
6
B o o t P r o c e s s s e c u r i t y

In this chapter we’ll look at two important
security mechanisms implemented in the

Microsoft Windows kernel: the Early Launch
Anti-Malware (ELAM) module, introduced in

Windows 8, and the Kernel-Mode Code Signing Policy,
introduced in Windows Vista. Both mechanisms were
designed to prevent the execution of unauthorized
code in the kernel address space, in order to make it
harder for rootkits to compromise a system. We’ll look
at how these mechanisms are implemented, discuss
their advantages and weak points, and examine their
effectiveness against rootkits and bootkits.

70 Chapter 6

The Early Launch Anti-Malware Module
The Early Launch Anti-Malware (ELAM) module is a detection mecha-
nism for Windows systems that allows third-party security software, such as
anti virus software, to register a kernel-mode driver that is guaranteed to
execute very early in the boot process, before any other third-party driver
is loaded. Thus, when an attacker attempts to load a malicious component
into the Windows kernel address space, the security software can inspect
and prevent that malicious driver from loading since the ELAM driver is
already active.

API Callback Routines
The ELAM driver registers callback routines that the kernel uses to evalu-
ate data in the system registry hive and boot-start drivers. These callbacks
detect malicious data and modules and prevent them from being loaded
and initialized by Windows.

The Windows kernel registers and unregisters these callbacks by imple-
menting the following API routines:

CmRegisterCallbackEx and CmUnRegisterCallback Register and unregister
callbacks for monitoring registry data

IoRegisterBootDriverCallback and IoUnRegisterBootDriverCallback Register
and unregister callbacks for boot-start drivers

These callback routines use the prototype EX_CALLBACK_FUNCTION, shown
in Listing 6-1.

NTSTATUS EX_CALLBACK_FUNCTION(
 IN PVOID CallbackContext,
 IN PVOID Argument1, // callback type
 IN PVOID Argument2 // system-provided context structure

);

Listing 6-1: Prototype of ELAM callbacks

The parameter CallbackContext receives a context from the ELAM
driver once the driver has executed one of the aforementioned callback
routines to register a callback. The context is a pointer to a memory buffer
holding ELAM driver–specific parameters that may be accessed by any of
the callback routines. This context is a pointer that’s also used to store the
current state of the ELAM driver. The argument at provides the callback
type, which may be either of the following for the boot-start drivers:

BdCbStatusUpdate Provides status updates to an ELAM driver regarding
the loading of driver dependencies or boot-start drivers

BdCbInitializeImage Used by the ELAM driver to classify boot-start
drivers and their dependencies

Boot Process Security 71

Classification of Boot-Start Drivers

The argument at provides information that the operating system uses
to classify the boot-start driver as known good (drivers known to be legiti-
mate and clean), unknown (drivers that ELAM can’t classify), and known
bad (drivers known to be malicious).

Unfortunately, the ELAM driver must base this decision on limited data
about the driver image to classify, namely:

•	 The name of the image

•	 The registry location where the image is registered as a boot-start
driver

•	 The publisher and issuer of the image’s certificate

•	 A hash of the image and the name of the hashing algorithm

•	 A certificate thumbprint and the name of the thumbprint algorithm

The ELAM driver doesn’t receive the image’s base address, nor can
it access the binary image on the hard drive because the storage device
driver stack isn’t yet initialized (as the system hasn’t finished bootup). It
must decide which drivers to load based solely on the hash of the image
and its certificate, without being able to observe the image itself. As a con-
sequence, the protection for the drivers is not very effective at this stage.

ELAM Policy

Windows decides whether to load known bad or unknown drivers
based on the ELAM policy specified in this registry key: HKLM\System\
CurrentControlSet\Control\EarlyLaunch\DriverLoadPolicy.

Table 6-1 lists the ELAM policy values that determine which drivers
may be loaded.

Table 6-1: ELAM Policy Values

Policy name Policy value Description

PNP_INITIALIZE_DRIVERS_DEFAULT 0x00 Load known good drivers only.
PNP_INITIALIZE_UNKNOWN_DRIVERS 0x01 Load known good and

unknown drivers only.
PNP_INITIALIZE_BAD_CRITICAL_DRIVERS 0x03 Load known good, unknown,

and known bad critical drivers.
(This is the default setting.)

PNP_INITIALIZE_BAD_DRIVERS 0x07 Load all drivers.

As you can see, the default ELAM policy, PNP_INITIALIZE_BAD_CRITICAL
_DRIVERS, allows the loading of bad critical drivers. This means that if a
critical driver is classified by ELAM as known bad, the system will load it

72 Chapter 6

regardless. The rationale behind this policy is that critical system drivers
are an essential part of the operating system, so any failure in their initial-
ization will render the operating system unbootable; that is, the system
won’t boot unless all its critical drivers are successfully loaded and initial-
ized. This ELAM policy therefore compromises some security in favor of
availability and serviceability.

However, this policy won’t load known bad noncritical drivers, or those
drivers without which the operating system can still successfully load. This
is the main difference between the PNP_INITIALIZE_BAD_CRITICAL_DRIVERS and
PNP_INITIALIZE_BAD_DRIVERS policies: the latter allows all drivers to be loaded,
including known bad noncritical drivers.

How Bootkits Bypass ELAM
ELAM gives security software an advantage against rootkit threats but not
against bootkits—nor was it designed to. ELAM can monitor only legiti-
mately loaded drivers, but most bootkits load kernel-mode drivers that use
undocumented operating system features. This means that a bootkit can
bypass security enforcement and inject its code into kernel address space
despite ELAM. In addition, as shown in Figure 6-1, a bootkit’s malicious
code runs before the operating system kernel is initialized and before any
kernel-mode driver is loaded, including ELAM. This means that a bootkit
can sidestep ELAM protection.

MBR VBR/IPL bootmgr
winload.exe OS kernel ELAM Kernel-mode

drivers

Bootkit is
loaded.

ELAM receives control and
checks kernel-mode drivers.

Bootkit patches
system modules.

ELAM verifies drivers.

The system is compromised.

Bootkit injects
its code into
kernel-mode

address space.

Figure 6-1: The flow of the boot process with ELAM

Most bootkits load their kernel-mode code in the middle of kernel
initialization, once all OS subsystems (the I/O subsystem, object manager,
plug and play manager, and so forth) have been initialized but before
ELAM is executed. ELAM can’t prevent the execution of malicious code
that has been loaded before it, of course, so it has no defenses against boot-
kit techniques.

Boot Process Security 73

Microsoft Kernel-Mode Code Signing Policy
The Kernel-Mode Code Signing Policy protects the Windows operating
system by imposing code-signing requirements for modules meant to be
loaded into the kernel address space. This policy has made it much harder
for bootkits and rootkits to compromise a system by executing kernel-mode
drivers, thus pushing rootkit developers to switch to bootkit techniques
instead. Unfortunately, as explained later in the chapter, attackers can dis-
able the entire logic of on-load signature verification by manipulating a few
variables that correspond to startup configuration options.

Kernel-Mode Drivers Subject to Integrity Checks
The signing policy was introduced in Windows Vista and has been
enforced in all subsequent versions of Windows, though it’s enforced
differently on 32-bit and 64-bit operating systems. It kicks in when the
kernel-mode drivers are loaded so that it can verify their integrity before
driver images are mapped into kernel address space. Table 6-2 shows
which kernel-mode drivers on 64- and 32-bit systems are subject to which
integrity checks.

Table 6-2: Kernel-Mode Code Signing Policy Requirements

Driver type Subject to integrity checks?

64-bit 32-bit

Boot-start drivers Yes Yes

Non-boot-start PnP drivers Yes No

Non-boot-start, non-PnP drivers Yes No (except drivers that
stream protected media)

As the table shows, on 64-bit systems, all kernel-mode modules, regard-
less of type, are subject to integrity checks. On 32-bit systems, the signing pol-
icy applies only to boot-start and media drivers; other drivers are not checked
(PnP device installation enforces an install-time signing requirement).

In order to comply with the code integrity requirements, drivers must
have either an embedded Software Publisher Certificate (SPC) digital sig-
nature or a catalog file with an SPC signature. Boot-start drivers, however,
can have only embedded signatures because at boot time the storage device
driver stack isn’t initialized, making the drivers’ catalog files inaccessible.

Location of Driver Signatures
The embedded driver signature within a PE file, such as a boot-start driver,
is specified in the IMAGE_DIRECTORY_DATA_SECURITY entry in the PE header data
directories. Microsoft provides APIs to enumerate and get information on
all the certificates contained in an image, as shown in Listing 6-2.

74 Chapter 6

BOOL ImageEnumerateCertificates(
 In HANDLE FileHandle,
 In WORD TypeFilter,
 Out PDWORD CertificateCount,
 _In_out_ PDWORD Indices,
 _In_opt_ DWORD IndexCount
);
BOOL ImageGetCertificateData(
 In HANDLE FileHandle,
 In DWORD CertificateIndex,
 Out LPWIN_CERTIFICATE Certificate,
 Inout PDWORD RequiredLength
);

Listing 6-2: Microsoft’s API for enumerating and validating certificates

The Kernel-Mode Code Signing Policy has increased the security
resilience of the system, but it does have its limitations. In the following
sections, we discuss some of those shortcomings and how malware authors
have leveraged them to bypass protections.

Plug a nd Pl ay de v ice ins ta l l at ion signing Pol icy

In addition to the Kernel-Mode Code Signing Policy, Microsoft Windows has
another type of signing policy: the Plug and Play Device Installation Signing
Policy. It’s important not to confuse the two.

The requirements of the Plug and Play Device Installation Signing Policy
apply only to plug and play (PnP) device drivers and are enforced in order to
verify the identity of the publisher and the integrity of the PnP device driver
installation package. Verification requires that the catalog file of the driver
package be signed either by a Windows Hardware Quality Labs (WHQL)
certificate or by a third-party SPC. If the driver package doesn’t meet the
requirements of the PnP policy, a warning dialog prompts users to decide
whether to allow the driver package to be installed on their system.

System administrators can disable the PnP policy, allowing PnP driver
packages to be installed on a system without proper signatures. Also, note that
this policy is applied only when the driver package is installed, not when the
drivers are loaded. Although this may look like a TOCTOU (time of check to
time of use) weakness, it’s not; it simply means that a PnP driver package that
is successfully installed on a system won’t necessarily be loaded, because these
drivers are also subject to the Kernel-Mode Code Signing Policy check at boot.

The Legacy Code Integrity Weakness
The logic in the Kernel-Mode Code Signing Policy responsible for enforc-
ing code integrity is shared between the Windows kernel image and the
kernel-mode library ci.dll. The kernel image uses this library to verify the

Boot Process Security 75

integrity of all modules being loaded into the kernel address space. The key
weakness of the signing process lies in a single point of failure in this code.

In Microsoft Windows Vista and 7, a single variable in the kernel image
lies at the heart of this mechanism and determines whether integrity checks
are enforced. It looks like this:

BOOL nt!g_CiEnabled

This variable is initialized at boot time in the kernel image routine
NTSTATUS SepInitializeCodeIntegrity(). The operating system checks to see
if it is booted into the Windows preinstallation (WinPE) mode, and if so,
the variable nt!g_CiEnabled is initialized with the FALSE (0x00) value, which
disables integrity checks.

So, of course, attackers found that they could easily dodge the integ-
rity check by simply setting nt!g_CiEnabled to FALSE, which is exactly what
happened with the Uroburos family of malware (also known as Snake and
Turla) in 2011. Uroburos bypassed the code-signing policy by introducing
and then exploiting a vulnerability in a third-party driver. The legitimate
third-party signed driver was VBoxDrv.sys (the VirtualBox driver), and the
exploit cleared the value of the nt!g_CiEnabled variable after gaining code
execution in kernel mode, at which point any malicious unsigned driver
could be loaded on the attacked machine.

a l inu x v ul ne r a Bil i t y

This kind of weakness is not unique to Windows: attackers have disabled the
mandatory access control enforcement in SELinux in similar ways. Specifically,
if the attacker knows the address of the variable containing SELinux’s enforce-
ment status, all the attacker needs to do is overwrite the value of that variable.
Because SELinux enforcement logic tests the variable’s value before doing any
checks, this logic will render itself inactive. A detailed analysis of this vulner-
ability and its exploit code can be found at https://grsecurity.net/~spender/
exploits/exploit2.txt.

If Windows isn’t in WinPE mode, it next checks the values of the boot
options DISABLE_INTEGRITY_CHECKS and TESTSIGNING. As the name suggests,
DISABLE_INTEGRITY_CHECKS disables integrity checks. A user, on any Windows
version, can set this option manually at boot with the Boot menu option
Disable Driver Signature Enforcement. Windows Vista users can also use the
bcdedit.exe tool to set the value of the nointegritychecks option to TRUE; later
versions ignore this option in the Boot Configuration Data (BCD) when
Secure Boot is enabled (see Chapter 17 for more on Secure Boot).

The TESTSIGNING option alters the way the operating system verifies the
integrity of kernel-mode modules. When it’s set to TRUE, certificate vali-
dation isn’t required to chain all the way up to a trusted root certificate

76 Chapter 6

authority (CA). In other words, any driver with any digital signature can be
loaded into kernel address space. The Necurs rootkit abuses the TESTSIGNING
option by setting it to TRUE and loading its kernel-mode driver, signed with a
custom certificate.

For years, there have been browser bugs that failed to follow the inter-
mediate links in the X.509 certificate’s chains of trust to a legitimate trusted
CA,1 but OS module-signing schemes still don’t eschew shortcuts wherever
chains of trust are concerned.

The ci.dll Module
The kernel-mode library ci.dll, which is responsible for enforcing code
integrity policy, contains the following routines:

CiCheckSignedFile Verifies the digest and validates the digital signature

CiFindPageHashesInCatalog Validates whether a verified system catalog
contains the digest of the first memory page of the PE image

CiFindPageHashesInSignedFile Verifies the digest and validates the digital
signature of the first memory page of the PE image

CiFreePolicyInfo Frees memory allocated by the functions
CiVerifyHashInCatalog, CiCheckSignedFile, CiFindPageHashesInCatalog,
and CiFindPageHashesInSignedFile

CiGetPEInformation Creates an encrypted communication channel
between the caller and the ci.dll module

CiInitialize Initializes the capability of ci.dll to validate PE image file
integrity

CiVerifyHashInCatalog Validates the digest of the PE image contained
within a verified system catalog

The routine CiInitialize is the most important one for our purposes,
because it initializes the library and creates its data context. We can see its
prototype corresponding to Windows 7 in Listing 6-3.

NTSTATUS CiInitialize(
 IN ULONG CiOptions;

 PVOID Parameters;
 OUT PVOID g_CiCallbacks;

);

Listing 6-3: Prototype of the CiInitialize routine

The CiInitialize routine receives as parameters the code integrity
options (CiOptions) and a pointer to an array of callbacks (OUT PVOID
g_CiCallbacks) , the routines of which it fills in upon output. The kernel
uses these callbacks to verify the integrity of kernel-mode modules.

1. See Moxie Marlinspike, “Internet Explorer SSL Vulnerability,” https://moxie.org/ie-ssl-chain.txt.

https://moxie.org/ie-ssl-chain.txt

Boot Process Security 77

The CiInitialize routine also performs a self-check to ensure that no
one has tampered with it. The routine then proceeds to verify the integrity
of all the drivers in the boot-driver list, which essentially contains boot-start
drivers and their dependencies.

Once initialization of the ci.dll library is complete, the kernel uses
callbacks in the g_CiCallbacks buffer to verify the integrity of the modules.
In Windows Vista and 7 (but not Windows 8), the SeValidateImageHeader
routine decides whether a particular image passes the integrity check.
Listing 6-4 shows the algorithm underlying this routine.

NTSTATUS SeValidateImageHeader(Parameters) {
 NTSTATUS Status = STATUS_SUCCESS;
 VOID Buffer = NULL;

 if (g_CiEnabled == TRUE) {
 if (g_CiCallbacks[0] != NULL)

 Status = g_CiCallbacks[0](Parameters);
 else
 Status = 0xC0000428
 }
 else {

 Buffer = ExAllocatePoolWithTag(PagedPool, 1, 'hPeS');
 *Parameters = Buffer
 if (Buffer == NULL)
 Status = STATUS_NO_MEMORY;
 }
 return Status;
}

Listing 6-4: Pseudocode of the SeValidateImageHeader routine

SeValidateImageHeader checks to see if the nt!g_CiEnabled variable is set to
TRUE . If not, it tries to allocate a byte-length buffer and, if it succeeds,
returns a STATUS_SUCCESS value.

If nt!g_CiEnabled is TRUE, then SeValidateImageHeader executes the first
callback in the g_CiCallbacks buffer, g_CiCallbacks[0] , which is set to the
CiValidateImageData routine. The later callback CiValidateImageData verifies
the integrity of the image being loaded.

Defensive Changes in Windows 8
With Windows 8, Microsoft made a few changes designed to limit the kinds
of attacks possible in this scenario. First, Microsoft deprecated the kernel
variable nt!g_CiEnabled, leaving no single point of control over the integrity
policy in the kernel image as in earlier versions of Windows. Windows 8 also
changed the layout of the g_CiCallbacks buffer.

Listing 6-5 (Windows 7 and Vista) and Listing 6-6 (Windows 8) show
how the layout of g_CiCallbacks differs between the OS versions.

typedef struct _CI_CALLBACKS_WIN7_VISTA {
 PVOID CiValidateImageHeader;
 PVOID CiValidateImageData;

78 Chapter 6

 PVOID CiQueryInformation;
} CI_CALLBACKS_WIN7_VISTA, *PCI_CALLBACKS_WIN7_VISTA;

Listing 6-5: Layout of g_CiCallbacks buffer in Windows Vista and Windows 7

As you can see in Listing 6-5, the Windows Vista and Windows 7 layout
includes just the necessary basics. The Windows 8 layout (Listing 6-6), on
the other hand, has more fields for additional callback functions for PE
image digital signature validation.

typedef struct _CI_CALLBACKS_WIN8 {
 ULONG ulSize;
 PVOID CiSetFileCache;
 PVOID CiGetFileCache;

 PVOID CiQueryInformation;
 PVOID CiValidateImageHeader;
 PVOID CiValidateImageData;

 PVOID CiHashMemory;
 PVOID KappxIsPackageFile;
} CI_CALLBACKS_WIN8, *PCI_CALLBACKS_WIN8;

Listing 6-6: Layout of g_CiCallbacks buffer in Windows 8.x

In addition to the function pointers CiQueryInformation , CiValidate
ImageHeader , and CiValidateImageData , which are present in both
CI_CALLBACKS_WIN7_VISTA and CI_CALLBACKS_WIN8 structures, CI_CALLBACKS_WIN8
also has fields that affect how code integrity is enforced in Windows 8.

F ur t he r r e a ding on ci.dl l

More information on the implementation details of the ci.dll module can be
found at https://github.com/airbus-seclab/warbirdvm. This article delves into
the implementation details of the encrypted memory storage used within ci.dll
module, which may be used by other OS components to keep certain details
and configuration information secret. This storage is protected by a heavily
obfuscated virtual machine (VM), making it much harder to reverse engineer
the storage encryption/decryption algorithm. The authors of the article pro-
vide a detailed analysis of the VM obfuscation method, and they share their
Windbg plug-in for decrypting and encrypting the storage on the fly.

Secure Boot Technology
Secure Boot technology was introduced in Windows 8 to protect the
boot process against bootkit infection. Secure Boot leverages the Unified
Extensible Firmware Interface (UEFI) to block the loading and execution
of any boot application or driver without a valid digital signature in order

https://github.com/airbus-seclab/warbirdvm

Boot Process Security 79

to protect the integrity of the operating system kernel, system files, and
boot-critical drivers. Figure 6-2 shows the boot process with Secure Boot
enabled.

BIOS UEFI bootmgr
winload.exe OS kernel ELAM Kernel-mode

drivers

Secure Boot Code Integrity Protection

Bootkit is
loaded.

Bootkit patches
system modules.

Bootkit injects
its code into
kernel-mode

address space.

Figure 6-2: The flow of the boot process with Secure Boot

When Secure Boot is enabled, the BIOS verifies the integrity of all UEFI
and OS boot files executed at startup to ensure that they come from a legiti-
mate source and have a valid digital signature. The signatures on all boot-
critical drivers are checked in winload.exe and by the ELAM driver as part
of Secure Boot verification. Secure Boot is similar to the Microsoft Kernel-
Mode Code Signing Policy, but it applies to modules that are executed before
the operating system kernel is loaded and initialized. As a result, untrusted
components (that is, ones without valid signatures) will not be loaded and
will trigger remediation.

When the system first starts, Secure Boot ensures that the preboot envi-
ronment and bootloader components aren’t tampered with. The bootloader,
in turn, validates the integrity of the kernel and boot-start drivers. Once the
kernel passes the integrity validations, Secure Boot verifies other drivers and
modules. Fundamentally, Secure Boot relies on the assumption of a root of
trust—the idea that early in execution, a system is trustworthy. Of course, if
attackers manage to execute an attack before that point, they probably win.

Over the last few years, the security research community has focused con-
siderable attention on BIOS vulnerabilities that can allow attackers to bypass
Secure Boot. We’ll discuss these vulnerabilities in detail in Chapter 16 and
delve into Secure Boot in more detail in Chapter 17.

Virtualization-Based Security in Windows 10
Up until Windows 10, code integrity mechanisms were part of the system
kernel itself. That essentially means that the integrity mechanism runs with
the same privilege level that it is trying to protect. While this can be effec-
tive in many cases, it also means it is possible for an attacker to attack the
integrity mechanism itself. To increase the effectiveness of the code integrity

80 Chapter 6

mechanism, Windows 10 introduced two new features: Virtual Secure Mode
and Device Guard, both of which are based on memory isolation assisted
by hardware. This technology is generally referred to as Second Level Address
Translation, and it is included in both Intel (where it is known as Extended
Page Tables, or EPT) and AMD (where it’s called Rapid Virtualization
Indexing, or RVI) CPUs.

Second Level Address Translation
Windows has supported Second Level Address Translation (SLAT) since
Windows 8 with Hyper-V (a Microsoft hypervisor). Hyper-V uses SLAT
to perform memory management (for example, access protection) for
virtual machines and to reduce the overhead of translating guest physical
addresses (memory isolated by virtualization technologies) to real physical
addresses.

SLAT provides hypervisors with an intermediary cache of virtual-to-
physical address translation, which drastically reduces the amount of time
the hypervisor takes to service translation requests to the physical memory
of the host. It’s also used in the implementation of Virtual Secure Mode
technology in Windows 10.

Virtual Secure Mode and Device Guard
Virtual Secure Mode (VSM) virtualization-based security first appeared in
Windows 10 and is based on Microsoft’s Hyper-V. When VSM is in place,
the operating system and critical system modules are executed in isolated
hypervisor-protected containers. This means that even if the kernel is com-
promised, critical components executed in other virtual environments are
still secure because an attacker cannot pivot from one compromised virtual
container to another. VSM also isolates the code integrity components from
the Windows kernel itself in a hypervisor-protected container.

VSM isolation makes it impossible to use vulnerable legitimate kernel-
mode drivers to disable code integrity (unless a vulnerability is found that
affects the protection mechanism itself). Because the potentially vulnerable
driver and the code integrity libraries are located in separate virtual con-
tainers, attackers should not be able to turn code integrity protection off.

Device Guard technology leverages VSM to prevent untrusted code
from running on the system. To make these assurances, Device Guard
combines VSM-protected code integrity with platform and UEFI Secure
Boot. In doing so, Device Guard enforces the code integrity policy from
the very beginning of the boot process all the way up to loading OS kernel-
mode drivers and user-mode applications.

Figure 6-3 shows how Device Guard affects Windows 10’s ability to pro-
tect against bootkits and rootkits. Secure Boot protects from bootkits by
verifying any firmware components executed in the preboot environment,

Boot Process Security 81

including the OS bootloader. To prevent malicious code from being injected
into the kernel-mode address space, the VSM isolates the critical OS com-
ponents responsible for enforcing code integrity (known as Hypervisor-
Enforced Code Integrity, or HVCI, in this context) from the OS kernel
address space.

BIOS UEFI bootmgr
winload.exe OS kernel ELAM Kernel-mode

drivers

Secure Boot
Hypervisor-Enforced

Code Integrity Protection

Bootkit is
loaded.

Bootkit patches
system modules.

Bootkit injects
its code into
kernel-mode

address space.

Secure
kernel HVCI

Device Guard

Virtual Secure Mode (VSM)

Figure 6-3: The boot process with Virtual Secure Mode and Device Guard enabled

Device Guard Limitations on Driver Development
Device Guard imposes specific requirements and limitations on the driver
development process, and some existing drivers will not run correctly with
it active. All drivers must follow these rules:

•	 Allocate all nonpaged memory from the no-execute (NX) nonpaged
pool. The driver’s PE module cannot have sections that are both
writable and executable.

•	 Do not attempt direct modification of executable system memory.

•	 Do not use dynamic or self-modifying code in kernel mode.

•	 Do not load any data as executable.

Because most modern rootkits and bootkits do not adhere to these
requirements, they cannot run with Device Guard active, even if the driver
has a valid signature or is able to bypass code integrity protection.

82 Chapter 6

Conclusion
This chapter has provided an overview of the evolution of code integrity
protections. Boot process security is the most important frontier in defend-
ing operating systems against malware attacks. ELAM and code integrity
protections are powerful security features that restrict the execution of
untrusted code on the platform.

Windows 10 took boot process security to a new level, preventing code
integrity bypasses by isolating HVCI components from the OS kernel with
VSM. However, without an active Secure Boot mechanism in place, boot-
kits can circumvent these protections by attacking a system before they are
loaded. In the following chapters, we’ll discuss Secure Boot in more detail
and the BIOS attacks designed to evade it.

