
Environment setup is the process of organiz-
ing your computer so you can write code.

This involves installing any necessary tools,
configuring them, and handling any hiccups

during the setup. There is no single setup process
because everyone has a different computer with a
 different operating system, version of the operating
system, and version of the Python interpreter. Even so, this chapter describes
some basic concepts to help you administer your own computer using the
command line, environment variables, and filesystem.

Learning these concepts and tools might seem like a headache. You
want to write code, not poke around configuration settings or understand
inscrutable console commands. But these skills will save you time in the
long run. Ignoring error messages or randomly changing configuration
settings to get your system working well enough might hide problems, but it
won’t fix them. By taking the time to understand these issues now, you can
prevent them from reoccurring.

2
E N V I R O N M E N T S E T U P

A N D T H E C O M M A N D L I N E

18 Chapter 2

The Filesystem
The filesystem is how your operating system organizes data to be stored and
retrieved. A file has two key properties: a filename (usually written as one word)
and a path. The path specifies the location of a file on the computer. For exam-
ple, a file on my Windows 10 laptop has the filename project.docx in the path
C:\Users\Al\Documents. The part of the filename after the last period is the file’s
extension and tells you a file’s type. The filename project.docx is a Word docu-
ment, and Users, Al, and Documents all refer to folders (also called directories).
Folders can contain files and other folders. For example, project.docx is in
the Documents folder, which is in the Al folder, which is in the Users folder.
Figure 2-1 shows this folder organization.

Figure 2-1: A file in a hierarchy of folders

The C:\ part of the path is the root folder, which contains all other folders.
On Windows, the root folder is named C:\ and is also called the C: drive. On
macOS and Linux, the root folder is /. In this book, I’ll use the Windows-
style root folder, C:\. If you’re entering the interactive shell examples on
macOS or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB flash drive, will appear
differently on different operating systems. On Windows, they appear as new,
lettered root drives, such as D:\ or E:\. On macOS, they appear as new folders
within the /Volumes folder. On Linux, they appear as new folders within the
/mnt (“mount”) folder. Note that folder names and filenames are not case
sensitive on Windows and macOS, but they’re case sensitive on Linux.

Paths in Python
On Windows, the backslash (\) separates folders and filenames, but on
macOS and Linux, the forward slash (/) separates them. Instead of writing
code both ways to make your Python scripts cross-platform compatible, you
can use the pathlib module and / operator instead.

The typical way to import pathlib is with the statement from pathlib
import Path. Because the Path class is the most frequently used class in

Environment Setup and the Command Line 19

pathlib, this form lets you type Path instead of pathlib.Path. You can pass a
string of a folder or filename to Path() to create a Path object of that folder
or filename. As long as the leftmost object in an expression is a Path object,
you can use the / operator to join together Path objects or strings. Enter the
following into the interactive shell:

>>> from pathlib import Path
>>> Path('spam') / 'bacon' / 'eggs'
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon/eggs')
WindowsPath('spam/bacon/eggs')
>>> Path('spam') / Path('bacon', 'eggs')
WindowsPath('spam/bacon/eggs')

Note that because I ran this code on a Windows machine, Path()
returns WindowsPath objects. On macOS and Linux, a PosixPath object is
returned. (POSIX is a set of standards for Unix-like operating systems and
is beyond the scope of this book.) For our purposes, there’s no difference
between these two types.

You can pass a Path object to any function in the Python stan-
dard library that expects a filename. For example, the function call
open(Path('C:\\') / 'Users' / 'Al' / 'Desktop' / 'spam.py') is equivalent to
open(r'C:\Users\Al\Desktop\spam.py').

The Home Directory
All users have a folder called the home folder or home directory for their own
files on the computer. You can get a Path object of the home folder by call-
ing Path.home():

>>> Path.home()
WindowsPath('C:/Users/Al')

The home directories are located in a set place depending on your
operating system:

•	 On Windows, home directories are in C:\Users.

•	 On Mac, home directories are in /Users.

•	 On Linux, home directories are often in /home.

Your scripts will almost certainly have permissions to read from and
write to the files in your home directory, so it’s an ideal place to store the
files that your Python programs will work with.

The Current Working Directory
Every program that runs on your computer has a current working directory
(cwd). Any filenames or paths that don’t begin with the root folder you can
assume are in the cwd. Although “folder” is the more modern name for a

20 Chapter 2

directory, note that cwd (or just working directory) is the standard term,
not “current working folder.”

You can get the cwd as a Path object using the Path.cwd() function and
change it using os.chdir(). Enter the following into the interactive shell:

>>> from pathlib import Path
>>> import os
1>>> Path.cwd()
WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python38')
2>>> os.chdir('C:\\Windows\\System32')
>>> Path.cwd()
WindowsPath('C:/Windows/System32')

Here, the cwd was set to C:\Users\Al\AppData\Local\Programs\Python\
Python38 1, so the filename project.docx would refer to C:\Users\Al\AppData\
Local\Programs\Python\Python38\project.docx. When we change the cwd to
C:\Windows\System32 2, the filename project.docx would refer to C:\Windows\
System32\project.docx.

Python displays an error if you try to change to a directory that doesn’t
exist:

>>> os.chdir('C:/ThisFolderDoesNotExist')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [WinError 2] The system cannot find the file specified:
'C:/ThisFolderDoesNotExist'

The os.getcwd() function in the os module is a former way of getting the
cwd as a string.

Absolute vs. Relative Paths
There are two ways to specify a file path:

•	 An absolute path, which always begins with the root folder

•	 A relative path, which is relative to the program’s cwd

There are also the dot (.) and dot-dot (..) folders. These are not real fold-
ers but special names that you can use in a path. A single period (.) for a
folder name is shorthand for “this directory.” Two periods (..) means “the
parent folder.”

Figure 2-2 shows an example of some folders and files. When the cwd
is set to C:\bacon, the relative paths for the other folders and files are set as
they are in the figure.

The .\ at the start of a relative path is optional. For example, .\spam.txt
and spam.txt refer to the same file.

Environment Setup and the Command Line 21

Figure 2-2: The relative paths for folders and files in the working directory C:\bacon

Programs and Processes
A program is any software application that you can run, such as a web
browser, spreadsheet application, or word processor. A process is a running
instance of a program. For example, Figure 2-3 shows five running pro-
cesses of the same calculator program.

Figure 2-3: One calculator program running multiple times as multiple, separate processes

22 Chapter 2

Processes remain separate from each other, even when running the
same program. For example, if you ran several instances of a Python pro-
gram at the same time, each process might have separate variable values.
Every process, even processes running the same program, has its own cwd
and environment variable settings. Generally speaking, a command line
will run only one process at a time (although you can have multiple com-
mand lines open simultaneously).

Each operating system has a way of viewing a list of running processes.
On Windows, you can press CTRL-SHIFT-ESC to bring up the Task Manager
application. On macOS, you can run ApplicationsUtilitiesActivity
Monitor. On Ubuntu Linux, you can press CTRL-ALT-DEL to open an
application also called the Task Manager. These task managers can force
a running process to terminate if it’s unresponsive.

The Command Line
The command line is a text-based program that lets you enter commands to
interact with the operating system and run programs. You might also hear
it called the command line interface (CLI, which rhymes with “fly”), com-
mand prompt, terminal, shell, or console. It provides an alternative to a
graphical user interface (GUI, pronounced “gooey”), which allows the user to
interact with the computer through more than just a text-based interface.
A GUI presents visual information to a user to guide them through tasks
more easily than the command line does. Most computer users treat the
command line as an advanced feature and never touch it. Part of the intimi-
dation factor is due to the complete lack of hints of how to use it; although
a GUI might display a button showing you where to click, a blank terminal
window doesn’t remind you what to type.

But there are good reasons for becoming adept at using the com-
mand line. For one, setting up your environment often requires you to use
the command line rather than the graphical windows. For another, enter-
ing commands can be much faster than clicking graphical windows with
the mouse. Text-based commands are also less ambiguous than dragging
an icon to some other icon. This lends them to automation better, because
you can combine multiple specific commands into scripts to perform
sophisticated operations.

The command line program exists in an executable file on your com-
puter. In this context, we often call it a shell or shell program. Running the
shell program makes the terminal window appear:

•	 On Windows, the shell program is at C:\Windows\System32\cmd.exe.

•	 On macOS, the shell program is at /bin/bash.

•	 On Ubuntu Linux, the shell program is at /bin/bash.

Over the years, programmers have created many shell programs for
the Unix operating system, such as the Bourne Shell (in an executable
file named sh) and later the Bourne-Again Shell (in an executable file
named Bash). Linux uses Bash by default, whereas macOS uses the similar

Environment Setup and the Command Line 23

Zsh or Z shell in Catalina and later versions. Due to its different develop-
ment history, Windows uses a shell named Command Prompt. All these
programs do the same thing: they present a terminal window with a text-
based CLI into which the user enters commands and runs programs.

In this section, you’ll learn some of the command line’s general concepts
and common commands. You could master a large number of cryptic com-
mands to become a real sorcerer, but you only need to know about a dozen or
so to solve most problems. The exact command names might vary slightly on
different operating systems, but the underlying concepts are the same.

Opening a Terminal Window
To open a terminal window, do the following:

•	 On Windows, click the Start button, type Command Prompt, and then press
ENTER.

•	 On macOS, click the Spotlight icon in the upper-right corner, type
Terminal, and then press ENTER.

•	 On Ubuntu Linux, press the WIN key to bring up Dash, type Terminal,
and press ENTER. Alternatively, use the keyboard shortcut CTRL-ALT-T.

Like the interactive shell, which displays a >>> prompt, the terminal
displays a shell prompt at which you can enter commands. On Windows, the
prompt will be the full path to the current folder you are in:

C:\Users\Al>your commands go here

On macOS, the prompt shows your computer’s name, a colon, and the
cwd with your home folder represented as a tilde (~). After this is your user-
name followed by a dollar sign ($):

Als-MacBook-Pro:~ al$ your commands go here

On Ubuntu Linux, the prompt is similar to the macOS prompt except
it begins with the username and an at (@) symbol:

al@al-VirtualBox:~$ your commands go here

Many books and tutorials represent the command line prompt as just
$ to simplify their examples. It’s possible to customize these prompts, but
doing so is beyond the scope of this book.

Running Programs from the Command Line
To run a program or command, enter its name into the command line.
Let’s run the default calculator program that comes with the operating
 system. Enter the following into the command line:

•	 On Windows, enter calc.exe.

24 Chapter 2

•	 On macOS, enter open -a Calculator. (Technically, this runs the open
program, which then runs the Calculator program.)

•	 On Linux, enter gnome-calculator.

Program names and commands are case sensitive on Linux but case
insensitive on Windows and macOS. This means that even though you must
type gnome-calculator on Linux, you could type Calc.exe on Windows and
OPEN –a Calculator on macOS.

Entering these calculator program names into the command line is
equivalent to running the Calculator program from the Start menu, Finder,
or Dash. These calculator program names work as commands because the
calc.exe, open, and gnome-calculator programs exist in folders that are included
in the PATH environment variables. The section “Environment Variables and
Path” on page 35 explains this further. But suffice it to say that when you
enter a program name on the command line, the shell checks whether a pro-
gram with that name exists in one of the folders listed in PATH. On Windows,
the shell looks for the program in the cwd (which you can see in the prompt)
before checking the folders in PATH. To tell the command line on macOS and
Linux to first check the cwd, you must enter ./ before the filename.

If the program isn’t in a folder listed in PATH, you have two options:

•	 Use the cd command to change the cwd to the folder that contains the
program, and then enter the program name. For example, you could
enter the following two commands:

cd C:\Windows\System32
calc.exe

•	 Enter the full file path for the executable program file. For example,
instead of entering calc.exe, you could enter C:\Windows\System32\calc.exe.

On Windows, if a program ends with the file extension .exe or .bat,
including the extension is optional: entering calc does the same thing as
entering calc.exe. Executable programs in macOS and Linux often don’t
have file extensions marking them as executable; rather, they have the
executable permission set. The section “Running Python Programs Without
the Command Line” on page 39 has more information.

Using Command Line Arguments
Command line arguments are bits of text you enter after the command name.
Like the arguments passed to a Python function call, they provide the com-
mand with specific options or additional directions. For example, when you
run the command cd C:\Users, the C:\Users part is an argument to the cd
command that tells cd to which folder to change the cwd. Or, when you run
a Python script from a terminal window with the python yourScript.py com-
mand, the yourScript.py part is an argument telling the python program what
file to look in for the instructions it should carry out.

Environment Setup and the Command Line 25

Command line options (also called flags, switches, or simply options) are
a single-letter or short-word command line arguments. On Windows, com-
mand line options often begin with a forward slash (/); on macOS and
Linux, they begin with a single dash (–) or double dash (--). You already
used the –a option when running the macOS command open –a Calculator.
Command line options are often case sensitive on macOS and Linux but
are case insensitive on Windows, and we separate multiple command line
options with spaces.

Folders and filenames are common command line arguments. If the
folder or filename has a space as part of its name, enclose the name in dou-
ble quotes to avoid confusing the command line. For example, if you want
to change directories to a folder called Vacation Photos, entering cd Vacation
Photos would make the command line think you were passing two argu-
ments, Vacation and Photos. Instead, you enter cd "Vacation Photos":

C:\Users\Al>cd "Vacation Photos"

C:\Users\Al\Vacation Photos>

Another common argument for many commands is --help on macOS
and Linux and /? on Windows. These bring up information associated with
the command. For example, if you run cd /? on Windows, the shell tells you
what the cd command does and lists other command line arguments for it:

C:\Users\Al>cd /?
Displays the name of or changes the current directory.

CHDIR [/D] [drive:][path]
CHDIR [..]
CD [/D] [drive:][path]
CD [..]

 .. Specifies that you want to change to the parent directory.

Type CD drive: to display the current directory in the specified drive.
Type CD without parameters to display the current drive and directory.

Use the /D switch to change current drive in addition to changing current
directory for a drive.
--snip—

This help information tells us that the Windows cd command also goes
by the name chdir. (Most people won’t type chdir when the shorter cd com-
mand does the same thing.) The square brackets contain optional argu-
ments. For example, CD [/D] [drive:][path] tells you that you could specify a
drive or path using the /D option.

Unfortunately, although the /? and --help information for commands
provides reminders for experienced users, the explanations can often be
cryptic. They’re not good resources for beginners. You’re better off using

26 Chapter 2

a book or web tutorial instead, such as The Linux Command Line by William
Shotts, Linux Basics for Hackers by OccupyTheWeb, or PowerShell for Sysadmins
by Adam Bertram, all from No Starch Press.

Running Python Code from the Command Line with -c
If you need to run a small amount of throwaway Python code that you
run once and then discard, pass the –c switch to python.exe on Windows or
python3 on macOS and Linux. The code to run should come after the –c
switch, enclosed in double quotes. For example, enter the following into the
terminal window:

C:\Users\Al>python -c "print('Hello, world')"
Hello, world

The –c switch is handy when you want to see the results of a single
Python instruction and don’t want to waste time entering the interactive
shell. For example, you could quickly display the output of the help() func-
tion and then return to the command line:

C:\Users\Al>python -c "help(len)"
Help on built-in function len in module builtins:

len(obj, /)
 Return the number of items in a container.

C:\Users\Al>

Running Python Programs from the Command Line
Python programs are text files that have the .py file extension. They’re not
executable files; rather, the Python interpreter reads these files and carries
out the Python instructions in them. On Windows, the interpreter’s execut-
able file is python.exe. On macOS and Linux, it’s python3 (the original python
file contains the Python version 2 interpreter). Running the commands
python yourScript.py or python3 yourScript.py will run the Python instruc-
tions saved in a file named yourScript.py.

Running the py.exe Program
On Windows, Python installs a py.exe program in the C:\Windows folder. This
program is identical to python.exe but accepts an additional command line
argument that lets you run any Python version installed on your computer.
You can run the py command from any folder, because the C:\Windows folder
is included in the PATH environment variable. If you have multiple Python
versions installed, running py automatically runs the latest version installed
on your computer. You can also pass a -3 or -2 command line argument to
run the latest Python version 3 or version 2 installed, respectively. Or you
could enter a more specific version number, such as -3.6 or -2.7, to run that

Environment Setup and the Command Line 27

particular Python installation. After the version switch, you can pass all the
same command line arguments to py.exe as you do to python.exe. Run the fol-
lowing from the Windows command line:

C:\Users\Al>py -3.6 -c "import sys;print(sys.version)"
3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, 03:37:03) [MSC v.1900 64 bit (AMD64)]

C:\Users\Al>py -2.7
Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:25:58) [MSC v.1500 64 bit
(AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

The py.exe program is helpful when you have multiple Python versions
installed on your Windows machine and need to run a specific version.

Running Commands from a Python Program
Python’s subprocess.run() function, found in the subprocess module, can run
shell commands within your Python program and then present the com-
mand output as a string. For example, the following code runs the ls –al
command:

>>> import subprocess, locale
1>>> procObj = subprocess.run(['ls', '-al'], stdout=subprocess.PIPE)
2>>> outputStr = procObj.stdout.decode(locale.getdefaultlocale()[1])
>>> print(outputStr)
total 8
drwxr-xr-x 2 al al 4096 Aug 6 21:37 .
drwxr-xr-x 17 al al 4096 Aug 6 21:37 ..
-rw-r--r-- 1 al al 0 Aug 5 15:59 spam.py

We pass the ['ls', '-al'] list to subprocess.run()1. This list contains the
command name ls, followed by its arguments, as individual strings. Note
that passing ['ls –al'] wouldn’t work. We store the command’s output as
a string in outputStr 2. Online documentation for subprocess.run() and
locale.getdefaultlocale() will give you a better idea of how these functions
work, but they’ll work with any shell command.

Minimizing Typing with Tab Completion
Because advanced users enter commands into computers for hours a
day, modern command lines offer features to minimize the amount of
t yping necessary. The tab completion feature (also called command line
completion or autocomplete) lets a user type the first few characters of a
folder or filename and then press the TAB key to have the shell fill in the
rest of the name.

For example, when you type cd c:\u and press TAB on Windows, the
current command checks which folders or files in C:\ begin with u and tab
completes to c:\Users. It corrects the lowercase u to U as well. (On macOS
and Linux, tab completion doesn’t correct the casing.) If multiple folders

28 Chapter 2

or filenames begin with U in the C:\ folder, you can continue to press TAB
to cycle through all of them. To narrow down the number of matches, you
could also type cd c:\us, which filters the possibilities to folders and file-
names that begin with us.

Pressing the TAB key multiple times works on macOS and Linux as
well. In the following example, the user typed cd D, followed by TAB twice:

al@al-VirtualBox:~$ cd D
Desktop/ Documents/ Downloads/
al@al-VirtualBox:~$ cd D

Pressing TAB twice after typing the D causes the shell to display all the
possible matches. The shell gives you a new prompt with the command as
you’ve typed it so far. At this point, you could type, say, e and then press
TAB to have the shell complete the cd Desktop/ command.

Tab completion is so useful that many GUI IDEs and text editors
include this feature as well. Unlike command lines, these GUI programs
usually display a small menu under your words as you type them, letting you
select one to autocomplete the rest of the command.

Viewing the Command History
In their command history, modern shells also remember the commands
you’ve entered. Pressing the up arrow key in the terminal fills the command
line with the last command you entered. You can continue to press the up
arrow key to find earlier commands, or press the down arrow key to return
to more recent commands. If you want to cancel the command currently in
the prompt and start from a fresh prompt, press CTRL-C.

On Windows, you can view the command history by running doskey
/history. (The oddly named doskey program goes back to Microsoft’s pre-
Windows operating system, MS-DOS.) On macOS and Linux, you can
view the command history by running the history command.

Working with Common Commands
This section contains a short list of the common commands you’ll use in
the command line. There are far more commands and arguments than
listed here, but you can treat these as the bare minimum you’ll need to
navigate the command line.

Command line arguments for the commands in this section appear
between square brackets. For example, cd [destination folder] means you
should enter cd, followed by the name of a new folder.

Match Folder and Filenames with Wildcard Characters

Many commands accept folder and filenames as command line arguments.
Often, these commands also accept names with the wildcard characters
* and ?, allowing you to specify multiple matching files. The * character

Environment Setup and the Command Line 29

matches any number of characters, whereas the ? character matches any
single character. We call expressions that use the * and ? wildcard charac-
ters glob patterns (short for “global patterns”).

Glob patterns let you specify patterns of filenames. For example, you
could run the dir or ls command to display all the files and folders in the
cwd. But if you wanted to see just the Python files, dir *.py or ls *.py would
display only the files that end in .py. The glob pattern *.py means “any
group of characters, followed by .py”:

C:\Users\Al>dir *.py
 Volume in drive C is Windows
 Volume Serial Number is DFF3-8658

 Directory of C:\Users\Al

03/24/2019 10:45 PM 8,399 conwaygameoflife.py
03/24/2019 11:00 PM 7,896 test1.py
10/29/2019 08:18 PM 21,254 wizcoin.py
 3 File(s) 37,549 bytes
 0 Dir(s) 506,300,776,448 bytes free

The glob pattern records201?.txt means “records201, followed by any sin-
gle character, followed by .txt.” This would match record files for the years
records2010.txt to records2019.txt (as well as filenames, such as records201X.txt).
The glob pattern records20??.txt would match any two characters, such as
records2021.txt or records20AB.txt.

Change Directories with cd

Running cd [destination folder] changes the shell’s cwd to the destination
folder:

C:\Users\Al>cd Desktop

C:\Users\Al\Desktop>

The shell displays the cwd as part of its prompt, and any folders or files
used in commands will be interpreted relative to this directory.

If the folder has spaces in its name, enclose the name in double quotes.
To change the cwd to the user’s home folder, enter cd ~ on macOS and
Linux, and cd %USERPROFILE% on Windows.

On Windows, if you also want to change the current drive, you’ll first
need to enter the drive name as a separate command:

C:\Users\Al>d:

D:\>cd BackupFiles

D:\BackupFiles>

30 Chapter 2

To change to the parent directory of the cwd, use the .. folder name:

C:\Users\Al>cd ..

C:\Users>

List Folder Contents with dir and ls

On Windows, the dir command displays the folders and files in the cwd.
The ls command does the same thing on macOS and Linux. You can dis-
play the contents of another folder by running dir [another folder] or
 ls [another folder].

The -l and -a switches are useful arguments for the ls command. By
default, ls displays only the names of files and folders. To display a long list-
ing format that includes file size, permissions, last modification timestamps,
and other information, use –l. By convention, the macOS and Linux oper-
ating systems treat files beginning with a period as configuration files and
keep them hidden from normal commands. You can use -a to make ls dis-
play all files, including hidden ones. To display both the long listing format
and all files, combine the switches as ls -al. Here’s an example in a macOS
or Linux terminal window:

al@ubuntu:~$ ls
Desktop Downloads mu_code Pictures snap Videos
Documents examples.desktop Music Public Templates
al@ubuntu:~$ ls -al
total 112
drwxr-xr-x 18 al al 4096 Aug 4 18:47 .
drwxr-xr-x 3 root root 4096 Jun 17 18:11 ..
-rw------- 1 al al 5157 Aug 2 20:43 .bash_history
-rw-r--r-- 1 al al 220 Jun 17 18:11 .bash_logout
-rw-r--r-- 1 al al 3771 Jun 17 18:11 .bashrc
drwx------ 17 al al 4096 Jul 30 10:16 .cache
drwx------ 14 al al 4096 Jun 19 15:04 .config
drwxr-xr-x 2 al al 4096 Aug 4 17:33 Desktop
drwxr-xr-x 2 al al 4096 Jun 17 18:16 Documents

The Windows analog to ls –al is the dir command. Here’s an example
in a Windows terminal window:

C:\Users\Al>dir
 Volume in drive C is Windows
 Volume Serial Number is DFF3-8658

 Directory of C:\Users\Al

06/12/2019 05:18 PM <DIR> .
06/12/2019 05:18 PM <DIR> ..
12/04/2018 07:16 PM <DIR> .android
--snip--
08/31/2018 12:47 AM 14,618 projectz.ipynb
10/29/2014 04:34 PM 121,474 foo.jpg

Environment Setup and the Command Line 31

List Subfolder Contents with dir /s and find
On Windows, running dir /s displays the cwd’s folders and their subfolders.
For example, the following command displays every .py file in the C:\github\
ezgmail folder and all of its subfolders:

C:\github\ezgmail>dir /s *.py
 Volume in drive C is Windows
 Volume Serial Number is DEE0-8982

 Directory of C:\github\ezgmail

06/17/2019 06:58 AM 1,396 setup.py
 1 File(s) 1,396 bytes

 Directory of C:\github\ezgmail\docs

12/07/2018 09:43 PM 5,504 conf.py
 1 File(s) 5,504 bytes

 Directory of C:\github\ezgmail\src\ezgmail

06/23/2019 07:45 PM 23,565 __init__.py
12/07/2018 09:43 PM 56 __main__.py
 2 File(s) 23,621 bytes

 Total Files Listed:
 4 File(s) 30,521 bytes
 0 Dir(s) 505,407,283,200 bytes free

The find . –name command does the same thing on macOS and Linux:

al@ubuntu:~/Desktop$ find . -name "*.py"
./someSubFolder/eggs.py
./someSubFolder/bacon.py
./spam.py

The . tells find to start searching in the cwd. The –name option tells find
to find folders and filenames by name. The "*.py" tells find to display folders
and files with names that match the *.py pattern. Note that the find com-
mand requires the argument after –name to be enclosed in double quotes.

Copy Files and Folders with copy and cp
To create a duplicate of a file or folder in a different directory, run copy
[source file or folder] [destination folder] or cp [source file or folder]
[destination folder]. Here’s an example in a Linux terminal window:

al@ubuntu:~/someFolder$ ls
hello.py someSubFolder
al@ubuntu:~/someFolder$ cp hello.py someSubFolder
al@ubuntu:~/someFolder$ cd someSubFolder
al@ubuntu:~/someFolder/someSubFolder$ ls
hello.py

32 Chapter 2

SHOR T COMM A ND N A ME S

When I started learning the Linux operating system, I was surprised to find that
the Windows copy command I knew well was named cp on Linux. The name
“copy” was much more readable than “cp.” Was a terse, cryptic name really
worth saving two characters’ worth of typing?

As I gained more experienced in the command line, I realized the answer
is a firm “yes.” We read source code more often than we write it, so using ver-
bose names for variables and functions helps. But we type commands into the
command line more often than we read them, so in this case, the opposite is
true: short command names make the command line easier to use and reduce
strain on your wrists.

Move Files and Folders with move and mv
On Windows, you can move a source file or folder to a destination folder
by running move [source file or folder] [destination folder]. The mv [source
file or folder] [destination folder] command does the same thing on
macOS and Linux.

Here’s an example in a Linux terminal window:

al@ubuntu:~/someFolder$ ls
hello.py someSubFolder
al@ubuntu:~/someFolder$ mv hello.py someSubFolder
al@ubuntu:~/someFolder$ ls
someSubFolder
al@ubuntu:~/someFolder$ cd someSubFolder/
al@ubuntu:~/someFolder/someSubFolder$ ls
hello.py

The hello.py file has moved from ~/someFolder to ~/someFolder/someSubFolder
and no longer appears in its original location.

Rename Files and Folders with ren and mv

Running ren [file or folder] [new name] renames the file or folder on
Windows, and mv [file or folder] [new name] does so on macOS and Linux.
Note that you can use the mv command on macOS and Linux for moving
and renaming a file. If you supply the name of an existing folder for the
second argument, the mv command moves the file or folder there. If you
supply a name that doesn’t match an existing file or folder, the mv command
renames the file or folder. Here’s an example in a Linux terminal window:

al@ubuntu:~/someFolder$ ls
hello.py someSubFolder

Environment Setup and the Command Line 33

al@ubuntu:~/someFolder$ mv hello.py goodbye.py
al@ubuntu:~/someFolder$ ls
goodbye.py someSubFolder

The hello.py file now has the name goodbye.py.

Delete Files and Folders with del and rm

To delete a file or folder on Windows, run del [file or folder]. To do so on
macOS and Linux, run rm [file] (rm is short for, remove).

These two delete commands have some slight differences. On Windows,
running del on a folder deletes all of its files, but not its subfolders. The
del command also won’t delete the source folder; you must do so with the
rd or rmdir commands, which I’ll explain in the “Delete Folders with rd
and rmdir” section on page 34. Additionally, running del [folder] won’t
delete any files inside the subfolders of the source folder. You can delete the
files by running del /s /q [folder]. The /s runs the del command on the
subfolders, and the /q essentially means “be quiet and don’t ask me for con-
firmation.” Figure 2-4 illustrates this difference.

Figure 2-4: The files are deleted in these example folders when you run del delicious
(left) or del /s /q delicious (right).

On macOS and Linux, you can’t use the rm command to delete folders.
But you can run rm –r [folder] to delete a folder and all of its contents. On
Windows, rd /s /q [folder] will do the same thing. Figure 2-5 illustrates
this task.

34 Chapter 2

Figure 2-5: The files are deleted in these example folders
when you run rd /s /q delicious or rm –r delicious.

Make Folders with md and mkdir

Running md [new folder] creates a new, empty folder on Windows, and run-
ning mkdir [new folder] does so on macOS and Linux. The mkdir command
also works on Windows, but md is easier to type.

Here’s an example in a Linux terminal window:

al@ubuntu:~/Desktop$ mkdir yourScripts
al@ubuntu:~/Desktop$ cd yourScripts

1 al@ubuntu:~/Desktop/yourScripts$ ls
al@ubuntu:~/Desktop/yourScripts$

Notice that the newly created yourScripts folder is empty; nothing
appears when we run the ls command to list the folder’s contents 1.

Delete Folders with rd and rmdir

Running rd [source folder] deletes the source folder on Windows, and rmdir
[source folder] deletes the source folder on macOS and Linux. Like mkdir,
the rmdir command also works on Windows, but rd is easier to type. The
folder must be empty before you can remove it.

Here’s an example in a Linux terminal window:

al@ubuntu:~/Desktop$ mkdir yourScripts
al@ubuntu:~/Desktop$ ls
yourScripts

Environment Setup and the Command Line 35

al@ubuntu:~/Desktop$ rmdir yourScripts
al@ubuntu:~/Desktop$ ls
al@ubuntu:~/Desktop$

In this example, we created an empty folder named yourScripts and then
removed it.

To delete nonempty folders (along with all the folders and files it con-
tains), run rd /s/q [source folder] on Windows or rm –rf [source folder] on
macOS and Linux.

Find Programs with where and which

Running where [program] on Windows or which [program] on macOS and
Linux tells you the exact location of the program. When you enter a com-
mand on the command line, your computer checks for the program in the
folders listed in the PATH environment variable (although Windows checks
the cwd first).

These commands can tell you which executable Python program is
run when you enter python in the shell. If you have multiple Python versions
installed, your computer might have several executable programs of the same
name. The one that is run depends on the order of folders in your PATH envi-
ronment variable, and the where and which commands will output it:

C:\Users\Al>where python
C:\Users\Al\AppData\Local\Programs\Python\Python38\python.exe

In this example, the folder name indicates that the Python version
run from the shell is located at C:\Users\Al\AppData\Local\Programs\Python\
Python38\.

Clear the Terminal with cls and clear

Running cls on Windows or clear on macOS and Linux will clear all the
text in the terminal window. This is useful if you simply want to start with a
fresh-looking terminal window.

Environment Variables and PATH
All running processes of a program, no matter the language in which it’s
written, have a set of variables called environment variables that can store
a string. Environment variables often hold systemwide settings that every
program would find useful. For example, the TEMP environment variable
holds the file path where any program can store temporary files. When the
operating system runs a program (such as a command line), the newly cre-
ated process receives its own copy of the operating system’s environment
variables and values. You can change a process’s environment variables
independently of the operating system’s set of environment variables. But
those changes apply only to the process, not to the operating system or any
other process.

36 Chapter 2

I discuss environment variables in this chapter because one such vari-
able, PATH, can help you run your programs from the command line.

Viewing Environment Variables
You can see a list of the terminal window’s environment variables by running
set (on Windows) or env (on macOS and Linux) from the command line:

C:\Users\Al>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Al\AppData\Roaming
CommonProgramFiles=C:\Program Files\Common Files
--snip--
USERPROFILE=C:\Users\Al
VBOX_MSI_INSTALL_PATH=C:\Program Files\Oracle\VirtualBox\
windir=C:\WINDOWS

The text on the left side of the equal sign (=) is the environment vari-
able name, and the text on the right side is the string value. Every process
has its own set of environment variables, so different command lines can
have different values for their environment variables.

You can also view the value of a single environment variable with the
echo command. Run echo %HOMEPATH% on Windows or echo $HOME on macOS
and Linux to view the value of the HOMEPATH or HOME environment variables,
respectively, which contain the current user’s home folder. On Windows, it
looks like this:

C:\Users\Al>echo %HOMEPATH%
\Users\Al

On macOS or Linux, it looks like this:

al@al-VirtualBox:~$ echo $HOME
/home/al

If that process creates another process (such as when a command line
runs the Python interpreter), that child process receives its own copy of the
parent process’s environment variables. The child process can change the
values of its environment variables without affecting the parent process’s
environment variables, and vice versa.

You can think of the operating system’s set of environment variables as
the “master copy” from which a process copies its environment variables.
The operating system’s environment variables change less frequently than
a Python program’s. In fact, most users never directly touch their environ-
ment variable settings.

Working with the PATH Environment Variable
When you enter a command, like python on Windows or python3 on macOS
and Linux, the terminal checks for a program with that name in the folder

Environment Setup and the Command Line 37

you’re currently in. If it doesn’t find it there, it will check the folders listed
in the PATH environment variable.

For example, on my Windows computer, the python.exe program file is
located in the C:\Users\Al\AppData\Local\Programs\Python\Python38 folder.
To run it, I have to enter C:\Users\Al\AppData\Local\Programs\Python\Python38\
python.exe, or switch to that folder first and then enter python.exe.

This lengthy pathname requires a lot of typing, so instead I add this
folder to the PATH environment variable. Then, when I enter python.exe, the
command line searches for a program with this name in the folders listed
in PATH, saving me from having to type the entire file path.

Because environment variables can contain only a single string value,
adding multiple folder names to the PATH environment variable requires
using a special format. On Windows, semicolons separate the folder names.
You can view the current PATH value with the path command:

C:\Users\Al>path
C:\Path;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;
--snip--
C:\Users\Al\AppData\Local\Microsoft\WindowsApps

On macOS and Linux, colons separate the folder names:

al@ubuntu:~$ echo $PATH
/home/al/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin:/usr/games:/usr/local/games:/snap/bin

The order of the folder names is important. If I have two files named
s omeProgram.exe in C:\WINDOWS\system32 and C:\WINDOWS, entering
someProgram.exe will run the program in C:\WINDOWS\system32 because
that folder appears first in the PATH environment variable.

If a program or command you enter doesn’t exist in the cwd or any of
the directories listed in PATH, the command line will give you an error, such
as command not found or not recognized as an internal or external command. If
you didn’t make a typo, check which folder contains the program and see if
it appears in the PATH environment variable.

Changing the Command Line’s PATH Environment Variable
You can change the current terminal window’s PATH environment variable
to include additional folders. The process for adding folders to PATH varies
slightly between Windows and macOS/Linux. On Windows, you can run
the path command to add a new folder to the current PATH value:

1 C:\Users\Al>path C:\newFolder;%PATH%

2 C:\Users\Al>path
C:\newFolder;C:\Path;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;
--snip--
C:\Users\Al\AppData\Local\Microsoft\WindowsApps

38 Chapter 2

The %PATH% part 1 expands to the current value of the PATH environment
variable, so you’re adding the new folder and a semicolon to the beginning
of the existing PATH value. You can run the path command again to see the
new value of PATH 2.

On macOS and Linux, you can set the PATH environment variable with
syntax similar to an assignment statement in Python:

1 al@al-VirtualBox:~$ PATH=/newFolder:$PATH
2 al@al-VirtualBox:~$ echo $PATH

/newFolder:/home/al/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

The $PATH part 1 expands to the current value of the PATH environ-
ment variable, so you’re adding the new folder and a colon to the existing
PATH value. You can run the echo $PATH command again to see the new value
of PATH 2.

But the previous two methods for adding folders to PATH apply only
to the current terminal window and any programs run from it after the
addition. If you open a new terminal window, it won’t have your changes.
Permanently adding folders requires changing the operating system’s set
of environment variables.

Permanently Adding Folders to PATH on Windows
Windows has two sets of environment variables: system environment variables
(which apply to all users) and user environment variables (which override the
system environment variable but apply to the current user only). To edit
them, click the Start menu and then enter Edit environment variables for
your account, which opens the Environment Variables window, as shown in
Figure 2-6.

Select Path from the user variable list (not the system variable list), click
Edit, add the new folder name in the text field that appears (don’t forget
the semicolon separator), and click OK.

This interface isn’t the easiest to work with, so if you’re frequently edit-
ing environment variables on Windows, I recommend installing the free
Rapid Environment Editor software from https://www.rapidee.com/. Note that
after installing it, you must run this software as the administrator to edit
system environment variables. Click the Start menu, type Rapid Environment
Editor, right-click the software’s icon, and click Run as administrator.

From the Command Prompt, you can permanently modify the system
PATH variable using the setx command:

C:\Users\Al>setx /M PATH "C:\newFolder;%PATH%"

You’ll need to run the Command Prompt as the administrator to run
the setx command.

Environment Setup and the Command Line 39

Figure 2-6: The Environment Variables window on Windows

Permanently Adding Folders to PATH on macOS and Linux
To add folders to the PATH environment variables for all terminal windows
on macOS and Linux, you’ll need to modify the .bashrc text file in your
home folder and add the following line:

export PATH=/newFolder:$PATH

This line modifies PATH for all future terminal windows. On macOS
Catalina and later versions, the default shell program has changed from
Bash to Z Shell, so you’ll need to modify .zshrc in the home folder instead.

Running Python Programs Without the Command Line
You probably already know how to run programs from whatever launcher
your operating system provides. Windows has the Start menu, macOS has
the Finder and Dock, and Ubuntu Linux has Dash. Programs will add
themselves to these launchers when you install them. You can also double-
click a program’s icon in a file explorer app (such as File Explorer on
Windows, Finder on macOS, and Files on Ubuntu Linux) to run them.

40 Chapter 2

But these methods don’t apply to your Python programs. Often,
 double-clicking a .py file will open the Python program in an editor or
IDE instead of running it. And if you try running Python directly, you’ll
just open the Python interactive shell. The most common way of running a
Python program is opening it in an IDE and clicking the Run menu option
or executing it in the command line. Both methods are tedious if you sim-
ply want to launch a Python program.

Instead, you can set up your Python programs to easily run them
from your operating system’s launcher, just like other applications you’ve
installed. The following sections detail how to do this for your particular
operating system.

Running Python Programs on Windows
On Windows, you can run Python programs in a few other ways. Instead of
opening a terminal window, you can press WIN-R to open the Run dialog
and enter py C:\path\to\yourScript.py, as shown in Figure 2-7. The py.exe
program is installed at C:\Windows\py.exe, which is already in the PATH environ-
ment variable, and the .exe file extension is optional when you are running
programs.

Figure 2-7: The Run dialog on Windows

Still, this method requires you to enter your script’s full path. Also, the
terminal window that displays the program’s output will automatically close
when the program ends, and you might miss some output.

You can solve these problems by creating a batch script, which is a small
text file with the .bat file extension that can run multiple terminal com-
mands at once, much like a shell script in macOS and Linux. You can use a
text editor, such as Notepad, to create these files. Make a new text file con-
taining the following two lines:

@py.exe C:\path\to\yourScript.py %*
@pause

Environment Setup and the Command Line 41

Replace this path with the absolute path to your program, and save
this file with a .bat file extension (for example, yourScript.bat). The @ sign
at the start of each command prevents it from being displayed in the ter-
minal window, and the %* forwards any command line arguments entered
after the batch filename to the Python script. The Python script, in turn,
reads the command line arguments in the sys.argv list. This batch file will
spare you from having to type the Python program’s full absolute path
every time you want to run it. The @pause command adds Press any key to
 continue... to the end of the Python script to prevent the program’s window
from disappearing too quickly.

I recommend you place all of your batch and .py files in a single folder
that already exists in the PATH environment variable, such as your home
folder at C:\Users\<USERNAME>. With a batch file set up, you can run your
Python script by simply pressing WIN-R, entering the name of your batch
file (entering the .bat file extension is optional), and pressing ENTER.

Running Python Programs on macOS
On macOS, you can create a shell script to run your Python scripts by creat-
ing a text file with the .command file extension. Make one in a text editor,
such as TextEdit, and add the following content:

#!/usr/bin/env bash
python3 /path/to/yourScript.py

Save this file in your home folder. In a terminal window, make this shell
script executable by running chmod u+x yourScript.command. Now you should
be able to click the Spotlight icon (or press COMMAND-SPACE) and enter
the name of your shell script to run it. The shell script, in turn, will run
your Python script.

Running Python Programs on Ubuntu Linux
There isn’t a quick way to run your Python scripts on Ubuntu Linux like
there is in Windows and macOS, although you can shorten some of the
steps involved. First, make sure your .py file is in your home folder. Second,
add this line as the first line of your .py file:

#!/usr/bin/env python3

This is called a shebang line, and it tells Ubuntu that when you run this
file, you want to use python3 to run it. Third, add the execute permission to
this file by running the chmod command from the terminal:

al@al-VirtualBox:~$ chmod u+x yourScript.py

Now whenever you want to quickly run your Python script, you can
press CTRL-ALT-T to open a new terminal window. This terminal will be

42 Chapter 2

set to the home folder, so you can simply enter ./yourScript.py to run this
script. The ./ is required because it tells Ubuntu that yourScript.py exists in
the cwd (the home folder, in this case).

Summary
Environment setup involves all the steps necessary to get your computer
into a state where you can easily run your programs. It requires you to know
several low-level concepts about how your computer works, such as the file-
system, file paths, processes, the command line, and environment variables.

The filesystem is how your computer organizes all the files on your
computer. A file is a complete, absolute file path or a file path relative to the
cwd. You’ll navigate the filesystem through the command line. The com-
mand line has several other names, such as terminal, shell, and console,
but they all refer to the same thing: the text-based program that lets you
enter commands. Although the command line and the names of common
commands are slightly different between Windows and macOS/Linux, they
effectively perform the same tasks.

When you enter a command or program name, the command line
checks the folders listed in the PATH environment variable for the name.
This is important to understand to figure out any command not found errors
you might encounter. The steps for adding new folders to the PATH environ-
ment variable are also slightly different between Windows and macOS/
Linux.

Becoming comfortable with the command line takes time because
there are so many commands and command line arguments to learn. Don’t
worry if you spend a lot of time searching for help online; this is what expe-
rienced software developers do every day.

