
2
O p e n R e d i R e c t

We’ll begin our discussion with open redirect
vulnerabilities, which occur when a target

visits a website and that website sends their
browser to a different URL, potentially on a

separate domain. Open redirects exploit the trust of
a given domain to lure targets to a malicious website.
A phishing attack can also accompany a redirect to trick users into believing
they’re submitting information to a trusted site when, in reality, their infor-
mation is being sent to a malicious site. When combined with other attacks,
open redirects can also enable attackers to distribute malware from the mali-
cious site or to steal OAuth tokens (a topic we’ll explore in Chapter 17).

Because open redirects only redirect users, they’re sometimes consid-
ered low impact and not deserving of a bounty. For example, the Google
bug bounty program typically considers open redirects too low risk to
reward. The Open Web Application Security Project (OWASP), which is
a community that focuses on application security and curates a list of the
most critical security flaws in web applications, also removed open redirects
from its 2017 list of top 10 vulnerabilities.

12 Chapter 2

Although open redirects are low-impact vulnerabilities, they’re great
for learning how browsers handle redirects in general. In this chapter,
you’ll learn how to exploit open redirects and how to identify key param-
eters, using three bug reports as examples.

How Open Redirects Work
Open redirects occur when a developer mistrusts attacker-controlled input
to redirect to another site, usually via a URL parameter, HTML <meta>
refresh tags, or the DOM window location property.

Many websites intentionally redirect users to other sites by placing a
destination URL as a parameter in an original URL. The application uses
this parameter to tell the browser to send a GET request to the destination
URL. For example, suppose Google had the functionality to redirect users
to Gmail by visiting the following URL:

https://www.google.com/?redirect_to=https://www.gmail.com

In this scenario, when you visit this URL, Google receives a GET HTTP
request and uses the redirect_to parameter’s value to determine where
to redirect your browser. After doing so, Google servers return an HTTP
response with a status code instructing the browser to redirect the user.
Typically, the status code is 302, but in some cases it could be 301, 303, 307,
or 308. These HTTP response codes tell your browser that a page has been
found; however, the code also informs the browser to make a GET request to
the redirect_to parameter’s value, https://www.gmail.com/, which is denoted
in the HTTP response’s Location header. The Location header specifies
where to redirect GET requests.

Now, suppose an attacker changed the original URL to the following:

https://www.google.com/?redirect_to=https://www.attacker.com

If Google isn’t validating that the redirect_to parameter is for one of its
own legitimate sites where it intends to send visitors, an attacker could sub-
stitute the parameter with their own URL. As a result, an HTTP response
could instruct your browser to make a GET request to https://www.<attacker>
.com/. After the attacker has you on their malicious site, they could carry out
other attacks.

When looking for these vulnerabilities, keep an eye out for URL param-
eters that include certain names, such as url=, redirect=, next=, and so on,
which might denote URLs that users will be redirected to. Also keep in mind
that redirect parameters might not always be obviously named; parameters
will vary from site to site or even within a site. In some cases, parameters
might be labeled with just single characters, such as r= or u=.

In addition to parameter-based attacks, HTML <meta> tags and
JavaScript can redirect browsers. HTML <meta> tags can tell browsers to

http://www.gmail.com

Open Redirect 13

refresh a web page and make a GET request to a URL defined in the tag’s
content attribute. Here is what one might look like:

<meta http-equiv="refresh" content="0; url=https://www.google.com/">

The content attribute defines how browsers make an HTTP request in
two ways. First, the content attribute defines how long the browser waits
before making the HTTP request to the URL; in this case, 0 seconds.
Secondly, the content attribute specifies the URL parameter in the website
the browser makes the GET request to; in this case, https://www.google .com.
Attackers can use this redirect behavior in situations where they have the
ability to control the content attribute of a <meta> tag or to inject their own
tag via some other vulnerability.

An attacker can also use JavaScript to redirect users by modifying the
window’s location property through the Document Object Model (DOM). The
DOM is an API for HTML and XML documents that allows developers to
modify the structure, style, and content of a web page. Because the location
property denotes where a request should be redirected to, browsers will
immediately interpret this JavaScript and redirect to the specified URL.
An attacker can modify the window’s location property by using any of the
following JavaScript:

window.location = https://www.google.com/
window.location.href = https://www.google.com
window.location.replace(https://www.google.com)

Typically, opportunities to set the window.location value occur only
where an attacker can execute JavaScript, either via a cross-site scripting
vulnerability or where the website intentionally allows users to define a
URL to redirect to, as in the HackerOne interstitial redirect vulnerability
detailed later in the chapter on page 15.

When you’re searching for open redirect vulnerabilities, you’ll usually
be monitoring your proxy history for a GET request sent to the site you’re
testing that includes a parameter specifying a URL redirect.

Shopify Theme Install Open Redirect

Difficulty: Low

URL: https://apps.shopify.com/services/google/themes/preview/
supply--blue?domain_name=<anydomain>

Source: https://www.hackerone.com/reports/101962/

Date reported: November 25, 2015

Bounty paid: $500

The first example of an open redirect you’ll learn about was found on
Shopify, which is a commerce platform that allows people to create stores to
sell goods. Shopify allows administrators to customize the look and feel of

https://hackerone.com/reports/101962

14 Chapter 2

their stores by changing their theme. As part of that functionality, Shopify
offered a feature to provide a preview for the theme by redirecting the store
owners to a URL. The redirect URL was formatted as such:

https://app.shopify.com/services/google/themes/preview/supply--blue?domain_name=attacker.com

The domain_name parameter at the end of the URL redirected to the
user’s store domain and added /admin to the end of the URL. Shopify was
expecting that the domain_name would always be a user’s store and wasn’t vali-
dating its value as part of the Shopify domain. As a result, an attacker could
exploit the parameter to redirect a target to http://<attacker>.com/admin/
where the malicious attacker could carry out other attacks.

Takeaways
Not all vulnerabilities are complex. For this open redirect, simply changing
the domain_name parameter to an external site would redirect the user offsite
from Shopify.

Shopify Login Open Redirect

Difficulty: Low

URL: http://mystore.myshopify.com/account/login/

Source: https://www.hackerone.com/reports/103772/

Date reported: December 6, 2015

Bounty paid: $500

This second example of an open redirect is similar to the first Shopify
example except in this case, Shopify’s parameter isn’t redirecting the user
to the domain specified by the URL parameter; instead, the open redirect
tacks the parameter’s value onto the end of a Shopify subdomain. Normally,
this functionality would be used to redirect a user to a specific page on a
given store. However, attackers can still manipulate these URLs into redi-
recting the browser away from Shopify’s subdomain and to an attacker’s
website by adding characters to change the meaning of the URL.

In this bug, after the user logged into Shopify, Shopify used the param-
eter checkout_url to redirect the user. For example, let’s say a target visited
this URL:

http://mystore.myshopify.com/account/login?checkout_url=.attacker.com

They would have been redirected to the URL http://mystore.myshopify
.com.<attacker>.com/, which isn’t a Shopify domain.

Because the URL ends in .<attacker>.com and DNS lookups use the right-
most domain label, the redirect goes to the <attacker>.com domain. So when
http://mystore.myshopify.com.<attacker>.com/ is submitted for DNS lookup, it will
match on <attacker>.com, which Shopify doesn’t own, and not myshopify.com as

https://hackerone.com/reports/103772

Open Redirect 15

Shopify would have intended. Although an attacker wouldn’t be able to freely
send a target anywhere, they could send a user to another domain by adding
special characters, such as a period, to the values they can manipulate.

Takeaways
If you can only control a portion of the final URL used by a site, adding
special URL characters might change the meaning of the URL and redirect
a user to another domain. Let’s say you can only control the checkout_url
parameter value, and you also notice that the parameter is being combined
with a hardcoded URL on the backend of the site, such as the store URL
http://mystore.myshopify.com/. Try adding special URL characters, like a period
or the @ symbol, to test whether you can control the redirected location.

HackerOne Interstitial Redirect

Difficulty: Low

URL: N/A

Source: https://www.hackerone.com/reports/111968/

Date reported: January 20, 2016

Bounty paid: $500

Some websites try to protect against open redirect vulnerabilities by imple-
menting interstitial web pages, which display before the expected content.
Any time you redirect a user to a URL, you can show an interstitial web
page with a message explaining to the user that they’re leaving the domain
they’re on. As a result, if the redirect page shows a fake login or tries to pre-
tend to be the trusted domain, the user will know that they’re being redi-
rected. This is the approach HackerOne takes when following most URLs
off its site; for example, when following links in submitted reports.

Although you can use interstitial web pages to avoid redirect vulner-
abilities, complications in the way sites interact with one another can lead to
compromised links. HackerOne uses Zendesk, a customer service support
ticketing system, for its https://support.hackerone.com/ subdomain. Previously,
when you followed hackerone.com with /zendesk_session, the browser redi-
rected from HackerOne’s platform to HackerOne’s Zendesk platform with-
out an interstitial page because URLs containing the hackerone.com domain
were trusted links. (HackerOne now redirects https://support.hackerone .com
to docs.hackerone.com unless you are submitting a support request via the
URL /hc/en-us/requests/new.) However, anyone could create custom Zendesk
accounts and pass them to the /redirect_to_account?state= parameter. The
custom Zendesk account could then redirect to another website not
owned by Zendesk or HackerOne. Because Zendesk allowed for redirect-
ing between accounts without interstitial pages, the user could be taken to
the untrusted site without warning. As a solution, HackerOne identified
links containing zendesk_session as external links, thereby rendering an
interstitial warning page when clicked.

https://support.hackerone.com
https://support.hackerone.com

16 Chapter 2

In order to confirm this vulnerability, the hacker Mahmoud Jamal cre-
ated an account on Zendesk with the subdomain http://compayn.zendesk.com.
He then added the following JavaScript code to the header file using
the Zendesk theme editor, which allows administrators to customize their
Zendesk site’s look and feel:

<script>document.location.href = «http://evil.com»;</script>

Using this JavaScript, Jamal instructed the browser to visit http://evil
.com. The <script> tag denotes code in HTML and document refers to the
entire HTML document that Zendesk returns, which is the information
for the web page. The dots and names following document are its properties.
Properties hold information and values that either describe an object
or can be manipulated to change the object. So you can use the location
property to control the web page your browser displays and use the href
subproperty (which is a property of the location) to redirect the browser
to the defined website. Visiting the following link redirected targets to
Jamal’s Zendesk subdomain, which made the target’s browser run Jamal’s
script and redirected them to http://evil.com :

https://hackerone.com/zendesk_session?locale_id=1&return_to=https://support.hackerone.com/
ping/redirect_to_account?state=compayn:/

Because the link includes the domain hackerone.com, the interstitial web
page doesn’t display, and the user wouldn’t know the page they were visit-
ing is unsafe. Interestingly, Jamal originally reported the missing interstitial
page redirect issue to Zendesk, but it was disregarded and not marked as a
vulnerability. Naturally, he kept digging to see how the missing interstitial
could be exploited. Eventually, he found the JavaScript redirect attack that
convinced HackerOne to pay him a bounty.

Takeaways
As you search for vulnerabilities, note the services a site uses because each
represents new attack vectors. This HackerOne vulnerability was made pos-
sible by combining HackerOne’s use of Zendesk and the known redirect
HackerOne was permitting.

Additionally, as you find bugs, there will be times when the security
implications aren’t readily understood by the person reading and responding
to your report. For this reason, I’ll discuss vulnerability reports in Chapter 19,
which details the findings you should include in a report, how to build rela-
tionships with companies, and other information. If you do some work up
front and respectfully explain the security implications in your report, your
efforts will help ensure a smoother resolution.

That said, there will be times when companies don’t agree with you. If
that’s the case, continue to dig like Jamal did and see if you can prove the
exploit or combine it with another vulnerability to demonstrate impact.

http://evil.com
http://evil.com
http://evil.com

Open Redirect 17

Summary
Open redirects allow a malicious attacker to redirect people unknowingly
to a malicious website. Finding them, as you learned from the example bug
reports, often requires keen observation. Redirect parameters are some-
times easy to spot when they have names like redirect_to=, domain_name=, or
checkout_url=, as mentioned in the examples. Other times, they might have
less obvious names, such as r=, u=, and so on.

The open redirect vulnerability relies on an abuse of trust where tar-
gets are tricked into visiting an attacker’s site while thinking they’re visiting
a site they recognize. When you spot likely vulnerable parameters, be sure
to test them thoroughly and add special characters, like a period, if some
part of the URL is hardcoded.

The HackerOne interstitial redirect shows the importance of recogniz-
ing the tools and services websites use while you hunt for vulnerabilities.
Keep in mind that you’ll sometimes need to be persistent and clearly dem-
onstrate a vulnerability to persuade a company to accept your findings and
pay a bounty.

