
I N D E X

Symbols
* operator

asterisk regex, 129–130, 134
multiplication, 2, 43, 45, 50
replication, 34–35
unpacking, 38

** (power) operator, 2
*? (nongreedy asterisk) regex operator,

130–131, 134
\ (escape) prefix, 138, 139, 141, 145
\n (newline) character, 4, 22, 23, 130
\s (whitespace) character, 4, 145–148
\t (tab) character, 4
^ (not) regex operator, 140, 145–147
{} (instances) regex operator, 134,

135, 142
- operator

negation, 2
subtraction, 2, 43, 45

. (dot) regex operator, 129, 133–134
" (double quote), 4
""" (triple quote), 4
() (group) regex operator, 133–134,

135, 137, 138
% (modulo) operator, 2, 167
| operator

or regex, 135, 144
union, 164–165

+ operator
addition, 2, 43, 45
at-least-one regex, 134
concatenation, 164–165

? (zero-or-one) regex operator, 130,
134, 139

?! (negative lookahead) regex
operator, 149

?P (named group) regex operator,
145–147

' (single quote), 4
''' (triple quote), 4
/ (division) operator, 2, 43
// (integer division) operator, 2

[] operator
character class regex, 138, 140–141
indexing, 46
list creation, 6

_ (throwaway) parameter, 175
_ (trailing underscore) character, 98

A
abs() function, 2, 72
absolute values, 72
activation functions, 107
addition (+) operator, 2, 43, 45
advanced indexing, 56, 67
Air Quality Index (AQI) outliers

example, 53, 54–56
algorithms. See also classification

algorithms
anagram detection, 152–154
binary search, 176–180
clustering algorithms, 94–97
Fibonacci series, 174–176
Levenshtein distance, 159–162
linear regression, 83–89
obfuscation, 165–168
outlier detection, 70, 73–74
palindrome detection, 154–156
permutations calculation, 156–159
powerset creation, 162–165
prime number generation, 168–174
and programming mastery, 151–152
Quicksort, 180–182
recursive, 157–159
runtime complexity, 154, 169, 177

all() function, 76
anagram detection example, 152–154
and keyword, 3–4
any() function, 36–37
append() list method, 7, 9, 22–23, 176
arange() function, 88
argsort() function, 64–65, 66–67
arithmetic operations, 2
arrays. See NumPy arrays

186 Index

association analysis, 74–79
asterisk (*) regex operator,

129–130, 134
astype() function, 59, 69
at-least-one (+) regex operator, 134
autocorrection applications, 159
average() function, 44, 62–63, 117–119
axis argument, 61–63, 65–66, 73–74,

117–119

B
bestseller books filtering example,

68–69
bestseller bundle association example,

77–79
bias-variance trade-off, 113–114
binary search algorithm, 176–180
Boolean data

array operations, 54, 58–59,
72–73, 76

as NumPy array data type, 50
values and evaluation, 2–4, 56, 143,

160–161, 176
Boolean indexing, 57–59, 69
bounce rates, 70
boundary cases, 123
brackets ([])

character class regex operator,
138, 140–148

indexing operator, 46
list creation operator, 6

break keyword, 14
broadcasting

definition, 50
examples, 52–53, 54–56, 59, 61

C
Caesar’s cipher, 165
cardiac health cyclic data example,

33–35
categorical output, 90
centroids, 95
character class ([]) regex operator,

138, 140–141
character extraction example, 137–140
Christmas quote example, 135
classification algorithms

concepts, 120
and curse of dimensionality, 119
decision trees, 111–113

K-Nearest Neighbors, 100–104
logistic regression, 89–94
problem description, 89
support-vector machines, 119,

121–123
classifiers, 120
class labels, 93
close() (file) command, 23
cluster_centers_ attribute, 97–99
clustering algorithms, 94–97
coefficients, 83–86
collaborative filtering, 74–79
collection data types, 9–10
column vectors, 88
compilation, 133–134
compile() method, 133
concatenation

+ operator, 164–165
list, 7, 33–35, 164–165
string, 4

conditional execution, 13
container data structures, 6–12

dictionaries, 10–11
lists, 6–8
operations, 11–12
sets, 9–10
stacks, 8–9

context, in list comprehension,
12, 18–20, 24

continue statement, 14
control flow, 12

if, else, and elif, 13
loops, 13–14

convergence, 109
copurchases association examples,

74–79
corrupted list correction example, 31–33
cyclic data generation example, 33–35

D
database formatting example, 37–39
data cleaning example, 60–64
data structures. See container data

structures; data types;
NumPy arrays

data types
Boolean, 2–4
None keyword, 4, 5–6
numerical, 2
and NumPy arrays, 50–51, 53, 59
strings, 4–5

Index 187

dead code, 14
DecisionTreeClassifier module,

112–113
decision trees, 111–113, 123–126
def keyword, 14–15
dictionaries

data structure, 10–11
in employee data examples, 20,

36–37, 39
dimensionality

curse of, 119
and NumPy arrays, 42–43, 48–50

Divide and Conquer algorithms, 180
division (/) operator, 2, 43
dot (.) regex, 129, 133–134
double quote ("), 4
dtype property, 51, 53
duplicate character detection example,

145–147

E
edit distance, 159
element-wise operations, 43
elif keyword, 13
else keyword, 13
employee data examples

arithmetic, 45
clustering, 97–99
dictionary, 18, 20, 35–37

encryption, 165–166
endswith() string method, 5
ensemble learning, 123–126
error minimization, 85–86, 88
escape (\) prefix, 138, 139, 141, 145
expression, in list comprehension, 12,

18–20
extend() list method, 7

F
factorial calculation example, 156–159
false positives, 132
False value. See also Boolean data

of Python objects, 160–161
and while loops, 14

features and predictions, 82–83
Fibonacci series algorithm, 174–176
FIFO (first-in, first-out) structures, 8–9
file reading example, 22–24
filtering. See also association analysis,

68–69, 73–74

findall() function, 129–131, 135–137,
138, 142, 146–147

find() string method, 5, 28–29
Finxter ratings, 104–105, 109–110
fit() function

and decision trees, 112–113
and K-Nearest Neighbors (KNN)

algoritjm, 101–103
and linear regression, 87–88
and logistic regression, 92–93
and neural network analysis,

108–109
and random forests, 124–125
and support-vector machines, 122

float data type and operations, 2, 50
float() function, 2
for loops, 12, 13–14, 18–20
fullmatch() function, 142–143, 144
functions. See also lambda functions;

individual function names
defined, 14–15
throwaway parameter (_), 175

functools library, 163

G
generator expressions, 36–37
greedy pattern matching, 130–131
group (()) regex operator, 133–134,

135, 137, 138

H
Hadamard product, 45
hashable data types, 9–10, 12
hash() function, 9, 12
histogramming, 154
home price prediction example,

100–103
hyperlink analysis example, 136–137

I
if keyword, 12, 13, 19
income calculation example, 45–46
incrementor functions, 16
indexes

[] operator, 46
advanced indexing, 56, 67
and argsort() function, 64–65
as arguments, 27
and Boolean arrays, 57–59, 69

188 Index

index() list method, 8
inference phase, 83
initializer argument, 163–164
in keyword, 5, 11, 25
insert() list method, 7
Instagram influencer filtering

example, 57–59
instances ({}) regex operator, 134,

135, 142
integer data type and operations, 2, 50
integer division (//) operator, 2
int() function, 2
investment portfolio risk example,

114–116
is keyword, 6
items() dictionary method, 11, 20
iterable arguments, 34
iterable (reduce()) argument,

163–164, 175

J
join() string method, 5, 166

K
(key, value) pairs, 10–11
keys() function, 11
K-Means algorithm, 95–99
KMeans module, 97–99
K-Nearest Neighbors (KNN) algorithm,

100–104
KNeighborsClassifier module, 103
KNeighborsRegressor module, 101–103

L
labeled vs. unlabeled data, 94–95
lambda functions

defining, 15–16, 24–26
recursive, 158–159, 160–162

lambda keyword, 15
len() function, 6
len() string method, 5
Levenshtein distance algorithm,

159–162
linear classifiers, 120
linear regression, 83–89

coding, 86–89
concepts and formulas, 83–86

LinearRegression module, 87

list comprehension
examples, 22–24, 115, 139
formula, 12, 18–20
and generator expressions, 36
nested, 21–22
with slicing, 29–30

lists. See also list comprehension
concatenation, 7, 33–35, 162–165
defining, 6
membership testing, 11
vs. NumPy arrays, 42, 43
operations on, 6–8

logical_and() function, 72–74
logistic regression, 89–94
LogisticRegression module, 92–93
loops, 13–14
lower() string method, 4
lung cancer logistic regression

example, 90–94

M
machine learning

bias-variance trade-off, 113–114
classification concepts, 120
decision trees, 111–113
ensemble learning, 123–126
K-Means clustering algorithm,

94–99
K-Nearest Neighbors algorithm,

100–104
linear regression algorithm, 83–89
logistic regression algorithm,

89–94
model parameters, 83
neural network analysis, 104–110
overview, 81, 126
supervised, 82–83
support-vector machines, 119,

121–123
unsupervised, 94–95

machine learning models
decision trees, 111–113
K-Means clustering algorithm,

94–99
K-Nearest Neighbors algorithm,

100–104
linear regression function, 83–89
logistic regression function, 89–94
neural networks, 104–110
parameters, 83

Index 189

random forests, 123–126
support-vector machines, 119,

121–123
map() function, 25–26
margin of error, 121
margin of safety, 123
mark non-prime numbers example,

169–174
mark string example, 25–26
mask index arrays, 59
match() function, 133–134, 135–136
Matplotlib library, 34, 71–72
max() function, 44–45, 46, 79
maximum likelihood models, 91–92
max_iter() argument, 109
mean, 70–71, 73–74
mean() function, 73
meta-predictions, 123
min() function, 44, 115
minimum wage test example, 35–37
MLPRegressor module, 108–110
modulo (%) operator, 2, 167
multilayer perceptron (MLP), 104–110
multiline strings, 4, 130, 137, 140–141,

149–150
multinomial classification, 90
multiplication of arrays, 45, 50, 73
multiplication (*) operator, 2, 43, 45, 50
multiset data structures, 10
mutability, 6–7

N
named groups, 145–147
n_clusters argument, 98
ndim attribute, 48–49
negation (-) operator, 2
negative lookahead, 149–150
negative lookahead (?!) regex

operator, 149
n_estimators parameter, 124–125
neural network analysis

coding, 108–110
concepts of artificial, 106–107
example, 104–105

newline (\n) character, 4, 22, 23, 130
None keyword, 4, 5–6
nongreedy asterisk (*) regex operator,

130–131, 134
nongreedy pattern matching, 130–131,

134, 137
nonlinear classifiers, 120

nonsecure URL search example,
140–141

nonzero() function, 54–56
normal distribution data, 70–71
normal() function, 71
not keyword, 3–4
not (^) regex operator, 140, 145–147
null value. See None keyword
numerical data types and operations, 2
NumPy arrays

arithmetic operations on, 43–46, 72
axes and dimensionality, 48–50
axis argument, 61–63, 65–66, 76
Boolean operations, 54–56
broadcasting, 50, 52–53, 54–56
creating, 42–43
and data types, 50–51, 53, 59
filtering, 68–69
indexing, 46, 57–59
logical and operation, 72–73
minimum variance calculation,

114–116
reshaping, 61, 62–63
slice assignments, 60–61, 62–63
slicing, 46–48, 51–52, 58–59,

75–76, 78
sorting in, 64–67
statistics calculations, 116–119

NumPy library, 41, 43

O
obfuscation algorithm, 165–168
one-liners

resources, xxiii
use and misuse, 183–184
value of learning, xix–xxii

or keyword, 3–4
order of execution

in Boolean operations, 3–4
in regular expressions, 135

or (|) regex operator, 135, 144
outlier detection, 53–57, 70, 73–74

P
palindrome detection example, 154–156
pattern matching. See regular expressions
permutations calculation example,

156–159
Peters, Tim, The Zen of Python, xxi–xxii
pivot element, 180–183

190 Index

plot() function, 34–35
pop() list method, 9
power (**) operator, 2
powersets, 162–165
predict() function, 88, 108–110,

122, 125
predictions and features, 82–83
predict_proba() function, 93–94
prime numbers

detection example, 168–169
generator example, 169–174

probability, a priori, 157
programming skills

and algorithm mastery, 151–152
development and practice, xix–xxii,

116, 126, 183–184
problem solving strategies, 143
productivity, 39–40, 87, 127
in rating example, 104–105,

109–110
pruning, 112
Python

code readability, xxi–xxii, 24, 116
libraries, xix–xx, 26, 41, 71, 86,

87, 163
naming conventions, 98
object truth values, 160–161
resources, xxiii
skills rating example, 104–105,

109–110

Q
Quicksort algorithm, 180–182
quotes

in regex expressions, 145, 145–150
in strings, 4

R
RandomForestClassifier module, 124
random forests, 123–126
random module, 71
randomness in decision trees, 113,

125–126
random_state parameter, 125
range() function, 12, 18–20, 169, 174
reading files example, 22–24
recursion and recursive functions,

157–159, 160–162, 177–180,
180–182

reduce() function, 163–165, 169, 174,
175–176

regex. See regular expressions
regex characters, 128–131, 134–135,

138, 140–141
regex functions, 135, 137, 142–143, 149
regression problems

vs. classification problems, 89
and K-Nearest Neighbors

algorithm, 100–101
and linear regression algorithm, 83

regular expressions. See also regex
characters; regex functions

for character substitution, 149–150
compiled patterns, 133–134
for duplicate character detection,

145–147
false positives removal, 132–134
greedy and non-greedy pattern

matching, 130
groups and named groups, 138–

139, 145–146
negative lookahead, 149–150
special characters, 138
for user input validation, 141–145
for word repetition detection,

147–148
re module, 129–131
remove() list method, 7–8
replace() string method, 5
replication (*) operator, 34–35
reshape() function, 62–63, 88, 92–93,

101–103
return expressions, 15, 24–25
return keyword, 15
return values, 6, 24
reverse() list method, 8
ROT13 algorithm, 165–168

S
salary increase calculation example,

51–53
SAT score analysis example, 66–67
scikit-learn library, 86, 97–98
search() function, 135, 147
sequence aggregator examples,

164–165, 175
set comprehension, 12
sets

data structure, 9–10, 56
membership testing, 11–12
powerset construction example,

162–165

Index 191

shape attribute, 49–50, 76
Sieve of Eratosthenes, 169–174
sigmoid function, 90–92
single quote ('), 4
sklearn package, 98
slice assignments, 31–33, 60–61
slicing

with list comprehension, 29–30
multidimensional, 46–48
with negative step size, 66, 67,

155–156
syntax and examples, 26–29

softmax function, 90
sorted (Python) function, 65, 66,

153–154
sort() (NumPy) function, 64–66, 67
sorting, 64–67, 153–154, 180–182
sort() list method, 8
split() function, 21–22
Stack Overflow, 170
stacks, 8–9
standard deviation, 70–71, 73–74, 117
start argument, 27, 155
startswith() string method, 5
statistics calculations, 116–119
std() function, 73, 117–119
step argument, 27
stock price examples

calculations, 61–62
linear regression, 84–89

stop argument, 27, 155
strings. See also multiline strings;

regular expressions
data type, 4
selected methods, 4–5

strip() string method, 4, 22–24
str() string method, 4
sub() regex function, 149–150
subtraction (-) operator, 2, 43, 45
sum() function, 76, 77, 78
supervised machine learning, 82–83, 94
support-vector classification (SVC), 122
support-vector machines (SVMs), 119,

121–123
SVC module, 122

T
tab (\t) character, 4
team rankings example, 156–157
throwaway (_) parameter, 175

time format validation examples,
141–145

trailing underscore (_) character, 98
training data, 82–83, 100
tree module, 112–113
trees. See decision trees
triple quote ('''), 4
True value. See also Boolean data

of Python objects, 160–161
and while loops, 14

U
union (|) operator, 164–165
unlabeled vs. labeled data, 94–95
unpacking (*) operator, 38
unsupervised machine learning, 94–95
upper() string method, 5
urllib.request module, 132
urlopen() method, 132
URL search example, 140–141
user input validation examples, 141–145

V
values() function, 11, 36–37
van Rossum, Guido, 36
var() function, 115, 117–119
variance, 113–116, 126

W
web scraper example, 132–134
where() function, 116
while loops, 13–14
whitespace (\s) character, 4, 145–148
word repetition detection example,

147–148

X
xkcd() function, 71–72

Z
Zen of Python, The (Peters), xxi–xxii
zero-or-one (?) regex operator, 130,

134, 139
zip() function, 37–39

