INVESTIGATING EVIDENCE FROM
LINUX LOGS

The computer term log originates from an

ancient sailor’s technique for measuring
the speed of a moving ship. A wooden log

attached to a long rope was thrown overboard

behind the ship. The rope had regularly spaced knots
that sailors would count as the moving ship distanced
itself from the floating log. They could calculate the
speed of the ship from the number of knots counted
over a period of time. Regular measurements of the
ship’s speed were recorded in the ship’s “log book”
or log.

Over time, the word log came to represent a variety of recorded periodic
measurements or events. LLog books are still used by organizations to docu-
ment visitors entering buildings, the delivery of goods, and other activities
that need a written historical record. The concept of a computer login and
logout was created to control and record user activity. Early time-sharing
computer systems were expensive and needed to keep track of computing
resources consumed by different users. As the cost of storage capacity and

processing power dropped, the use of logging expanded to nearly all parts
of a modern computer system. This wealth of logged activity is a valuable
source of digital evidence and helps forensic investigators reconstruct past
events and activity.

Traditional Syslog

The traditional logging system on Unix and Unix-like operating systems such
as Linux is syslog. Syslog was originally written for the sendmail software
package in the early 1980s and has since become the de facto logging stan-
dard for IT infrastructure.

Syslog is typically implemented as a daemon (also known as a collector)
that listens for log messages from multiple sources, such as packets arriving
over network sockets (UDP port 514), local named pipes, or syslog library
calls (see Figure 5-1).

Network log host Local logfiles
Configured with @host /var/log/*
UDP port 514 By facility and severity
Daemon
/usr/sbin/rsyslogd
Service started by systemd

N

Config files Log originator
/etc/rsyslogd.conf Programs with syslog support
/etc/rsyslogd.d/*.conf kernel messages

Figure 5-1: Traditional syslog architecture (rsyslog)

The syslog architecture and network protocol is defined in RFC 5424.
Linux distributions have historically included one of several implementa-
tions of syslog for local system logging, the most common being rsyslog.

Syslog Facility, Severity, and Priority

The syslog standard defines the format of messages and several characteris-
tics of log entries. These characteristics are facility, severity, and priority.

116 Chapter 5

The message facility allows the categorization of logs depending on a
subsystem. RFC 5424 documents 24 syslog message facilities. The rsyslog
.conf(5) man page and the Linux syslog.h header file define them as follows:

kern: kernel messages

user: random user-level messages

mail: mail system

daemon: system daemons

auth: security/authorization messages

syslog: messages generated internally by syslogd
lpr: line printer subsystem

news: network news subsystem (obsolete)

uucp: UUCP subsystem (obsolete)

cron: clock daemon

authpriv (auth-priv): security/authorization messages
ftp: FTP daemon

reserved

O 0N O U1 » W N BB O

I
N B O

reserved
reserved
reserved
localo: reserved for local use

PR R R
oun b w

locali: reserved for local use

R
o0

local2: reserved for local use
local3: reserved for local use
local4: reserved for local use
locals: reserved for local use
local6: reserved for local use
local7: reserved for local use

N N NN
w N B O VO

Some of these facility codes, like news (Usenet) or uucp (Unix-to-Unix copy)
are obsolete and might be explicitly redefined by a system administrator at
a local site. The last eight “local” facilities are reserved specifically for local
sites to use as needed.

One internal facility called mark is often implemented separately from
the syslog standard. If used, the syslog daemon generates mark log entries,
together with a timestamp, at regularly defined intervals. These markers
indicate that the logging subsystem was still functional during periods of
time when no logs were received. In a forensic examination, the marks are
interesting as potential indicators of the absence of certain activity, which
can be useful information in an investigation.

There are eight severity levels, with zero being the most severe. The
highest numbers generate the most volume of information and are often en-
abled on demand for troubleshooting or debugging. The severity level can
be represented as either a numeric value or a text label. The levels are listed
here together with the short or alternate names and description:

0 emergency (emerg or panic): system is unusable
1 alert (alert): action must be taken immediately

Investigating Evidence from Linux Logs 117

118

Chapter 5

critical (crit): critical conditions

error (err): error conditions

warning (warn): warning conditions

notice (notice): normal but significant condition
informational (info): informational messages
debug (debug): debug-level messages

~N O v B W N

These severity levels are interesting from a forensic readiness perspective. If
a particular syslog-generating component is at heightened risk or suspicion,
or if there is an ongoing incident, the logging severity can be changed tem-
porarily to increase the verbosity of the logs. Some tools and documentation
may use the word priority when referring to severity.

The priority, or PRI value, of a syslog message is calculated from the
facility and severity (by multiplying the facility by eight and then adding the
severity). The syslog daemon can use the priority number to decide how to
handle the message. These decisions include the location and file to save,
filtering, which host(s) to forward messages to, and so on.

Syslog Configuration

The configuration of the local syslog daemon is important to know in a
forensic investigation. The configuration file entries (both defaults and ad-
ministrator customization) direct the investigator to where logs are located,
which severity levels have been logged, and what other logging hosts are in-
volved. Common syslog daemon configuration file locations are:

* Jetc/syslog.conf

» Jetc/rsyslog.conf

* Jetc/rsyslog.d/*.conf
* Jelc/syslog-mg.conf

* Jete/syslogng/*

These are plaintext files that any text editor can read. The examples here
include BSD syslog, rsyslog, and syslog-ng implementations.

The configuration files define the location and contents of the logs
managed by the daemon. A typical syslog configuration line has two fields:
the selector and the action. The selector field is composed of the facility and
severity (separated by a dot). The action field defines the destination or
other action taken when logs match the selector. The following is an exam-
ple rsyslog configuration file:

#*.debug /var/log/debug
kern.* /var/log/kern.log
mail.err /var/log/mail.err
*.info @loghost

The first line is commented out and intended for debugging when needed.
The second line sends all kernel logs to /var/log/kern.log, regardless of sever-
ity. In the third line, mail logs with a severity of error or more are sent to the
/var/log/mail.err logfile. These files are stored locally and can be easily lo-
cated and examined. The last line sends all log messages (any facility) with
a severity of info or more to another host on the network. The @ indicates a
network destination and loghost is a central logging infrastructure.

The network destinations are especially interesting for an investigation
because they indicate a separate non-local source of log data that can be
collected and examined. If identical logs are stored both locally and on a
remote log host, the correlation can be interesting if the data doesn’t match.
A mismatch may indicate malicious modification of one of the logs.

On Linux systems, the /var/log/ directory is the most common place to
save logs. However, these flat text files have scalability, performance, and re-
liability challenges when high volumes of log data are ingested. Enterprise
IT environments still use the syslog protocol over the network, but messages
are often saved to high-performance databases or systems designed specifi-
cally for managing logs (Splunk is a popular example). These databases can
be a valuable source of information for investigators and enable a quick iter-
ative investigative process. Very large text-based logfiles can take a long time
to query (grep) for keywords compared to database log systems.

Analyzing Syslog Messages

A syslog message transmitted across a network is not necessarily identical to
the corresponding message that is saved to a file. For example, some fields
may not be saved (depending on the syslog configuration).

A program with built-in syslog support, also known as an originator, uses
programming libraries or external programs to generate syslog messages on
a local system. Programs implementing syslog are free to choose any facility
and severity they wish for each message.

To illustrate, let’s take a look at the logger? tool for generating syslog
messages:

$ logger -p auth.emerg "OMG we've been hacked!"

The syslog message from this example can be observed traversing a network.
When captured and decoded by tcpdump, it looks like this:

21:56:32.635903 IP (tos ox0, ttl 64, id 12483, offset 0, flags [DF],
proto UDP (17), length 80)
pcl.42661 > loghost.syslog: SYSLOG, length: 52
Facility auth (4), Severity emergency (0)
Msg: Nov 2 21:56:32 pcl sam: OMG we've been hacked!

1. The syslog daemon or program used may have some restrictions. For example, the logger
program may prevent users from specifying the kernel facility.
2. See the logger(1) man page for more information.

Investigating Evidence from Linux Logs 119

Some information (like severity or facility) in the original syslog mes-
sages might not be stored in the destination logfiles depending on how the
syslog daemon is configured. For example, a typical rsyslog configuration
will log the syslog message from the preceding example as follows:

Nov 2 21:56:32 pcl sam: OMG we've been hacked!

Here, the severity and facility are not logged locally; however, the syslog dae-
mon is aware of them when the message arrives and may use this informa-
tion to choose the log destination. On the loghost, the UDP port numbers
(the source port in particular) are also not logged unless the site is logging
firewall traffic or using netflow logging.

Most syslog systems log a few standard items by default. Here is an ex-
ample of a typical log entry generated by rsyslog:

Nov 2 10:19:11 pcl dhclient[18842]: DHCPACK of 10.0.11.227 from 10.0.11.1

This log line contains a timestamp, the local hostname, and the program
that generated the message together with its process ID (in square brack-
ets), followed by the message produced by the program. In this example, the
dhclient program (PID 18842) is logging a DHCP acknowledgement contain-
ing the machine’s local IP address (10.0.11.227) and the IP address of the
DHCP server (10.0.11.1).

Most Linux systems use log rotation to manage retention as logs grow
over time. Older logs might be renamed, compressed, or even deleted. A
common software package for this is logrotate, which manages log retention
and rotation based on a set of configuration files. The default configuration
file is /etc/logrotate.conf, but packages may supply their own logrotate config-
uration and save it in /et¢/logrotate.d/* during package installation. During a
forensic examination, it is useful to check whether and how logfiles are ro-
tated and retained over time. The logrotate package can manage any logfile,
not only those generated by syslog.

Forensic examiners should be aware that syslog messages have some se-
curity issues that may affect the evidential value of the resulting logs. Thus,
all logs should be analyzed with some degree of caution:

* Programs can generate messages with any facility and severity they
want.

* Syslog messages sent over a network are stateless, unencrypted, and
based on UDP, which means they can be spoofed or modified in
transit.

* Syslog does not detect or manage dropped packets. If too many
messages are sent or the network is unstable, some messages may
go missing, and logs can be incomplete.

* Text-based logfiles can be maliciously manipulated or deleted.

In the end, trusting logs and syslog messages involves assessing and accept-
ing the risks of integrity and completeness.

120 Chapter 5

Some Linux distributions are starting to switch over to the systemd jour-
nal for logging and aren’t installing a syslog daemon. It is likely that locally
installed syslog daemons on desktop Linux systems will decline in popular-
ity, but in server environments, syslog will remain a de facto standard for
network-based logging.

Systemd Journal

The shortcomings of the aging syslog system have resulted in a number of
security and availability enhancements. Many of these enhancements have
been added to existing syslog daemons as non-standard features and never
gained widespread use among Linux distributions. The systemd journal was
developed from scratch as an alternative logging system with additional fea-
tures missing from syslog.

Systemd Journal Features and Components

The design goals and decisions of the systemd journal were to add new fea-
tures to those already found in traditional logging systems and integrate var-
ious components that had previously functioned as separate daemons or
programs. Systemd journal features include:

* Tight integration with systemd

* stderr and stdout from daemons is captured and logged

* Log entries are compressed and stored in a database format
* Built-in integrity using forward secure sealing (FSS)

* Additional trusted metadata fields for each entry

* Logfile compression and rotation

* Log message rate limiting

With the introduction of FSS and trusted fields, the developers created
a greater focus on log integrity and trustworthiness. From a digital forensics
perspective, this is interesting and useful because it strengthens the reliabil-
ity of the evidence.

The journal offers network transfer of messages to another log host
(central logging infrastructure) in a similar way to traditional logging, but
with a few enhancements:

* TCP-based for stateful established sessions (solves dropped packet
issue with UDP)

* Encrypted transmission (HTTPS) for confidentiality and privacy

* Authenticated connections to prevent spoofing and unauthorized
messages

* Message queuing when loghost is unavailable (no lost messages)

Investigating Evidence from Linux Logs 121

122

Chapter 5

* Signed data with FSS for message integrity

* Active or passive message delivery modes

These networking features allow a more secure logging infrastructure to be
built, with a focus on integrity and completeness. A significant problem with
syslog was the UDP-based stateless packet transmission. With the systemd
journal, reliability and completeness of log transmission is addressed.

If the journal networking features are used, check the /et¢/systemd/
journal-upload.conf file for the "URL=" parameter containing the hostname
of a central log host. This is a forensic artifact that may point to the exis-
tence of logs in a different location and may be important on systems for
which logging is not persistent.

Figure 5-2 shows the architectural component diagram of systemd jour-
nal networking.

Journal files from remote hosts

/var/log/journal/remote/remote-*.journal

A

systemd-journal-remote

/etc/systemd/journal-remote.conf

Listening on TCP port 19532
/etc/systemd/system/systemd-journal-remote. service.d/override.conf
(Override config may contain remote hosts)

Central log host
Remote host 1 Remote host 2

systemd-journal-gatewayd systemd-journal-upload
Listening for loghost on TCP port 19531 /etc/systemd/journal-upload.conf
for active loghost communication Connects to loghost on TCP port 19532
A A
Local journal files Local journal files
/var/log/journal/* /var/log/journal/*
/run/log/journal/ * /run//og/journa// *
(Logs in /run are volatile) (Logs in /run are volatile)

Figure 5-2: Systemd journal networking

See the systemd-journal-remote(8), systemd-journal-gatewayd(8), and
systemd-journal-upload(8) man pages for more information about the jour-
nal networking features. Although those features are innovative and greatly
improve traditional logging, they are systemd specific and not compatible or
well known outside the Linux community.

Systemd Journal Configuration

Understanding the configuration of the systemd journal helps us assess the
potential for finding forensic evidence on a system. The journal functions as
a normal Linux daemon (see Figure 5-3) called systemd-journald and is well

documented in the systemd-journald(8) man page. You can find the enable
status of the journal daemon at boot time by examining the systemd unit
files (systemd-journald.service).

Local logfiles

/var/log/journal/MACHINE-ID/*

System and user logs, rotated versions

A

systemd-journald daemon

/usr/lib/systemd/systemd-journald
Service started by systemd

_ ™~

Config files Sources of logs
/etc/systemd/journald.conf Kernel, systemd system, user sessions,
/efc/systemd/journald.conf.d/*.conf daemons, audit, syslog compatibility

Figure 5-3: Systemd journal daemon

The systemd journal has several configuration parameters that define
aspects of its operation (described in the journald.conf(5) man page). Com-
mon configuration file locations for the journal are as follows:

* Jelc/systemd/journald.conf
* Jelc/systemd/journald.conf.d/*.conf
o Just/lib/systemd/journald.conf.d/*.conf

The configuration file specifies whether logs are volatile or persistent
with the "Storage=" parameter. Persistent logs, if configured, are stored in a
binary format in /var/log/journal/. If logs are configured to be volatile, they
will be stored in /run/log/journal/ and exist only when the system is running;
they are not available for postmortem forensic analysis. If "ForwardToSyslog=
yes" is set, journal logs are sent to the traditional syslog system on the local
machine and stored in local logfiles (/var/log/) or possibly forwarded to a
central log host.

On systems with a persistent journal, the /var/log/journal/ directory con-
tains a subdirectory named after the machine-id (as found in /et¢/machine-id)
that contains the local journal logfiles. The magic number identifying a jour-
nal file is the initial byte sequence 0x4C504B5348485248 or LPKSHHRH.

The journal files contain both system and user logs. System logs are gen-
erated by system services and the kernel. User logs are generated by user
login sessions (shell or desktop) and various programs that a user executes.
Users may read their own logs, but they are not permitted to modify or write
to them directly.

Investigating Evidence from Linux Logs 123

Here is an example of a system with a machine-id of 506578466b474f6e88ec
fbd783475780 and the corresponding directory with journal logfiles:

$ 1s /var/log/journal/506578466b474f6e88ectbd783475780
user-1001@0005aa24f4aa649b-46435710c1877997.journal™
user-1001@dd54becctb52461d894b914a4114a82-00000000000006a8-0005a1d176b61cce. journal
system@e29c14a0a5fc46929ec601deeabd2204-0000000000000001-00059e3713757a5a. journal
user-1001@dd54beccfb52461d894b914a4114a82-0000000000000966-0005a1d17821abe4. journal
system@e29c14a0a5fc46929ec601deeabd2204-000000000000189c-00059e37774baedd. journal
user-1001.journal

system.journal

Normal journal logs have a file extension of *.journal. If the system
crashed or had an unclean shutdown, or if the logs were corrupted, the
filename will end in a tilde (*.journal ~). Filenames of logs that are in cur-
rent use, or “online,” are system.journal and user-UID.journal (where UID
is the numeric ID of a user). Logs that have been rotated to an “offline”
or “archived” state have the original filename followed by @ and a unique
string. The unique string between the @ and .journal is broken into three
parts that describe the content of the logfile.

Let’s analyze the composition of a long journal filename, as shown in
this example:

/var/log/journal/506578466b474f6e88ectbd783475780/system@e29c14a0a
5fc46929ec601deeabd2204-000000000000189c-00059€37774baedd. journal

The deconstructed parts are as follows:

/var/log/journal/ The location (path) of persistent journal files
506578466b474f6e88ectbd783475780/ The machine-id directory
system@ Indicates a system logfile that has been archived
e29c14a0a5fc46929ec601deeabd2204 A sequence ID
-000000000000189c The first sequence number in the file
-00059e37774baedd Hexadecimal timestamp of the first log entry

.journal Indicates a systemd journal logfile

The hexadecimal timestamp refers to when the first entry was added to the
journal. For the familiar epoch in seconds, convert this timestamp to deci-
mal and then strip off the last six digits.

If the system is receiving journal logs over the network from other hosts
(by systemd-journal-upload or systemd-journal-gatewayd), a remote/ directory
may exist that contains logs for each remote host. These logs will have file-
names like remote-HOSTNAME. journal.

The journal logs the systemd boot process and follows the starting and
stopping of unit files until the system is shut down. Linux systems main-
tain a unique 128-bit boot-id that can be found (on a running system) in
/proc/sys/kernel/random/boot_id. The boot-id is randomly generated by the

124 Chapter 5

kernel at every boot, and it acts as a unique identifier for a particular dura-
tion of uptime (from boot to shutdown/reboot). The boot-id is recorded
in the journal logs and used to distinguish time periods between boots (for
example, journalctl --list-boots)and to show logs since the last boot (for
example, journalctl -b). These journalctl options can also be applied to a
file or directory for offline analysis. The boot-id may be of interest during
a forensic examination if any malicious activity was known to have occurred
during a specific boot period.

Analysis of Journal File Contents

If commercial forensic tool support for journal files is unavailable, you can
copy and analyze the journal files on a separate Linux analysis machine us-
ing the journalctl command. This command allows you to list the journal
contents, search the journal, list individual boot periods, view additional log
metadata (journald specific), view stderr and stdout from programs, export
to other formats, and more.

After copying the desired journal files or the entire journal directory
to your analysis machine, you can use journalctl file and directory flags to
specify the location of the journal files to be analyzed:

$ journalctl --file <filename>
$ journalctl --directory <directory>

Specitying a file will operate only on that single file. Specifying a directory
will operate on all the valid journal files in that directory.

Each journal file contains a header with metadata about itself, which
you can view by using the --header flag of journalctl; for example:

$ journalctl --file system.journal --header

File path: system.journal

File ID: f2c1cd76540c42c09et789278dfe28a8

Machine ID: 974c6ed5a3364c2ab862300387aa3402

Boot ID: e08a206411044788aff51a5c6a631c8f

Sequential number ID: f2c1cd76540c42c09ef789278dfe28a8

State: ONLINE

Compatible flags:

Incompatible flags: COMPRESSED-ZSTD KEYED-HASH

Header size: 256

Arena size: 8388352

Data hash table size: 233016

Field hash table size: 333

Rotate suggested: no

Head sequential number: 1 (1)

Tail sequential number: 1716 (6b4)

Head realtime timestamp: Thu 2020-11-05 08:42:14 CET (5b3573c04ac60)
Tail realtime timestamp: Thu 2020-11-05 10:12:05 CET (5b3587d63656)
Tail monotonic timestamp: 1h 29min 53.805s (1417ef08e)

Investigating Evidence from Linux Logs 125

Objects: 6631

Entry objects: 1501

Data objects: 3786

Data hash table fill: 1.6%
Field objects: 85

Field hash table fill: 25.5%
Tag objects: 0

Entry array objects: 1257
Deepest field hash chain: 2
Deepest data hash chain: 1
Disk usage: 8.0M

The output provides a technical description of the journal file, the time-
stamps of the period covered (head and tail), the number of logs (Entry
objects), and other statistics. You can find more information about the
journal file format here:® https://systemd.io/JOURNAL_FILE_FORMAT).

The following example is a basic listing of a specific journal file’s con-
tents using the journalctl command:

$ journalctl --file system.journal

-- Logs begin at Thu 2020-11-05 08:42:14 CET, end at Thu 2020-11-05 10:12:05 CET. --
Nov 05 08:42:14 pcl kernel: microcode: microcode updated early to revision 0xdé,
date = 2020-04-27

Nov 05 08:42:14 pcl kernel: Linux version 5.9.3-archi-1 (linux@archlinux) (gcc (GCC)
10.2.0, GNU 1d (GNU Binutils) 2.35.1) #1 SMP PREEMPT Sun, 01 Nov 2020 12:58:59 +0000
Nov 05 08:42:14 pcl kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-linux root=
UID=efbfc8dd-8107-4833-9b95-5b11a1b96875 rw loglevel=3 quiet pcie_aspm=off
i915.enable_dpcd_backlight=1

Nov 05 10:11:53 pcl kernel: usb 2-1: Product: USB Flash Drive

Nov 05 10:11:53 pcl kernel: usb 2-1: Manufacturer: Philips

Nov 05 10:11:53 pcl kernel: usb 2-1: SerialNumber: 070852A521943F19

Nov 05 10:11:53 pcl kernel: usb-storage 2-1:1.0: USB Mass Storage device detected

Nov 05 10:12:05 pcl sudo[10400]: sam : TTY=pts/5 ; PWD=/home/sam/test ; USER=root ;
COMMAND=/usx/bin/cp /etc/shadow .

Nov 05 10:12:05 pcl sudo[10400]: pam_unix(sudo:session): session opened for user
root(uid=0) by (uid=0)

In this example, system.journal is the name of the file being analyzed.
The first line is informational, indicating the time period contained in the
output. Some of the output is from the kernel, similar to the output from
the dmesg command. Other lines are similar to syslog, starting with a time-
stamp, hostname, daemon name, and the process ID in square brackets, and

3. The best resource for understanding the journal is the systemd source code: hitps://github
.com/systemdy/systemd,/tree/master/src/journal/ .

126 Chapter 5

https://systemd.io/JOURNAL_FILE_FORMAT/
https://github.com/systemd/systemd/tree/master/src/journal
https://github.com/systemd/systemd/tree/master/src/journal

ending with the log message. The journalctl command may also add other
informational lines like -- Reboot -- to indicate the end of a boot period (and
the start of a new boot-id).

Each log entry has journal-specific metadata stored together with the
log message. A full extraction of a journal entry can be done with a verbose
output (-o verbose) parameter. The following is a verbose journal entry from
the OpenSSH daemon:

$ journalctl --file system.journal -o verbose

Thu 2020-11-05 08:42:16.224466 CET [s=f2c1cd76540c42c09ef789278dfe28a8;1=4a9;
b=e082206411044788aff51a5c6a631c8f;m=41d525;t=5b3573c2653ed; x=a1434bf47ce8597d]
PRIORITY=6
_BOOT_ID=e08a206411044788aff51a5c6a631c8f
_MACHINE_ID=974c6ed5a3364c2ab862300387aa3402
_HOSTNAME=pc1
_UID=0
_GID=0
_SYSTEMD_SLICE=system.slice
SYSLOG_FACILITY=4
_CAP_EFFECTIVE=1fffffffff
_TRANSPORT=syslog
SYSLOG_TIMESTAMP=Nov 5 08:42:16
SYSLOG_IDENTIFIER=sshd
SYSLOG_PID=397
_PID=397
_COMM=sshd
_EXE=/usr/bin/sshd
_CMDLINE=sshd: /usr/bin/sshd -D [listener] 0 of 10-100 startups
_SYSTEMD_CGROUP=/system.slice/sshd.service
_SYSTEMD_UNIT=sshd.service
_SYSTEMD_INVOCATION_ID=7a91ff16d2af40298a9573ca544eb594
MESSAGE=Server listening on :: port 22.
_SOURCE_REALTIME TIMESTAMP=1604562136224466

This output provides structured information with unique identifiers, sys-
temd information, syslog FACILITY and PRIORITY (severity), the process that
produced the log message, and more. The systemd.journal-fields(7) man
page describes the fields of a journal log entry.

Journal files are saved in a binary format that’s open and documented.
The journalctl tool can be used to perform various examination tasks on
journal files, but some forensic investigators may prefer to export the jour-
nal contents into another format for analysis. Two useful output formats are
export and json. The export format is similar to the verbose format, with each
entry separated by a blank line (this is technically a binary format, but it con-
tains mostly readable text). The json output generates the journal entries in
JSON for easy scripting or ingesting into other analysis tools. Here are two

Investigating Evidence from Linux Logs 127

command line examples of creating .json and .export files with the full con-
tents of a journal file:

$ journalctl --file system.journal -o json > system.journal.json
$ journalctl --file system.journal -o export > system.journal.export

The new files created are system.journal.json and system.journal.export, which
other (non-Linux) tools can easily read. Another output format is .json-pretty,
which produces JSON in a more human-readable format.

Searching journal files is done by including match arguments in the
form FIELD=VALUE, but the exact value you’re searching for needs to be spec-
ified. This type of search can be useful for extracting logs from a particular
service. For example, to extract all logs from the sshd.service unit:

$ journalctl --file system.journal _SYSTEMD_UNIT=sshd.service

-- Logs begin at Thu 2020-11-05 08:42:14 CET, end at Thu 2020-11-05 10:12:05 CET. --
Nov 05 08:42:16 pcl sshd[397]: Server listening on 0.0.0.0 port 22.

Nov 05 08:42:16 pcl sshd[397]: Server listening on :: port 22.

128

Chapter 5

Regular expressions (regex) can be used with the --grep= parameter,
but they can search only the message fields, not the journal metadata. The
search syntax is not very flexible for forensic investigators, and it may be eas-
ier to export the journal to another format and use familiar tools like grep or
other text search tools.

It is worth mentioning that the systemd journal can log stdout and sdterr
of daemons and other unit files. With traditional syslog, that information
was typically lost because the daemon would detach from the controlling
terminal when it started. Systemd preserves this output and saves it to the
journal. You can list this output by specifying the stdout transport:

$ journalctl --file user-1000.journal _TRANSPORT=stdout

Transports specify how the journal received the log entry. There are
other transports like syslog, kernel, audit, and so on. These transports are
documented in the systemd.journal-fields(7) man page.

If a journal file contains FSS information, the integrity can be checked
using the --verify flag. In the following example, a journal file is checked,
and PASS indicates that the file integrity is verified:

$ journalctl --file system.journal --verify
PASS: system.journal

If a journal file has been tampered with, it will fail the verification:

$ journalctl --file user-1002.journal --verify

38fcco: Invalid hash (afd71703ce7ebaf8 vs.49235fef33e0854e

38fcco: Invalid object contents: Bad message

File corruption detected at user-1002.journal:38fcco (of 8388608 bytes, 44%).
FAIL: user-1002.journal (Bad message)

In this example, the FSS integrity failed at byte offset 0x38fcc0 of the journal
file, with a log entry that was maliciously modified. If a logfile has been tam-
pered with in multiple places, the verification will fail at the first instance of
tampering.

When investigating incidents that happened during a known window
of time, extracting logs from an explicit time frame is useful. The journalctl
command can extract logs with a specified time range using two flags: -S
(since) and -U (until). Any logs existing since the time of -S until (but not
including) the time of -U are extracted.

The following two examples are from a Linux forensic analysis machine
where journal files have been copied to an evidence directory for examina-
tion using the journalctl command:

$ journalctl --directory ./evidence -S 2020-11-01 -U 2020-11-03
$ journalctl --file ./evidence/system.journal -S "2020-11-05 08:00:00" -U "2020-11-05 09:00:00"

In the first example, the directory containing the journal files is specified
and logs from November 1 and November 2 are extracted. The second ex-
ample specifies a more exact time range and extracts logs from 8 AM to
9 AM on November 5. See the journalctl(1) man page for other variations
of the time and date string.

The new features of systemd’s journal mechanism are very much aligned
with forensic-readiness expectations. The systemd journal offers log com-
pleteness and integrity, which are fundamental concepts in digital forensics.

Other Application and Daemon Logs

Programs are not required to use syslog or the systemd journal. A daemon
or application may have a separate logging mechanism that completely ig-
nores system-provided logging. Daemons or applications may also use syslog
or the journal, but with non-standard facilities or severities and their own
message formats.

Custom Logging to Syslog or Systemd Journal

Syslog provides a C library function for programs to generate syslog mes-
sages. Systemd provides an API for programs to submit log entries to the
journal. Developers are free to use those instead of developing their own
logging subsystems. However, the facilities, severities, and format of the
message, are all decided by the developer. This freedom can lead to a vari-
ety of logging configurations among programs.

In the following examples, each program uses a different syslog facility
and severity for logging similar actions:

mail.warning: postfix/smtps/smtpd[14605]: @ warning: unknown[10.0.6.4]: SASL LOGIN
authentication failed: UGFzc3dvcmQ6

auth.info sshd[16323]: @ Failed password for invalid user fred from 10.0.2.5 port 48932 ssh2

Investigating Evidence from Linux Logs 129

authpriv.notice: auth: pam_unix(dovecot:auth): ® authentication failure; logname= uid=0
euid=0 tty=dovecot ruser=sam rhost=10.0.3.8

daemon.info: danted[30614]: @ info: block(1): tcp/accept]: 10.0.2.5.56130 10.0.2.6.1080:
error after reading 3 bytes in 0 seconds: client offered no acceptable authentication method

130

Chapter 5

These logs describe failed logins from a mail server (postfix) @, secure shell
(sshd) ®, an imap server (dovecot using pam) ®, and a SOCKS proxy (danted) @.
They all use different facilities (mail, auth, authpriv, daemon), and they all use
different severities (warning, info, notice). In some cases, additional logs may
contain more information about the same event at different facilities or
severities. Forensic examiners should not assume all similar log events will
use the same facility or severity, but rather should expect some variation.

Daemons may choose to log to a custom or user-defined facility. This is
usually defined in the daemon’s configuration or from compiled-in defaults.
For example:

local2.notice: pppd[645]: CHAP authentication succeeded
local5.info: TCSD[1848]: TrouSerS trousers 0.3.13: TCSD up and running.
local7.info: apache2[16455]: ssl: 'AH01991: SSL input filter read failed.'

Here a pppd daemon is using local2 as the facility, the tcsd daemon that man-
ages the TPM uses locals, and an Apache web server (apache2) is configured
to use local7. Daemons can log to whatever facility they want, and system
administrators may choose to configure logging to a desired facility.

When an investigation is ongoing or an attack is underway, additional
logging may be needed (possibly only temporarily). If there are heightened
risks involving potential suspects or victims, logging can be selectively in-
creased to support the collection of digital forensic evidence. For example,
consider these potential entities for which selective increased logging could
be used:

* A particular user or group

* A geographical region or specific location
* A particular server or group of servers

* An IP address or range of IPs

* Specific software components running on a system (daemons)

Most daemons provide configuration options to increase the verbosity
of logging. Some daemons offer very granular possibilities of selective log-
ging. For example, Postfix configuration directives allow increased logging
for a specific list of IP addresses or domain names:

debug_peer level = 3
debug_peer list = 10.0.1.99

In this example, a single IP address is selected for increased logging,
using Postfix’s internal debug levels (3 instead of the default 2). The con-
figuration documentation for each daemon will describe possibilities for
verbose, debug, or other selective logging adjustments.

As described in the previous section, the stdout and stderr of a daemon
started with systemd will be captured and logged to the journal, which is also
useful from a forensic readiness perspective. If a daemon allows for verbose
or debugging output to the console, it can be temporarily enabled for the
duration of an incident or investigation.

Independent Server Application Logs

Often applications will manage their own logfiles without the use of local
logging systems like syslog or the systemd journal. In those situations, logs
are typically stored in a separate logfile or log directory, usually in the /var/
log/ directory.

Larger applications may be complex enough to warrant multiple sep-
arate logfiles for different subsystems and components. This may include
separate logfiles for the following:

* Application technical errors
* User authentication (logins, logouts, and so on)

* Application user transactions (web access, sessions, purchases, and
SO on)

* Security violations and alerts

* Rotated or archived logs

The Apache web server is a good example. It typically has a separate
directory like /var/log/apache2/ or /var/log/httpd/. The contents of the direc-
tory may include logs for the following:

* General web access (access.log)

* Web access for individual virtual hosts

* Web access for individual web applications

* Daemon errors (error.log)

* SSL error logging
Applications will typically specify the log location, content, and verbosity
in their configuration files. A forensic examiner should check for those log
locations if it is not otherwise obvious.

Some application installations may be fully contained in a specific di-
rectory on the filesystem, and the application may use this directory to store

logs together with other application files. This setup is typical of web ap-
plications that may be self-contained within a directory. For example, the

Investigating Evidence from Linux Logs 131

Nextcloud hosting platform and Roundcube webmail application have such
application logs:

* nextcloud/data/nextcloud.log
* nexicloud/data/updater.log

* nextcloud/data/audit.log

* roundcube/logs/sendmail.log

* roundcube/logs/errors.log

Keep in mind that these logs are generated in addition to the web server
access and error logs (apache, nginx, and so on). With web applications, a
forensic examiner may find logs in multiple places related to a particular
application, event, or incident.

Some applications may store logs in databases instead of text files.
These are either full database services like MySQL or Postgres, or local
database files like SQL.ite.

Another interesting log related to programs installed on a system is
the alternatives log. The alternatives system was originally developed for
Debian to allow installation of several concurrent versions of similar pro-
grams. Multiple distributions have adopted the alternatives mechanism.
The update-alternatives script manages the symbolic links to generic or al-
ternative application names located in the /et¢/alternatives/ directory. For
example, several symlinks are created to provide a vi program alternative:

$ 1s -gfo /usr/bin/vi /etc/alternatives/vi /usr/bin/vim.basic

Trwxrwxrwx 1 20 Aug 3 14:27 /usr/bin/vi -> /etc/alternatives/vi
lrwxrwxrwx 1 18 Nov 8 11:19 /etc/alternatives/vi -> /usr/bin/vim.basic
-IWXr-xr-x 1 2675336 Oct 13 17:49 /usr/bin/vim.basic

The timestamp of the /etc/alternatives/ symlink indicates when the last change
was made. This information is also recorded in the alternatives.log file:

$ cat /var/log/alternatives.log

update-alternatives 2020-11-08 11:19:06: link group vi updated to point to /usr/bin/vim.basic

This is a system-wide method of assigning default applications (analogous
to XDG defaults for desktop users) and helps build a picture of which pro-
grams were used on a system. See the update-alternatives(1) man page* for
more information.

During a forensic examination, pay close attention to error logs. Error
messages reveal unusual and suspicious activity, and help to reconstruct past
events. When investigating intrusions, error messages appearing before an
incident can indicate pre-attack reconnaissance or prior failed attempts.

4. This might be update-alternatives(8) on some distributions.

132 Chapter 5

Independent User Application Logs

When a user logs in to a Linux system, standard logs are created by the var-
ious components of the system (login, pam, display manager, and so on).
After a user has logged in to their desktop or shell, further logging may also
be saved in locations specific to that user.

The systemd journal saves persistent logs specific to a user’s login ses-
sion in /var/log/journal/ MACHINE-ID/user-UID.journal, where UID is a
user’s numeric ID. This log (and the rotated instances) contains traces of
a person’s login session activity, which may include information like the
following:

* Systemd targets reached and user services started

* Dbus-daemon activated services and other activity

* Agents like gnupg, polkit, and so on

* Messages from subsystems like pulseaudio and Bluetooth
* Logs from desktop environments like GNOME

* Privilege escalation like sudo or pkexec

The format of user journal files is the same as system journal files, and you
can use the journalctl tool to analyze them (described earlier in the chapter).
Other logs may be saved by programs as they are run by a user. The
location of such program logs must be in a directory writable by the user,
which generally means they are somewhere in the user’s home directory.
The most common places for persistent logs are the XDG base directory
standards such as ~/.local/share/ APP/* or ~/.config/APP/* (where APP is
the application generating user logs).

The following example shows a Jitsi video chat application log stored in
~/.config/, which contains error messages:

$ cat ~/.config/Jitsi\ Meet/logs/main.log
[2020-10-17 15:20:16.679] [warn] APPIMAGE env is not defined, current
application is not an AppImage

[2020-10-17 16:03:19.045] [warn] APPIMAGE env is not defined, current
application is not an AppImage

[2020-10-21 20:52:19.348] [warn] APPIMAGE env is not defined, current
application is not an AppImage

The benign warning messages shown here were generated whenever the Jitsi
application started. For a forensic investigator, the content of these mes-
sages may not be interesting, but the timestamps indicate every time the
video chat program was started. Trivial errors like this are potentially inter-
esting for reconstructing past events.

Investigating Evidence from Linux Logs 133

Some programs ignore the XDG standard and create hidden files and
directories at the root of the user’s home directory. For example, the Zoom
video chat application creates a ~/.zoom/log/ directory with a logfile:

$ cat ~/.zoom/logs/zoom_stdout_stderr.log
ZoomLauncher started.
cmd line: zoommtg://zoom.us/join?action=join&confno-=...

This Zoom log contains a wealth of information, including traces of past
conference IDs that were used.

Temporary or non-persistent logs may also be found in ~/.local/cache/
APP/*, as this cache directory is intended for data that can be deleted.

In this example, the libvirt system for managing the user’s KVM/QEMU
virtual machines has a log directory with a file for each machine:

$ cat ~/.cache/libvirt/qemu/log/pci.log

2020-09-24 06:57:35.099+0000: starting up libvirt version: 6.5.0, gemu version: 5.1.0,
kernel: 5.8.10-archi-1, hostname: pci.localdomain

LC_ALL=C \
PATH=:/bin:/sbin:/usx/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/home/sam/script \

HOME=/home/sam \

USER=sam \

LOGNAME=sam \

XDG_CACHE_HOME=/home/sam/.config/libvirt/qemu/1ib/domain-1-1inux/.cache \
QEMU_AUDIO DRV=spice \
/bin/qemu-system-x86_64 \

134

Chapter 5

Performing a search for *.log files or directories called “log” across a
user’s home directory will produce an initial list of files to analyze. Linux
applications can produce a significant amount of logs and persistent data
that’s saved whenever the user runs various programs.

The analysis of individual application logs is outside the scope of this
book, but it is worth mentioning that many popular apps store significant
amounts of information about past use in a user’s home directory. This in-
formation often contains a history of files opened, remote host connections,
communication with other people, timestamps of usage, devices accessed,
and more.

Plymouth Splash Startup Logs

During startup, most desktop distros use the Plymouth system to produce

a graphical splash screen while the system is booting. The ESC key can be
pressed while waiting to switch to console output. Non-graphical servers can
also use Plymouth to provide visible output while a system is booting. The
output provides color status indicators with green [0K] or red [FAILED]
messages for each component.

This Plymouth console output is typically saved to the /var/log/boot.log
file; for example:

$ cat /var/log/boot.log

[OK] Started Update UTMP about System Boot/Shutdown.
[OK] Started Raise network interfaces.

[OK] Started Network Time Synchronization.

[OK] Reached target System Time Synchronized.

[OK] Reached target System Initialization.

[OK] Started Daily Cleanup of Temporary Directories.
[OK] Listening on D-Bus System Message Bus Socket.

[OK] Listening on Avahi mDNS/DNS-SD Stack Activation Socket.
[OK] Started Daily apt download activities.

[OK] Started Daily rotation of log files.

[OK] Started Daily apt upgrade and clean activities.
[OK] Started Daily man-db regeneration.

[OK] Reached target Timers.

[OK] Listening on triggerhappy.socket.

[OK] Reached target Sockets.

[OK] Reached target Basic System.

This file contains escape codes needed to produce the color indicators. It is
safe to view, even if your analysis tool warns that it is a binary file.
Failed components during boot will also appear in the boot log:

$ cat /var/log/boot.log

[FAILED] Failed to start dnss daemon.

See 'systemctl status dnss.service' for details.

[OK] Started Simple Network Management Protocol (SNMP) Daemon..
[FAILED] Failed to start nftables.

See 'systemctl status nftables.service' for details.

Rotated versions of the boot log may also exist in the /var/log/ directory.

This boot log can be interesting to analyze in a forensic investigation. It
shows the sequence of events during previous boots and may provide useful
error messages. For example, the preceding error message indicates that the
Linux firewall rules (nftables) failed to start. If this were an investigation of a
system intrusion, that could be a critical piece of information.

Kernel and Audit Logs

The logging described so far has been generated by userspace programs,
daemons, and applications. The Linux kernel also generates log informa-
tion from kernel space, which can be useful in a forensic investigation. This

Investigating Evidence from Linux Logs 135

section explains the purpose of kernel-generated messages, where they are
located, and how to analyze them.

The Linux audit system is composed of many userspace tools and dae-
mons to configure auditing, but the auditing and logging activity is per-
formed from within the running kernel. This is the reason for including
it here together with the kernel logging mechanism. Firewall logs are also
produced by the kernel and would fit nicely in this section, but that topic is
covered in Chapter 8 on the forensic analysis of Linux networking.

The Kernel Ring Buffer

The Linux kernel has a cyclic buffer that contains messages generated by
the kernel and kernel modules. This buffer is a fixed size, and once it’s full,
it stays full and starts overwriting the oldest entries with any new entries,
which means kernel logs are continuously lost as new messages are written.
Userspace daemons are needed to capture and process events as they are
produced. The kernel provides /dev/kmsg and /proc/kmsg for daemons like
systemd-journald and rsyslogd to read new kernel messages as they are gen-
erated. These messages are then saved or forwarded depending on the log
daemon’s configuration.

The dmesg command is used on a running system to display the current
contents of the ring buffer, but that isn’t useful in a postmortem forensic ex-
amination. The ring buffer exists only in memory, but we can find traces of
it in the logs written to the filesystem. During boot, the kernel begins saving
messages to the ring buffer before any logging daemons are started. Once
these daemons (systemd-journald, rsyslogd, and so on) start, they can read
all the current kernel logs and begin to monitor for new ones.

It is common for syslog daemons to log kernel events to the /var/log/
kern.log file. Rotated versions of this log may include kern.log. I, kern.log.2.gz,
and so on. The format is similar to other syslog files. For example, the saved
kernel logs from a compressed rotated log from rsyslogd on a Raspberry Pi
look like this:

$ zless /var/log/kern.log.2.gz

Aug 12 06:17:04 raspberrypi kernel: [0.000000] Booting Linux on physical CPU 0x0

Aug 12 06:17:04 raspberrypi kernel: [0.000000] Linux version 4.19.97-v71+ (dom@buildbot) ...
Aug 12 06:17:04 raspberrypi kernel: [0.000000] CPU: ARMv7 Processor [410fd083] revision 3
(ARMv7), cr=30c5383d

Aug 12 06:17:04 raspberrypi kernel: [0.000000] CPU: div instructions available: patching
division code

Aug 12 06:17:04 raspberrypi kernel: [0.000000] CPU: PIPT / VIPT nonaliasing data cache,
PIPT instruction cache

Aug 12 06:17:04 raspberrypi kernel: [0.000000] OF: fdt: Machine model: Raspberry Pi 4
Model B Rev 1.1

The rsyslogd daemon has a module called imklog that manages the logging of
kernel events and is typically configured in the /etc/rsyslog.conf file.

136 Chapter 5

Systemd stores kernel logs in the journal with everything else. To view
the kernel logs from a journal file, add the -k flag, as follows:

$ journalctl --file system.journal -k
-- Logs begin at Thu 2020-11-05 08:42:14 CET, end at Thu 2020-11-05 10:12:05 CET. --
Nov 05 08:42:14 pcl kernel: microcode: microcode updated early to revision 0xd6, date =

2020-04-27

Nov 05 08:42:14 pcl kernel: Linux version 5.9.3-archi-1 (linux@archlinux) (gcc (GCC)
10.2.0, GNU 1d (GNU Binutils) 2.35.1) #1 SMP PREEMPT Sun, 01 Nov 2020 12:58:59 +0000
Nov 05 08:42:14 pcl kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-linux root=UUID=efbfc8dd
-8107-4833-9b95-5b11a1b96875 rw loglevel=3 quiet pcie_aspm=off i915.enable dpcd_backlight=1

The /etc/systemd/journald.conf has a parameter (ReadkMsg=) that enables pro-
cessing of kernel messages from /dev/kmsg (which is the default).

For a forensic examiner, kernel messages are important to help recon-
struct the hardware components of a system at boot time and during system
operation (until shutdown). During this period (identified by the boot-id),
arecord of attached, detached, and modified hardware devices (including
manufacturer details) can be seen. In addition, information about various
kernel subsystems such as networking, filesystems, virtual devices, and more
can be found. Some examples of information that you can find in the kernel
logs include:

* CPU features and microcode

e Kernel version and kernel command line

* Physical RAM and memory maps

e BIOS and mainboard details

e ACPI information

* Secure boot and TPM

* PCI bus and devices

e USB hubs and devices

* Ethernet interfaces and network protocols
* Storage devices (SATA, NVMe, and so on)
* Firewall logging (blocked or accepted packets)
e Audit logs

* Errors and security alerts

Let’s look at some examples of kernel messages that are interesting in a
forensic investigation or that may raise questions regarding the existence of
the message.

In this example, information about a particular mainboard is provided:

Aug 16 12:19:20 localhost kernel: DMI: System manufacturer System Product
Name/RAMPAGE IV BLACK EDITION, BIOS 0602 02/26/2014

Investigating Evidence from Linux Logs 137

Here, we can determine the mainboard is an ASUS Republic of Gamers
model, and the current firmware (BIOS) version is shown. The mainboard
model may provide some indication of system use (gamer rig, server, office
PC, and so on). The firmware version may be of interest when examining
security relevant vulnerabilities.

Newly attached hardware will generate kernel logs like the following:

Nov 08 15:16:07 pcl kernel: usb 1-1: new full-speed USB device number 19 using xhci_hcd
Nov 08 15:16:08 pc1l kernel: usb 1-1: New USB device found, idVendor=1f6f, idProduct=0023,

bcdDevice=67.59
Nov 08 15:16:08
Nov 08 15:16:08
Nov 08 15:16:08
Nov 08 15:16:08

pcl kernel: usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
pcl kernel: usb 1-1: Product: Jawbone

pcl kernel: usb 1-1: Manufacturer: Aliph

pcl kernel: usb 1-1: SerialNumber: Jawbone_00213C67C898

Here, an external speaker was plugged in to the system. This log informa-
tion associates a specific piece of hardware with a machine at a specific point
in time, and indicates that a person was in physical proximity to plug in the
USB cable.

The following is an example kernel message about a network interface’s
mode:

Nov 2 22:29:57 pcl kernel: [431744.148772] device enp8s0 entered promiscuous mode
Nov 2 22:33:27 pcl kernel: [431953.449321] device enp8s0 left promiscuous mode

A network interface in promiscuous mode indicates that a packet sniffer is
being used to capture traffic on a network subnet. An interface may enter
promiscuous mode when a network administrator is troubleshooting prob-
lems or if a machine has been compromised and is sniffing for passwords or
other information.

A kernel message about a network interface’s online/offline status may
look like this:

Jul 28 12:32:42 pcl kernel: e1000e: enp0s31f6 NIC Link is Up 1000 Mbps Full Duplex,
Flow Control: Rx/TX
Jul 28 13:12:01 pcl kernel: e1000e: enp0s31f6 NIC Link is Down

138

Chapter 5

Here, the kernel logs indicate that a network interface came online for nearly
50 minutes before going offline. If this were an intrusion or data theft in-
vestigation, observing an interface suddenly appearing could indicate an
unused network port was involved. And if an unused physical Ethernet port
was involved, it could mean that there was physical access to the server (which
then means that you should check CCTV footage or server room access logs).

When analyzing the kernel logs, try to separate the boot logs from the
operational logs. During boot, there will be hundreds of log lines in a short
period that are all associated with the boot process. The kernel logs gener-
ated after booting is finished will indicate changes during the operational
state of the machine until shutdown.

You can temporarily increase the verbosity of kernel logs during an
ongoing investigation or attack to generate additional information. The
kernel accepts parameters to specify increased (or reduced) logging in sev-
eral areas. See https://github.com/torvalds/linux/blob/master/Documentation/
admin-guide/kernel-parameters.txt for more information about the kernel pa-
rameters (search for “log”). These parameters can be added to GRUB dur-
ing system startup (see Chapter 6 for more information).

Individual kernel modules may also have verbose flags to increase log-
ging. Use modinfo with the kernel module name to find possible debug op-
tions. Here is an example:

$ modinfo e1000e
filename:
license:
description:

parm:

/1ib/modules/5.9.3-arch1-1/kernel/drivers/net/ethernet/intel/e1000e/e1000e.ko.xz
GPL v2
Intel(R) PRO/1000 Network Driver

debug:Debug level (0=none,...,16=all) (int)

In this example, Ethernet module e1000e has a debug option that can be set.
The options for individual modules can be specified by placing a *.conf file
in the /etc/modprobe.d/ directory. See the modprobe.d(5) man page for more
information.

The Linux Avditing System

The Linux Auditing System is described in the README file of the source
code: “The Linux Audit subsystem provides a secure logging framework that
is used to capture and record security relevant events.” Linux auditing is

a kernel feature that generates an audit trail based on a set of rules. It has
similarities to other logging mechanisms, but it is more flexible, granular,
and able to log file access and system calls. The auditctl program loads rules
into the kernel, and the auditd daemon writes the audit records to disk. See
the auditctl(8) and auditd(8) man pages for more information. Figure 5-4
shows the interaction between the various components.

Investigating Evidence from Linux Logs 139

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt

140

Chapter 5

Audit reports and queries

aureport and ausearch
reads audit.log file

A

Local audit log

/var/log/audit/audit.log

written by audit daemon

A

Audit daemon

/usr/sbin/auditd

service started by systemd

N

Config file Linux kernel

/efc_/oudif/auc_!l:t.conf Generates records for auditd
configures auditing auditctl configures rules

A

Audit rules

/etc/audit/audit.rules
/etc/audit/rules.d/*.rules

(augenrules tool for rule files)

Figure 5-4: Linux Auditing System
There are three kinds of audit rules:

Control rules Overall control of the audit system
File or “watch” rules Audit access to files and directories

Syscall Audit system calls

Audit rules are loaded into the kernel at boot time or by a system admin-
istrator using the auditctl tool on a running system.5 The audit rules are
located in the /etc/audit/audit.rules file. See the audit.rules(7) man page for
more information about audit rules.

A collection of separate rule files located in /etc/audit/rules.d/* rules
can be merged with the /etc/audit/audit.rules file using the augenrules file.
The audit rules file is simply a list of arguments that would be provided to
auditctl commands.

5. This is similar to firewall rules that are loaded into the kernel with a userspace tool (nft).

Here are several examples of audit rule lines as seen in a rule file:

-D
-w /etc/ssl/private -p rwa
-a always,exit -S openat -F auid=1001

The first rule deletes all current rules, effectively creating a new rule set.
The second rule watches all the files in the /et¢/ssl/private/ directory (recur-
sively). If any user or process reads, writes, or changes the attributes on any
files (like SSL private keys), an audit record will be generated. The third rule
monitors a specific user (UID 1001 specified with auid=) for all files opened.
Presumably this user is at heightened risk of attack or under suspicion.

The default location of the audit log is /var/log/audit/audit.log where
auditd writes new audit records. This is a plaintext file with FIELD = VALUE
pairs separated by spaces. The current list of field names can be found at
https.//github.com/linux-audit/audit-documentation/blob/master/specs/fields/field
-dictionary.csv. This file can be examined in its raw format, but the ausearch
and aureport tools provide normalization, post-processing, and more read-
able output.

The audit.log file can be copied to a Linux analysis machine on which
ausearch and aureport can be used with the --input flag to specify the file.

An audit record format can be raw or enriched. Enriched records ad-
ditionally resolve numbers to names and append them to the log line. An
example enriched audit record from a /var/log/audit/audit.log file looks like
this:

type=USER_CMD msg=audit(1596484721.023:459): pid=12518 uid=1000 auid=1000 ses=3
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 msg="cwd="/home/sam"
cmd=73797374656D63746C20656E61626(652073736864 exe="/usr/bin/sudo" terminal=pts/0
res=success'*JUID="sam" AUID="sam"

The same audit record produced with the ausearch tool looks like:

$ ausearch --input audit.log

time->Mon Aug 3 21:58:41 2020

type=USER_CMD msg=audit(1596484721.023:459): pid=12518 uid=1000 auid=1000 ses=3
subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 msg="cwd="/home/sam"
cmd=73797374656D63746C20656E61626(652073736864 exe="/usr/bin/sudo" terminal=pts/0
res=success’

This command produces a formatted output of the entire audit.log file. Here
the date is converted from epoch format, and some control character for-
matting corrections are made.

Investigating Evidence from Linux Logs 141

https://github.com/linux-audit/audit-documentation/blob/master/specs/fields/field-dictionary.csv
https://github.com/linux-audit/audit-documentation/blob/master/specs/fields/field-dictionary.csv

You can specify csv or text for the output format. The csv format is use-
ful for importing into other tools. The text format produces a single read-
able line for each audit record:

$ ausearch --input audit.log --format text

At 20:05:53 2020-11-08 system, acting as root, successfully started-service
man-db-cache-update using /usr/lib/systemd/systemd

At 20:05:53 2020-11-08 system, acting as root, successfully stopped-service
man-db-cache-update using /usr/lib/systemd/systemd

At 20:05:53 2020-11-08 system, acting as root, successfully stopped-service
run-r629edb1aa999451f942cef564a82319b using /usr/lib/systemd/systemd

07:02 2020-11-08 sam successfully was-authorized sam using /usr/bin/sudo

07:02 2020-11-08 sam successfully ran-command nmap 10.0.0.1 using /usr/bin/sudo
07:02 2020-11-08 sam, acting as root, successfully refreshed-credentials root

At 20:
At 20:
At 20:

using

At 20:

using

At 20:

/usr/bin/sudo

07:02 2020-11-08 sam, acting as root, successfully started-session /dev/pts/1

/usr/bin/sudo

07:06 2020-11-08 sam, acting as root, successfully ended-session /dev/pts/1

142

See the ausearch(8) man page for other specific queries of the audit log.
To generate a report of statistics from an audit logfile, the aureport com-
mand can be used:

$ aureport --input audit.log

Summary Report

Range of time in logs: 2020-08-03 13:08:48.433 - 2020-11-08 20:07:09.973
Selected time for report: 2020-08-03 13:08:48 - 2020-11-08 20:07:09.973

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

Chapter 5

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

changes in configuration: 306
changes to accounts, groups, or roles: 4
logins: 25

failed logins: 2
authentications: 48

failed authentications: 52
users: 5

terminals: 11

host names: 5

executables: 11

commands: 5

files: 0

AVC's: 0

MAC events: 32

failed syscalls: 0

anomaly events: 5

responses to anomaly events: 0
crypto events: 211

Number of integrity events: 0
Number of virt events: 0
Number of keys: 0

Number of process IDs: 136
Number of events: 22056

This summary may be useful for inclusion in a forensic report or to help
guide where to look next in a forensic examination.

You can generate individual reports for each of these statistics. For ex-
ample, the following generates a report on logins:

$ aureport --input audit.log --login

Login Report

1. 2020-08-03 14:08:59 1000 ? ? /usr/libexec/gdm-session-worker yes 294
2. 2020-08-03 21:55:21 1000 ? ? /usr/libexec/gdm-session-worker no 444
3. 2020-08-03 21:58:52 1000 10.0.11.1 /dev/pts/1 /usxr/sbin/sshd yes 529
4. 2020-08-05 07:11:42 1000 10.0.11.1 /dev/pts/1 /usr/sbin/sshd yes 919
5. 2020-08-05 07:12:38 1000 10.0.11.1 /dev/pts/1 /usr/sbin/sshd yes 950

See the aureport(9) man page for the flags needed to generate other de-
tailed reports about the other statistics.

The aureport and ausearch commands can also specify a time period. For
example, this report is generated for the time period between 9 AM and
10 AM (but not including 10 AM) on November 8:

$ aureport --input audit.log --start 2020-11-08 09:00:00 --end 2020-11-08 09:59:59

Both aureport and ausearch use the same flags for the time range.

The aureport and ausearch commands have flags to interpret numeric
entities and convert them to names. Do not do this. It will replace the nu-
meric user IDs and group IDs with the matching names found on your own
analysis machine, not from the suspect disk under analysis. The ausearch
command also has a flag to resolve hostnames, which is not recommended
when performing a forensic examination. This will potentially trigger a DNS
network request, which could produce inaccurate results or otherwise com-
promise an investigation.

Summary

In this chapter, we have identified the locations of typical logs found on a
Linux system. You have learned how to view these logs and the information
they may contain. You have also seen examples of tools used to analyze logs
in a forensic context. This chapter has provided the background on Linux
logs that are referenced throughout the rest of the book.

Investigating Evidence from Linux Logs 143

Practical Linux Forensics (Sample Chapter) © 9/1/21 by Bruce Nikkel

