/wiki/Execute_Brain****
esolangs.org/wiki/Language_list
esolangs.org/wiki/Language_list

A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics, Michael
Mateas and Nick Montfort (2005).

The first two references use BF with reinforcement learning, thereby
combining esolangs and deep machine learning. Advanced neural networks
generate BF programs to solve problems.

Discussion
BF is Turing complete. It’s imperative, has the requisite control structures
(brackets), and, ignoring the selfimposed 30,000 cell memory limit, uses
arbitrary memory. Additionally, and impressively, Daniel Cristofani imple
mented a universal Turing machine in BF, thereby directly demonstrating
Turing completeness. The machine is in utm.b in the BF examples direc
tory. Comments in the file explain, in detail, what the program is and what
it means.

There’s a certain enticing nature to BF due to its simplicity. Yes, it’s
challenging to work with, which might have been intentional, like a gaunt
let thrown down to see who might pick it up. But I don’t view BF that way.
Life is built from the combinatorial mixing of a multitude of smaller com
ponents. Might it be possible to view something like BF as the DNA of pro
gramming? We already know from Chapter 3 that a Turing machine cap
tures the essence of what an algorithm is. BF is more advanced than a Tur
ing machine, but just barely, so it can serve the same purpose as an encapsu
lation of the idea of an “algorithm.”

In his famous Epigrams on Programming, Alan Perlis wrote,

19. A language that doesn’t affect the way you think about pro
gramming, is not worth knowing.

This is true for every language in this book, but I hope it is especially
so for the esolangs, with BF chief among them. Struggling to write code in
BF, especially when decades of experience make the necessary code almost
instantly present itself in more familiar languages, does affect the way you
think about programming. I found myself trying, with varying levels of suc
cess, to think in a new way to understand how to fit what BF offers to what
I would instinctively do in a language like Python or C. Perhaps that’s the
most enduring effect of learning BF. It requires you to think in new ways in
stead of relying on what is already familiar. BF is a way out of the Python (or
C or Java or ...) echo chamber, as it were.

Perlis offers more wisdom directly applicable to BF,

23. To understand a program you must become both the machine
and the program.

For modern, highlevel languages, we need not think about the machine
too much. Indeed, modern languages go to great lengths to abstract them
selves from the machine. With BF, as with a Turing machine, we must con
sider both the machine and the program if we hope to be successful.

As we’re quoting Perlis, I’d be remiss not to include this epigram,

Brainfuck 301

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

54. Beware of the Turing tarpit in which everything is possible but
nothing of interest is easy.

Turing tarpits might be a bit like beauty—in the eye of the beholder.
The following that has grown around BF and, by extension, esolangs in gen
eral, argues against Perlis in this case, at least to me. Perlis’ first epigram is
“One man’s constant is another man’s variable.” I’m tempted to rephrase it:
“One man’s Turing tarpit is another man’s inspiration.”

Chapter Summary
This chapter introduced us to the strangely attractive, if frustratingly dif
ficult, multiverse of BF. We explored what BF is and then implemented it
twice: once in C using the original implementation and again in SNOBOL.
After this, we wrote a few example programs to get a feel for thinking in BF.
With a basic grasp of the language in hand, we then turned our gaze upward
to examine some of the brighter lights in the BF multiverse. As with every
language, we closed the chapter with a brief discussion.

In Chapter 9 we painted pretty pictures with Piet, a twodimensional lan
guage. Let’s close our survey of existing esolangs by returning to the world
of 2D programming, but this time we’ll use text instead of pixels. Next stop,
Befunge.

302 Chapter 10

Strange Code (Sample Chapter) © 3/18/22 by Ronald T. Kneusel

S T R A N G E C O D E
R O N A L D T. K N E U S E L

3/18/22

