
2
A T T R I B U T I N G A U T H O R S H I P

W I T H S T Y L O M E T R Y

Stylometry is the quantitative study of literary
style through computational text analysis.

It’s based on the idea that we all have a
unique, consistent, and recognizable style to

our writing. This includes our vocabulary, our use of
punctuation, the average length of our sentences and
words, and so on.

A common application of stylometry is authorship attribution. Do you
ever wonder if Shakespeare really wrote all his plays? Or if John Lennon or
Paul McCartney wrote the song In My Life? Could Robert Galbraith, author
of A Cuckoo’s Calling, really be J. K. Rowling in disguise? Stylometry can find
the answer!

28 Chapter 2

Stylometry has been used to overturn murder convictions and even
helped identify and convict the Unabomber in 1996. Other uses include
detecting plagiarism and determining the emotional tone behind words,
such as in social media posts. Stylometry can even be used to detect signs
of mental depression and suicidal tendencies.

In this chapter, you’ll use multiple stylometric techniques to determine
whether Sir Author Conan Doyle or H. G. Wells wrote the novel The Lost
World.

Project #2: The Hound, The War, and The Lost World
Sir Author Conan Doyle (1859–1930) is best known for the Sherlock
Holmes stories, considered milestones in the field of crime fiction. H. G.
Wells (1866–1946) is famous for several groundbreaking science-fiction
novels including The War of The Worlds, The Time Machine, The Invisible Man,
and The Island of Dr. Moreau.

In 1912, the Strand Magazine published The Lost World, a serialized ver-
sion of a science-fiction novel. It told the story of an Amazon basin expedi-
tion, led by zoology professor George Edward Challenger, that encountered
living dinosaurs and a vicious tribe of ape-like creatures.

Although the author of the novel is known, for this project let’s pretend
it’s in dispute and it’s your job to solve the mystery. Experts have narrowed
the field down to two authors, Doyle and Wells. Wells is slightly favored
because The Lost World is a work of science fiction, which is his purview. It
also includes brutish ape-like troglodytes redolent of the morlocks in his
1895 work, The Time Machine. Doyle, on the other hand, is known for detec-
tive stories and historical fiction.

T HE OBJEC T I V E

Write a Python program that uses stylometry to determine whether Sir Arthur Conan
Doyle or H. G. Wells wrote the novel The Lost World.

The Strategy
The science of natural language processing (NLP) deals with the interac-
tions between the precise and structured language of computers and the
nuanced, frequently ambiguous “natural” language used by humans.
Example uses for NLP include machine translations, spam detection, com-
prehension of search engine questions, and predictive text recognition for
cell phone users.

NLP tests for attributing authorship commonly analyze the following
features of a text:

•	 Word length A frequency distribution plot of the length of words in a
document

Attributing Authorship with Stylometry 29

•	 Stop words A frequency distribution plot of stop words (short,
noncontextual function words like the, but, and if)

•	 Parts of speech A frequency distribution plot of words based on their
syntactic functions (such as nouns, pronouns, verbs, adverbs, adjectives,
and so on)

•	 Most common words A comparison of the most commonly used
words in a text

•	 Jaccard similarity A statistic used for gauging the similarity and
diversity of a sample set

If Doyle and Wells have distinctive writing styles, these five tests should
be enough to distinguish between them. We’ll talk about each test in more
detail in the coding section.

To capture and analyze each author’s style, you’ll need a representative
corpus, or a body of text. For Doyle, use the famous Sherlock Holmes novel
The Hound of the Baskervilles, published in 1902. For Wells, use The War of
the Worlds, published in 1898. Both these novels contain more than 50,000
words, more than enough for a sound statistical sampling. You’ll then com-
pare each author’s sample to The Lost World to determine how closely the
writing styles match.

To perform stylometry, you’ll use the Natural Language Toolkit (NLTK),
a popular suite of programs and libraries for working with human lan-
guage data in Python. It’s free and works on Windows, macOS, and
Linux. Created in 2001 as part of a computational linguistics course at the
University of Pennsylvania, NLTK has continued to develop and expand
with the help of dozens of contributors. To learn more, check out the offi-
cial NLTK website at http://www.nltk.org/.

Installing NLTK
You can find installation instructions for NLTK at http://www.nltk.org/install.
html. To install NLTK on Windows, open PowerShell and install it with
Preferred Installer Program (pip).

python -m pip install nltk

If you have multiple versions of Python installed, you’ll need to specify
the version. Here’s the command for Python 3.7:

py -3.7 -m pip install nltk

To check that the installation was successful, open the Python interac-
tive shell and enter the following:

>>> import nltk
>>>

If you don’t get an error, you’re good to go. Otherwise, follow the instal-
lation instructions at http://www.nltk.org/install.html.

30 Chapter 2

Downloading the Tokenizer

To run the stylometric tests, you’ll need to break the multiple texts—or
corpora—into individual words, referred to as tokens. At the time of this
writing, the word_tokenize() method in NLTK implicitly calls sent_tokenize(),
used to break a corpus into individual sentences. For handling sent_
tokenize(), you’ll need the Punkt Tokenizer Models. Although this is part
of NLTK, you’ll have to download it separately with the handy NLTK
Downloader. To launch it, enter the following into the Python shell:

>>> import nltk
>>> nltk.download()

The NLTK Downloader window should now be open (Figure 2-1).
Click either the Models or All Packages tab near the top; then click punkt
in the Identifier column. Next, scroll to the bottom of the window and set
Download Directory to the Windows default by entering C:\nltk_data.
Finally, click the Download button to download the Punkt Tokenizer Models.

Figure 2-1: Downloading the Punkt Tokenizer Models

Note that you can also download NLTK packages directly in the shell.
Here’s an example:

>>> import nltk

>>> nltk.download('punkt')

You’ll also need access to the Stopwords Corpus, which can be down-
loaded in a similar manner.

Attributing Authorship with Stylometry 31

Downloading the Stopwords Corpus

Click the Corpora tab in the NLTK Downloader window and download the
Stopwords Corpus, as shown in Figure 2-2.

Figure 2-2: Downloading the Stopwords Corpus

Alternatively, you can use the shell.

>>> import nltk

>>> nltk.download('stopwords')

Let’s download one more package to help you analyze parts of speech,
like nouns and verbs. Click the All Packages tab in the NLTK Downloader
window and download the Averaged Perceptron Tagger.

To use the shell, enter the following:

>>> import nltk

>>> nltk.download('averaged_perceptron_tagger')

When NLTK has finished downloading, exit the NLTK Downloader
window and enter the following into the Python interactive shell:

>>> from nltk import punkt

32 Chapter 2

Then enter the following:

>>> from nltk.corpus import stopwords

If you don’t encounter an error, the models and corpus successfully
downloaded.

Finally, you’ll need matplotlib to make plots. If you haven’t installed it
already, see the instructions for installing scientific packages on page 7.

The Corpora
You can download the text files for The Hound of the Baskervilles (hound.txt),
The War of the Worlds (war.txt), and The Lost World (lost.txt) along with the
book’s code from https://nostarch.com/XXX.

These came from Project Gutenberg (http://www.gutenberg.org), a great
source for public domain literature. So that you can use these texts right
away, I’ve stripped them of extraneous material such as table of contents,
chapter titles, copyright information, and so on.

The Stylometry Code
The stylometry.py program you’ll write next loads the text files as strings,
tokenizes them into words, and then runs the five stylometric analyses listed
on page XX. The program will output a combination of plots and shell mes-
sages that will help you determine who wrote The Lost World.

Keep the program in the same folder as the three text files. If you don’t
want to enter the code yourself, just follow along with the downloadable
code available at https://nostarch.com/XXX.

Importing Modules and Defining the main() Function

Listing 2-1 imports NLTK and matplotlib, assigns a constant, and defines
the main() function to run the program. The functions used in main() will be
described in detail later in the chapter.

import nltk
from nltk.corpus import stopwords
import matplotlib.pyplot as plt

LINES = ['-', ':', '--'] # Line style for plots.

def main():
 strings_by_author = dict()

 strings_by_author['doyle'] = text_to_string('hound.txt')
 strings_by_author['wells'] = text_to_string('war.txt')
 strings_by_author['unknown'] = text_to_string('lost.txt')

 print(strings_by_author['doyle'][:300])

 words_by_author = make_word_dict(strings_by_author)
 len_shortest_corpus = find_shortest_corpus(words_by_author)

 word_length_test(words_by_author, len_shortest_corpus)

stylometry.py,
part 1

Attributing Authorship with Stylometry 33

 stopwords_test(words_by_author, len_shortest_corpus)
 parts_of_speech_test(words_by_author, len_shortest_corpus)
 vocab_test(words_by_author)
 jaccard_test(words_by_author, len_shortest_corpus)

Listing 2-1: Imports modules and defines the main() function

Start by importing NLTK and the Stopwords Corpus. Then import
matplotlib.

Create a variable called LINES and use the all-caps convention to indi-
cate it should be treated as a constant. By default, matplotlib plots in color,
but you’ll still want to designate a list of symbols for color-blind people and
this black-and-white book!

Define main() at the start of the program. The steps in this function are
almost as readable as pseudocode and provide a good overview of what the
program will do. The first step will be to initialize a dictionary to hold the
text for each author . The text_to_string() function will load each corpus
into this dictionary as a string. The name of each author will be the diction-
ary key (using unknown for The Lost World), and the string of text from their
novel will be the value. For example, here’s the key, Doyle, with the value
text string greatly truncated:

{'Doyle': 'Mr. Sherlock Holmes, who was usually very late in the mornings -snip-'}

Immediately after populating the dictionary, print the first 300 items
for the doyle key to ensure things went as planned. This should produce the
following printout:

Mr. Sherlock Holmes, who was usually very late in the mornings, save
upon those not infrequent occasions when he was up all night, was seated
at the breakfast table. I stood upon the hearth-rug and picked up the
stick which our visitor had left behind him the night before. It was a
fine, thick piec

With the corpora loaded correctly, the next step is to tokenize the
strings into words. Currently, Python doesn’t recognize words but instead
works on characters, such as letters, numbers, and punctuation marks. To
remedy this, you’ll use the make_word_dict() function to take the strings_
by_author dictionary as an argument, split out the words in the strings, and
return a dictionary called words_by_author with the authors as keys and a list
of words as values .

Stylometry relies a lot on word counts, so it works best when each cor-
pus is the same length. There are multiple ways to ensure apples-to-apples
comparisons. With chunking, you divide the text into blocks of, say, 5,000
words, and compare them. You can also normalize by using relative fre-
quencies, rather than direct counts, or by truncating to the shortest corpus.

Let’s explore the truncation option. Pass the words dictionary to
another function, find_shortest_corpus(), that calculates the number of
words in each author’s list and returns the length of the shortest corpus.
Table 2-1 shows the length of each corpus.

34 Chapter 2

Table 2-1: Length (Word Count) of Each Corpus

Corpus Length

Hound (Doyle) 58,387

War (Wells) 59,469

World (Unknown) 74,961

Since the shortest corpus here represents a robust dataset of almost
60,000 words, you’ll use the len_shortest_corpus variable to truncate the
other two corpora to this length, prior to doing any analysis. The assump-
tion, of course, is that the backend content of the truncated texts is not
significantly different from that in the front.

The next five lines call functions that perform the stylometric analysis,
as listed in the “Strategy” section on page XX . All the functions take
the words_by_author dictionary as an argument, and most take len_shortest_
corpus, as well. We’ll look at these functions as soon as we finish preparing
the texts for analysis.

Loading Text and Building a Word Dictionary

Listing 2-2 defines two functions. The first reads in a text file as a string.
The second builds a dictionary with each author’s name as the key and his
novel, now tokenized into individual words rather than a continuous string,
as the value.

def text_to_string(filename):
 """Read a text file and return a string."""
 with open(filename) as infile:
 return infile.read()

 def make_word_dict(strings_by_author):
 """Return dictionary of tokenized words by corpus by author."""
 words_by_author = dict()
 for author in strings_by_author:
 tokens = nltk.word_tokenize(strings_by_author[author])

 words_by_author[author] = ([token.lower() for token in tokens
 if token.isalpha()])
 return words_by_author

Listing 2-2: Defines the text_to_string() and make_word_dict() functions

First, define the text_to_string() function to load a text file. The built-in
read() function reads the whole file as an individual string, allowing rela-
tively easy file-wide manipulations. Use with to open the file so that it will
be closed automatically regardless of how the block terminates. Just like
putting away your toys, closing files is good practice. It prevents bad things
from happening, like running out of file descriptors, locking files from
further access, corrupting files, or losing data if writing to files.

stylometry.py,
part 2

Attributing Authorship with Stylometry 35

Some users may encounter a UnicodeDecodeError like the following one
when loading the text:

UnicodeDecodeError: 'ascii' codec can't decode byte 0x93 in position 365:
ordinal not in range(128)

Encoding and decoding refer to the process of converting from charac-
ters stored as bytes to human-readable strings. The problem is that the
default encoding for the built-in function open() is platform-dependent and
depends on the value of locale.getpreferredencoding(). For example, you’ll
get the following encoding if you run this on Windows 10:

>>> import locale
>>> locale.getpreferredencoding()
'cp1252'

CP-1252 is a legacy Windows character encoding. If you run the same
code on a Mac, it may return something different, like 'US-ASCII' or 'UTF-8'.

UTF stands for Unicode Transformational Format, which is a text character
format designed for backward compatibility with ASCII. Although UTF-8
can handle all character sets—and is the dominant form of encoding used
on the World Wide Web—it’s not the default option for many text editors.

Additionally, Python 2 assumed all text files were encoded with latin-
1, used for the Latin alphabet. Python 3 is more sophisticated and tries to
detect encoding problems as early as possible. It may throw an error, how-
ever, if the encoding isn’t specified.

So, the first troubleshooting step should be to pass open() the encoding
argument and specify UTF-8.

 with open(filename, encoding='utf-8') as infile:

If you still have problems loading the corpora files, try adding an errors
argument as follows:

 with open(filename, encoding='utf-8', errors='ignore') as infile:

You can ignore errors because these text files were downloaded as UTF-8
and have already been tested using this approach. For more on UTF-8, see
https://docs.python.org/3/howto/unicode.html.

Next, define the make_word_dict() function that will take the dictionary
of strings by author and return a dictionary of words by author . First, ini-
tialize an empty dictionary named words_by_author. Then, loop through the
keys in the strings_by_author dictionary. Use NLTK’s word_tokenize() method
and pass it the string dictionary’s key. The result will be a list of tokens that
will serve as the dictionary value for each author. Tokens are just chopped
up pieces of a corpus, typically sentences or words.

36 Chapter 2

The following snippet demonstrates how the process turns a continuous
string into a list of tokens (words and punctuation):

>>> import nltk
>>> str1 = 'The rain in Spain falls mainly on the plain.'
>>> tokens = nltk.word_tokenize(str1)
>>> print(type(tokens))
<class 'list'>
>>> tokens
['The', 'rain', 'in', 'Spain', 'falls', 'mainly', 'on', 'the', 'plain', '.']

This is similar to using Python’s built-in split() function, but split()
doesn’t achieve tokens from a linguistic standpoint (note that the period is
not tokenized).

>>> my_tokens = str1.split()
>>> my_tokens
['The', 'rain', 'in', 'Spain', 'falls', 'mainly', 'on', 'the', 'plain.']

Once you have the tokens, populate the words_by_author dictionary using
list comprehension . List comprehension is a shorthand way to execute loops
in Python. You need to surround the code with square brackets to indicate
a list. Convert the tokens to lowercase and use the built-in isalpha() method,
which returns True if all the characters in a token are part of the alphabet,
and False otherwise. This will filter out numbers and punctuation. It will
also filter out hyphenated words or names. Finish by returning the words_by_
author dictionary.

Finding the Shortest Corpus

In computational linguistics, frequency refers to the number of occurrences
in a corpus. Thus, frequency means the count, and methods you’ll use later
return a dictionary of words and their counts. To compare counts in a
meaningful way, the corpora should all have the same number of words.

Because the three corpora used here are large (see Table 2-1), you can
safely normalize the corpora by truncating them all to the length of the
shortest. Listing 2-3 defines a function that finds the shortest corpus in the
words_by_author dictionary and returns its length.

def find_shortest_corpus(words_by_author):
 """Return length of shortest corpus."""
 word_count = []
 for author in words_by_author:
 word_count.append(len(words_by_author[author]))
 print('\nNumber of words for {} = {}\n'.
 format(author, len(words_by_author[author])))
 len_shortest_corpus = min(word_count)
 print('length shortest corpus = {}\n'.format(len_shortest_corpus))
 return len_shortest_corpus

Listing 2-3: Listing 2-3: Defines the find_shortest_corpus()function

stylometry.py,
part 3

Attributing Authorship with Stylometry 37

Define the function that takes the words_by_author dictionary as an argu-
ment. Immediately start an empty list to hold a word count.

Loop through the authors (keys) in the dictionary. Get the length
of the value for each key, which is a list object, and append the length to
the word_count list. The length here represents the number of words in the
corpus. For each pass through the loop, print the author’s name and the
length of his tokenized corpus.

When the loop ends, use the built-in min() function to get the lowest
count, and assign it to the len_shortest_corpus variable. Print the answer and
then return the variable.

Comparing Word Lengths

Part of an author’s distinctive style is the words they use. Faulkner observed
that Hemingway never sent a reader running to the dictionary; Hemingway
accused Faulkner of using “10-dollar words.” This behavior is expressed
in the length of words and in vocabulary, which we’ll look at later in the
chapter.

Listing 2-4 defines a function to compare the length of words per cor-
pus and plot the results as a frequency distribution. In a frequency distribu-
tion, the lengths of words are plotted against the number of counts for each
length. For words that are six letters long, for example, one author may
have a count of 4,000, and another may have a count of 5,500. A frequency
distribution allows comparison across a range of word lengths, rather than
just at the average word length.

The function in Listing 2-4 uses list slicing to truncate the word lists to
the length of the shortest corpus so the results aren’t skewed by the size of
the novel.

def word_length_test(words_by_author, len_shortest_corpus):
 """Plot word length freq by author, truncated to shortest corpus
length."""
 by_author_length_freq_dist = dict()
 plt.figure(1)
 plt.ion()

 for i, author in enumerate(words_by_author):
 word_lengths = [len(word) for word in words_by_author[author]
 [:len_shortest_corpus]]
 by_author_length_freq_dist[author] = nltk.FreqDist(word_lengths)

 by_author_length_freq_dist[author].plot(15,
 linestyle=LINES[i],
 label=author,
 title='Word Length')
 plt.legend()
 #plt.show() # Uncomment to see plot while coding.

Listing 2-4: Listing 2-4: Defines the word_length_test()function

stylometry.py,
part 4

38 Chapter 2

All the stylometric functions will use the dictionary of tokens; almost
all will use the length of the shortest corpus parameter to ensure consistent
sample sizes. Use these variable names as the function parameters.

Start an empty dictionary to hold the frequency distribution of word
lengths by author and then start making plots. Since you are going to make
multiple plots, start by instantiating a figure object named 1. So that all the
plots stay up after creation, turn on the interactive plot mode with plt.ion().

Next, start looping through the authors in the tokenized dictionary
. Use the enumerate() function to generate an index for each author that
you’ll use to choose a line style for the plot. For each author, use list com-
prehension to get the length of each word in the value list, with the range
truncated to the length of the shortest corpus. The result will be a list
where each word has been replaced by an integer representing its length.

Now, start populating your new by-author dictionary to hold frequency
distributions. Use nltk.FreqDist(), which takes the list of word lengths and
creates a data object of word frequency information that can be plotted.

You can plot the dictionary directly using the class method plot(),
without the need to reference pyplot through plt . This will plot the most
frequently occurring sample first, followed by the number of samples you
specify, in this case, 15. This means you will see the frequency distribution
of words from 1 to 15 letters long. Use i to select from the LINES list, and
finish by providing a label and a title. The label will be used in the legend,
called using plt.legend().

Note that you can change how the frequency data plots using the
cumulative parameter. If you specify cumulative=True, you will see a cumu-
lative distribution (Figure 2-3, left). Otherwise, plot() will default to
cumulative=False, and you will see the actual counts, arranged from highest
to lowest (Figure 2-3, right). Continue to use the default option for this
project.

Figure 2-3: The NLTK cumulative plot option, left, versus the default frequency plot option,
right

Finish by calling the plt.show() method to display the plot, but leave it
commented out. If you want to see the plot immediately after coding this
function, you can uncomment it. Also note that if you launch this program

Attributing Authorship with Stylometry 39

via Windows PowerShell, the plots may close immediately unless you use the
block flag: plt.show(block=True). This will keep the plot up but halt execution
of the program until the plot is closed.

Based solely on the word length frequency plot in Figure 2-3, Doyle’s
style matches the unknown author’s more closely, though there are seg-
ments where Wells compares the same or better. Now let’s run some other
tests to see whether we can confirm that finding.

Comparing Stop Words

A stop word is a small word used often, like the, by, and but. These words are
filtered out for tasks like online searches, because they provide no contex-
tual information, and they were once thought to be of little value in identi-
fying authorship.

But stop words, used frequently and without much thought, are perhaps
the best signature for an author’s style. And since the texts you’re compar-
ing are usually about different subjects, these stop words become impor-
tant, as they are agnostic to content and common across all texts.

Listing 2-5 defines a function to compare the use of stop words in the
three corpora.

def stopwords_test(words_by_author, len_shortest_corpus):
 """Plot stopwords freq by author, truncated to shortest corpus length."""
 stopwords_by_author_freq_dist = dict()
 plt.figure(2)
 stop_words = set(stopwords.words('english')) # Use set for speed.
 #print('Number of stopwords = {}\n'.format(len(stop_words)))
 #print('Stopwords = {}\n'.format(stop_words))

 for i, author in enumerate(words_by_author):
 stopwords_by_author = [word for word in words_by_author[author]
 [:len_shortest_corpus] if word in stop_words]
 stopwords_by_author_freq_dist[author] = nltk.FreqDist(stopwords_by_
author)
 stopwords_by_author_freq_dist[author].plot(50,
 label=author,
 linestyle=LINES[i],
 title=
 '50 Most Common Stopwords')
 plt.legend()
plt.show() # Uncomment to see plot while coding function.

Listing 2-5: Defines the stopwords_test()function

Define a function that takes the words dictionary and the length of the
shortest corpus variables as arguments. Then initialize a dictionary to hold
the frequency distribution of stop words for each author. You don’t want to
cram all the plots in the same figure, so start a new figure named 2.

stylometry.py,
part 5

40 Chapter 2

Assign a local variable, stop_words, to the NLTK stop words corpus for
English. Sets are quicker to search than lists, so make the corpus a set for
faster lookups later. The next two lines, currently commented out, print the
number of stop words (179) and the stop words themselves.

Now, start looping through the authors in the words_by_author diction-
ary. Use list comprehension to pull out all the stop words in each author’s
corpus, and use these as the value in a new dictionary named stopwords_
by_author. In the next line, you’ll pass this dictionary to NLTK’s FreqDist()
method and use the output to populate the stopwords_by_author_freq_dist
dictionary. This dictionary will contain the data needed to make the fre-
quency distribution plots for each author.

Repeat the code you used to plot the word lengths in Listing 2-4, but set
the number of samples to 50 and give it a different title. This will plot the
top 50 stop words in use (Figure 2-4).

Figure 2-4: Frequency plot of top 50 stop words by author

Both Doyle and the unknown author use stop words in a similar man-
ner. At this point, two analyses have favored Doyle as the most likely author
of the unknown text, but there’s still more to do.

Comparing Parts of Speech

Now let’s compare the parts of speech used in the three corpora. NLTK
uses a part-of-speech (POS) tagger, called PerceptronTagger, to identify parts
of speech. POS taggers process a sequence of tokenized words and attach a
POS tag to each word (see Table 2-2).

Attributing Authorship with Stylometry 41

Table 2-2: Table 2-2: Parts of Speech with Tag Values

Part of Speech Tag Part of Speech Tag

Coordinating conjunction CC Possessive pronoun PRP$

Cardinal number CD Adverb RB

Determiner DT Adverb, comparative RBR

Existential there EX Adverb, superlative RBS

Foreign word FW Particle RP

Preposition or subordinating conjunction IN Symbol SYM

Adjective JJ To TO

Adjective, comparative JJR Interjection UH

Adjective, superlative JJS Verb, base form VB

List item marker LS Verb, past tense VBD

Modal MD Verb, gerund or present participle VBG

Noun, singular or mass NN Verb, past participle VBN

Noun, plural NNS Verb, non-third-person singular present VBP

Noun, proper noun, singular NNP Verb, third-person singular present VBZ

Noun, proper noun, plural NNPS Wh-determiner, which WDT

Predeterminer PDT Wh-pronoun, who, what WP

Possessive ending POS Possessive wh-pronoun, whose WP$

Personal pronoun PRP Wh-adverb, where, when WRB

The taggers are typically trained on large datasets like the Penn
Treebank or Brown Corpus, making them highly accurate though not per-
fect. You can also find training data and taggers for languages other than
English. You don’t need to worry about all these various terms and their
abbreviations. As with the previous tests, you’ll just need to compare lines
in a chart.

Listing 2-6 defines a function to plot the frequency distribution of POS
in the three corpora.

def parts_of_speech_test(words_by_author, len_shortest_corpus):
 """Plot author use of parts-of-speech such as nouns, verbs, adverbs,etc."""
 by_author_pos_freq_dist = dict()
 plt.figure(3)
 for i, author in enumerate(words_by_author):
 pos_by_author = [pos[1] for pos in nltk.pos_tag(words_by_author[author]
 [:len_shortest_
corpus])]
 by_author_pos_freq_dist[author] = nltk.FreqDist(pos_by_author)
 by_author_pos_freq_dist[author].plot(35,
 label=author,
 linestyle=LINES[i],
 title='Part of Speech')

stylometry.py,
part 6

42 Chapter 2

 plt.legend()
 plt.show()

Listing 2-6: Defines the parts_of_speech_test()function

Define a function that takes as arguments—you guessed it—the words
dictionary and the length of the shortest corpus. Then initialize a diction-
ary to hold the frequency distribution for the POS for each author, followed
by a function call for a third figure.

Start looping through the authors in the words_by_author dictionary
and use list comprehension and the NLTK pos_tag() method to build a list
called pos_by_author. For each author, this creates a list with each word in the
author’s corpus replaced by its corresponding POS tag, as shown here:

['NN', 'NNS', 'WP', 'VBD', 'RB', 'RB', 'RB', 'IN', 'DT', 'NNS', -snip-]

Next, make a frequency distribution of the POS list, and with each loop
plot the curve, using the top 35 samples. Note that there are only 36 POS
tags, and several, such as list item markers, rarely appear in novels.

This is the final plot you’ll make, so call plt.show()to draw all the
plots to the screen. As pointed out in Listing 2-4, if you’re using Windows
PowerShell to launch the program, you may need to use plt.show(block=True)
to keep the plots from closing automatically.

The previous plots, along with the current one (Figure 2-5), should
appear after about 10 seconds.

Figure 2-5: Frequency plot of top 35 parts of speech by author

Once again, the match between the Doyle and unknown curves is
clearly better than the match of unknown to Wells. This suggests that Doyle
is the author of the unknown corpus.

Attributing Authorship with Stylometry 43

Comparing Author Vocabularies

To compare the vocabularies among the three corpora, you’ll use the
chi-squared random variable (X2), also known as the test statistic, to measure
the “distance” between the vocabularies employed in the unknown corpus
and each of the known corpora. The closest vocabularies will be the most
similar. The formula is

∑ ()
=

−

=

X
Oi Ei

Eii

n
2

2

1

where O is the observed word count, and E is the expected word count
assuming the corpora being compared are both by the same author.

This means that, if you assume Doyle wrote both novels, they should
both have the same—or a similar—proportion of the most common words.
The test statistic lets you quantify this by measuring how much the counts
for each word differ. The lower the chi-squared test statistic, the greater the
similarity between two distributions.

Listing 2-7 defines a function to compare vocabularies among the three
corpora.

def vocab_test(words_by_author):
 """Compare author vocabularies using the Chi Squared statistical test."""
 chisquared_by_author = dict()
 for author in words_by_author:

 if author != 'unknown':
 combined_corpus = (words_by_author[author] +
 words_by_author['unknown'])
 author_proportion = (len(words_by_author[author])/
 len(combined_corpus))
 combined_freq_dist = nltk.FreqDist(combined_corpus)
 most_common_words = list(combined_freq_dist.most_common(1000))
 chisquared = 0

 for word, combined_count in most_common_words:
 observed_count_author = words_by_author[author].count(word)
 expected_count_author = combined_count * author_proportion
 chisquared += ((observed_count_author -
 expected_count_author)**2 /
 expected_count_author)

 chisquared_by_author[author] = chisquared
 print('Chi-squared for {} = {:.1f}'.format(author, chisquared))
 most_likely_author = min(chisquared_by_author, key=chisquared_by_author.
get)
 print('Most-likely author by vocabulary is {}\n'.format(most_likely_
author))

Listing 2-7: Defines the vocab_test()function

The vocab_test() function needs the word dictionary but not the length
of the shortest corpus. Like the previous functions, however, it starts by cre-
ating a new dictionary to hold the chi-squared value per author and then
loops through the word dictionary.

stylometry.py,
part 7

44 Chapter 2

To calculate chi-squared, you’ll need to join each author’s corpus with
the unknown corpus. You don’t want to combine unknown with itself, so use a
conditional to avoid this . For the current loop, combine the author’s cor-
pus with unknown and then get the current author’s proportion by divid-
ing the length of his corpus by the length of the combined corpus. Then
get the frequency distribution of the combined corpus by calling nltk.
FreqDist().

Now, make a list of the 1,000 most common words in the combined
text by using the most_common() method and passing it 1000. There is no hard,
fast rule for how many words you should consider in a stylometric analysis.
Suggestions in the literature call for the most common 100 to 1,000 words.
Since you are working with large texts, err to the larger value.

Initialize the chisquared variable with 0; then start a nested for loop that
works through the most_common_words list . The most_common()method returns
a list of tuples, with each tuple containing the word and its count.

[('the', 7778), ('of', 4112), ('and', 3713), ('i', 3203), ('a', 3195), -snip-]

Next, you get the observed count per author from the word dictionary.
For Doyle this would be the count of the most common words in the corpus
of The Hound of the Baskervilles. Then, you get the expected count, which for
Doyle would be the count you would expect if he wrote both The Hound of
the Baskervilles and the unknown corpus. To do this, multiply the number
of counts in the combined corpus by the previously calculated author’s pro-
portion. Then apply the formula for chi-squared and add the result to the
dictionary that tracks each author’s chi-squared score . Display the result
for each author.

To find the author with the lowest chi-squared score, call the built-in
min() function and pass it the dictionary and dictionary key, which you
obtain with the get() method. This will yield the key corresponding to the
minimum value. This is important. If you omit this last argument, min() will
return the minimum key based on the alphabetical order of the names, not
their chi-squared score! You can see this mistake in the following snippet:

>>> print(mydict)
{'doyle': 100, 'wells': 5}
>>> minimum = min(mydict)
>>> print(minimum)
'doyle'
>>> minimum = min(mydict, key=mydict.get)
>>> print(minimum)
'wells'

It’s easy to assume that the min() function returns the minimum numer-
ical value, but as you saw, it looks at dictionary keys by default.

Complete the function by printing the most likely author based on the
chi-squared score.

Attributing Authorship with Stylometry 45

Chi-squared for doyle = 4744.4
Chi-squared for wells = 6856.3
Most-likely author by vocabulary is doyle

Yet another test suggests that Doyle is the author!

Calculating Jaccard Similarity

To determine the degree of similarity among sets created from the corpora,
you’ll use the Jaccard similarity coefficient. Also called the intersection over
union, this is simply the area of overlap between two sets divided by the area
of union of the two sets (Figure 2-6).

Area of
overlap

Area

of

union

Figure 2-6: Intersection-over-union for a set is the area
of overlap divided by the area of union.

The more overlap there is between sets created from two texts, the
more likely they were written by the same author. Listing 2-8 defines a func-
tion for gauging the similarity of sample sets.

def jaccard_test(words_by_author, len_shortest_corpus):
 """Calculate Jaccard similarity of each known corpus to unknown corpus."""
 jaccard_by_author = dict()
 unique_words_unknown = set(words_by_author['unknown']
 [:len_shortest_corpus])

stylometry.py,
part 8

46 Chapter 2

 authors = (author for author in words_by_author if author != 'unknown')
 for author in authors:
 unique_words_author = set(words_by_author[author][:len_shortest_
corpus])
 shared_words = unique_words_author.intersection(unique_words_unknown)

 jaccard_sim = (float(len(shared_words))/ (len(unique_words_author) +
 len(unique_words_unknown) -
 len(shared_words)))
 jaccard_by_author[author] = jaccard_sim
 print('Jaccard Similarity for {} = {}'.format(author, jaccard_sim))

 most_likely_author = max(jaccard_by_author, key=jaccard_by_author.get)
 print('Most-likely author by similarity is {}'.format(most_likely_author))

if __name__ == '__main__':
 main()

Listing 2-8: Listing 2-8: Defines the jaccard_test() function

Like most of the previous tests, the jaccard_test() function takes the
word dictionary and length of the shortest corpus as arguments. You’ll also
need a dictionary to hold the Jaccard coefficient for each author.

Jaccard similarity works with unique words, so you’ll need to turn the
corpora into sets to remove duplicates. First, you’ll build a set from the
unknown corpus. Then you’ll loop through the known corpora, turning them
into sets and comparing them to the unknown set. Be sure to truncate all
the corpora to the length of the shortest corpus when making the sets.

Prior to running the loop, use a generator expression to get the names
of the authors, other than unknown, from the words_by_author dictionary . A
generator expression is a function that returns an object that you can iterate over
one value at a time. It looks a lot like list comprehension, but instead of square
brackets, it’s surrounded by parentheses. And instead of constructing a poten-
tially memory-intensive list of items, the generator yields them in real time.
Generators are useful when you have a large set of values that you need to use
only once. I use one here as an opportunity to demonstrate the process.

When you assign a generator expression to a variable, all you get is a
type of iterator called a generator object. Compare this to making a list, as
shown here:

>>> mylist = [i for i in range(4)]
>>> mylist
[0, 1, 2, 3]
>>> mygen = (i for i in range(4))
>>> mygen
<generator object <genexpr> at 0x000002717F547390>

The generator expression in the previous snippet is the same as this
generator function:

def generator(my_range):
 for i in range(my_range):
 yield i

Attributing Authorship with Stylometry 47

Whereas the return statement ends a function, the yield statement sus-
pends the function’s execution and sends a value back to the caller. Later,
the function can resume where it left off. When a generator reaches its end,
it’s “empty” and can’t be called again.

Back to the code, start a for loop using the authors generator. Find the
unique words for each known author, just as you did for unknown. Then use
the built-in intersection() function to find all the words shared between the
current author’s set of words and the set for unknown. The intersection of two
given sets is the largest set that contains all the elements that are common
to both. With this information, you can calculate the Jaccard similarity
coefficient .

Update the jaccard_by_author dictionary and print each outcome in the
interpreter window. Then find the author with the maximum Jaccard value
 and print the results.

Jaccard Similarity for doyle = 0.34847801578354004
Jaccard Similarity for wells = 0.30786921307869214
Most-likely author by similarity is doyle

The outcome should favor Doyle.
Finish stylometry.py with the code to run the program as an imported

module or in stand-alone mode.

Summary
The true author of The Lost World is Doyle, so we’ll stop here and declare
victory. If you want to explore further, a next step might be to add more
known texts to doyle and wells so that their combined length is closer to
that for The Lost World and you don’t have to truncate it. You could also test
for sentence length and punctuation style or employ more sophisticated
techniques like neural nets and genetic algorithms.

You can also refine existing functions, like vocab_test() and jaccard_
test(), with stemming and lemmatization techniques that reduce words to
their root forms for better comparisons. As the program is currently writ-
ten, talk, talking, and talked are all considered completely different words
even though they share the same root.

At the end of the day, stylometry can’t prove with absolute certainty that
Sir Author Conan Doyle wrote The Lost World. It can only suggest, through
weight of evidence, that he is the more likely author than Wells. Framing
the question very specifically is important, since you can’t evaluate all pos-
sible authors. For this reason, successful authorship attribution begins with
good old-fashioned detective work that trims the list of candidates to a
manageable length.

48 Chapter 2

Further Reading
Natural Language Processing with Python: Analyzing Text with the Natural
Language Toolkit (O’Reilly, 2009), by Steven Bird, Ewan Klein, and Edward
Loper, is an accessible introduction to NLP using Python, with lots of exer-
cises and useful integration with the NLTK website. A new version of the
book, updated for Python 3 and NLTK 3, is available online at http://www.
nltk.org/book/.

In 1995, novelist Kurt Vonnegut proposed the idea that “stories have
shapes that can be drawn on graph paper” and suggested “feeding them
into computers.” In 2018, researchers followed up on this idea using more
than 1,700 English novels. They applied an NLP technique called sentiment
analysis that finds the emotional tone behind words. An interesting sum-
mary of their results, “Every Story in the World Has One of These Six Basic
Plots,” can be found on the BBC.com website: http://www.bbc.com/culture/
story/20180525-every-story-in-the-world-has-one-of-these-six-basic-plots.

Practice Project: Hunting the Hound with Dispersion
NLTK comes with a fun little feature, called a dispersion plot, that lets you
post the location of a word in a text. More specifically, it plots the occur-
rences of a word versus how many words from the beginning of the corpus
that it appears.

Figure 2-7 is a dispersion plot for major characters in The Hound of the
Baskervilles.

Figure 2-7: Dispersion plot for major characters in The Hound of the Baskervilles

Attributing Authorship with Stylometry 49

If you’re familiar with the story—and I won’t spoil it if you’re not—then
you’ll appreciate the sparse occurrence of Holmes in the middle, the almost
bimodal distribution of Mortimer, and the late story overlap of Barrymore,
Selden, and the hound.

Dispersion plots can have more practical applications. For example,
as the author of technical books, I need to define a new term when it first
appears. This sounds easy, but sometimes the editing process can shuffle
whole chapters, and issues like this can fall through the cracks. A dispersion
plot, built with a long list of technical terms, can make finding these first
occurrences a lot easier.

For another use case, imagine you’re a data scientist working with para-
legals on a criminal case involving insider trading. To find out whether the
accused talked to a certain board member just prior to making the illegal
trades, you can load the subpoenaed emails of the accused as a continuous
string and generate a dispersion plot. If the board member’s name appears
as expected, case closed!

For this practice project, write a Python program that reproduces
the dispersion plot shown in Figure 2-7. If you have problems loading the
hound.txt corpus, revisit the Listing 2-2 Unicode discussion on page 34.
You can find a solution, hound_dispersion.py, in the appendix and online.

Practice Project: Punctuation Heatmap
A heatmap is a diagram that uses colors to represent data values. Heatmaps
have been used to visualize the punctuation habits of famous authors
(https://www.fastcompany.com/3057101/the-surprising-punctuation-habits-of-
famous-authors-visualized) and may prove helpful in attributing authorship
for The Lost World.

Write a Python program that tokenizes the three novels used in this
chapter based solely on punctuation. Then focus on the use of semicolons.
For each author, plot a heatmap that displays semicolons as blue and all
other marks as yellow or red. Figure 2-8 shows example heatmaps for Wells’
The War of the Worlds and Doyle’s The Hound of the Baskervilles.

Figure 2-8: Heatmap of semicolon use (dark squares) for Wells (left) and Doyle (right)

50 Chapter 2

Compare the three heatmaps. Do the results favor Doyle or Wells as the
author for The Lost World?

You can find a solution, heatmap_semicolon.py, in the appendix and
online.

Challenge Project: Fixing Frequency
As noted previously, frequency in NLP refers to counts, but it can also be
expressed as the number of occurrences per unit time. Alternatively, it can
be expressed as a ratio or percent.

Define a new version of the nltk.FreqDist() method that uses percent,
rather than counts, and use it to make the charts in the stylometry.py
program. For help, see the Clearly Erroneous blog (https://martinapugliese.
github.io/plotting-the-actual-frequencies-in-a-FreqDist-in-nltk/).

