
nostarch.com/pfk

For bulk orders, please contact us at
sales@nostarch.com.

http://nostarch.com/pfk
mailto:sales%40nostarch.com?subject=

Teacher: Date/Period:

Subject: Python Programming Class:

Topic: #1 - Getting Started Duration: Up to 50 min.

Objectives: ● Install the latest Python3 distribution.
● Recognize the difference between the Python console and the shell (IDLE)

and know when to use one over the other.

● Create a simple program. Run it from the command line and from within
the shell.

● Use the shell (or console) as a simple calculator.

● Describe what a program is and what a programming language is.

Materials: ● Python 3 installer (or link to download the installer)

● A short Python program to run (as a suggestion, one of the turtle examples
from Chapter 11: http://jasonrbriggs.com/python-for-
kids/code.html#Chapter-11/)

Activities: 1. Download and install the latest version of Python. (Depending on the
environment, you may want to shortcut this process by predownloading or
making the installer accessible from the school network.) [5–10 min.]

2. Start up the Python console, and explain what the prompt is. Start up the
Python shell and compare. Try out basic print statements in both. [5–10
min.]

3. Open a Python program and run it from within the shell. [5 min.]

4. Create a new window in the shell, and enter a simple program (for
example, Hello World). Save and run the program. [5 min.]

5. Discussion: How are programming languages instructions to the
computer? What does it mean for something to be human-readable versus
computer-readable? What’s the difference between scripting languages
(such as Python) and compiled languages (such as C or C++)? Which
would be used to create most of the programs seen on a day-to-day basis?
[10 min.]

6. Open the shell again. Try entering some basic calculations and seeing the
results. Demonstrate the different operators (add +, subtract -, multiply *,
and divide /), and show how the use of brackets affects the result of a
calculation. [5–10 min.]

http://jasonrbriggs.com/python-for-kids/code.html%23Chapter-11
http://jasonrbriggs.com/python-for-kids/code.html%23Chapter-11

Notes: • Depending on your lab environment, have students download from the
Python website, from a local cache, or from the school website. At the
very least, the process should be reproducible at home.

• Take careful note of the installation instructions on pages 5–10,
specifically those on adding a shortcut to run the shell from the desktop on
Mac and Windows, to avoid experiencing errors later.

References: Python for Kids, Chapters 1 & 2 (up to page 19)

Teacher: Date/Period:

Subject: Python Programming Class:

Topic: #2 Storing Things in Python Duration: Up to 60 min.

Objectives: ● Understand how a variable stores things. Know the difference between a
slot in memory used to hold an actual value and a variable used as a label
to point at a value.

● Understand the difference between a number and a string.

● Understand the purpose of lists and maps.

● Understand the difference between a tuple and a list.

● Use a tuple with a string containing placeholders.

Activities: 1. Briefly review the prior lesson: opening the shell and running a program.
[5 min.]

2. Create a program to store a number in a variable, and then print out the
number. Discussion: What do you use variables for? Why do programs
need variables? [5-10 min.]

3. Try to create a variable containing a silly sentence. After the error message
is displayed, discuss the difference between strings and numbers. Create
different variables with strings and numbers. [5–10 min.]

4. Discussion: Are there other things you might want to store in variables?
Introduce lists and maps. [5 min.]

5. Create variables with simple lists of things (students’ favorite items, for
example). Remove items from a list by their index. Discussion: If you
stored a list of items in a variable, how would you remove a single item
from the list? How do you remove that item if the list is a string? (You
have to recreate the string.) [10–15 min.]

6. Create a tuple. Try to remove an element from the tuple. Discussion: Why
use a tuple over a list? (Tuples are faster because their values can’t
change.) [10 min.]

7. Create a string with a couple of placeholders (%s). Use a tuple for the
values when printing out the string. Discussion: What is Python doing
here? Why are placeholders useful? [10 min.]

Notes: N/A

References: Python for Kids, Chapters 2 & 3

Teacher: Date/Period:

Subject: Python Programming Class:

Topic: #3 - Drawing with the Turtle Duration: Up to 50 min.

Objectives: ● Understand how to import the turtle module and draw simple shapes.

● Understand what a module is (as a unit of code).

Activities: 1. Briefly review the prior lesson: variables, numbers and strings, lists and
maps, and tuples. [5 min.]

2. Open the shell and import the turtle module. Discussion: What is a
module? (Describe it as a small program that you can use inside your own
programs.) [5 min.]

3. Draw a line with the turtle. Discussion: A line is made up of pixels—what
is a pixel? Optional activity: Get a magnifying glass and have students find
the edge of a pixel on the screen. [5–10 min.]

4. Turn the turtle 90 degrees and draw another line. Try turning the turtle 90
degrees to the right and 90 degrees to the left. Draw a zig-zag line.
Discussion: What do degrees measure? Optional activity: Use a clock to
illustrate the major degrees (45, 90, 135, etc.). [10 min.]

5. Try drawing a square at different sizes. Reset and then try drawing a
square on an angle. Try using the up and down commands to start and
stop drawing. Offer a period of free experimentation. [15–20 min.]

Notes: • If your students haven’t set up Python according to the instructions in
Chapter 1, they may experience problems when using the turtle
module, such as the shell seeming to hang.

• Depending on the math level of the students, it may be a good idea to
cover a lesson on degrees in parallel to this lesson (for an example, see
http://www.homeschoolmath.net/teaching/g/measure_angles.php/).

• If the students want to start over with their drawings, there are two options:
use the reset function, or close the window and start again.

References: Python for Kids, Chapter 4

Teacher: Date/Period:

Subject: Python Programming Class:

Topic: #4 - Control Statements Duration: Up to 60 min.

Objectives: ● Understand what blocks of code are in Python.

● Understand what an if-statement is and how to use it.

● Understand what a function is.

Activities: 1. Briefly review the prior lesson: the turtle module and a module as a
unit of code that you can use in your programs. [5 min.]

2. Discussion: What is a block of code in Python? How does Python identify
a block of code? Why do you need blocks of code? [5 min.]

3. Discussion: if statements are used to control which block of code to run.
How do you create an if statement? [5 min.]

4. Open the shell, create a new editor window, and then type a variable age
with the student’s age as the value. Create a simple if statement that
prints one statement if the variable is greater than a specified value and
another if it is not. (Get creative with silly messages here.) Discussion:
What do you think the code is going to do when you run it? Why?
[5–10 min.]

5. Run the code once to display the message. Then change the code so that
the other statement is printed. Review how the code works. [5 min.]

6. Discussion: Break down the code, describing the keywords (if and
else), the condition (for example, age > 11), and the statements
forming the two code blocks. [5 min.]

7. Have students alter the conditions. Cover each conditional symbol (equal
==, not equal !=, greater than >, less than <, greater than or equal to >=,
and less than or equal to <=). [5–10 min.]

8. Discussion: What might you use an if statement for (given the examples
so far)? Briefly describe a function as a small unit of code that usually
returns a value. Give the students an example of using the int and
input functions. Have students type their age and save it as a variable.
Update the code to use the int and input functions, and change the
print messages. Run the new code, and then have students swap computers
with each other. [15 min.]

Notes: ● Remind students that they’ve been using functions since the second lesson
(printing out a number using the print function, for example).

References: Python for Kids, Chapter 5

Teacher: Date/Period:

Subject: Python Programming Class:

Topic: #5 - Control Statements Duration: Up to 55 min.

Objectives: ● Understand how to repeat code (loops).

● Use basic range and list functions.

Activities: 1. Discussion: Briefly review the prior lesson: if statements, blocks of code,
and functions. [5 min.]

2. Discussion: Why would you want to repeat a block of code in a program?
(As a starting point for the discussion, consider a character’s movements in
a game—if you push the right arrow, the character needs to walk to the
right. How do you make him move across the screen without repetition?).
[5 min.]

3. Open the shell and run range(10) Then run list(range(10)).
Brief discussion: What happens when you run the first function (perhaps
discuss iterators) versus when you run the second function? Variation: Run
list(range(5, 10)). [5 min.]

4. Enter a simple for loop, for example:
for x in range(10):

print('Hello there')

Discussion: What is this code doing? [10 min]

5. Now use a placeholder (%) in a string with a loop to print the value. Try the
following code:

for x in range(5, 10):
print('Hello there %s' % x)

Discussion: What is this code doing? [10–15 min.]

6. Demonstrate that the for loop will also work with lists of things (rather
than just functions) by entering the following code:

some_words = ['amazed', 'flabbergasted',
'flummoxed']
for x in some_words:

print(x)

Discussion: What is this code doing? Is there a difference from the
previous code where we used range? [10–15 min.]

Notes: N/A

References: Python for Kids, Chapter 6

Teacher: Date/Period:

Subject: Python Programming Class:

Topic: #6 - Code Reuse Duration: Up to 55 min.

Objectives: ● Understand how to create basic functions.

● Use the time module and the sys module.

Activities: 1. Discussion: Briefly review the prior lesson: for loops and the list and
range functions. [5 min.]

2. Discussion: Python has built-in functions (such as print, list and
range), but you can also create your own functions. Why is this useful?
(Functions are like mini programs. You can reuse code in different places
in your programs.) [5 min.]

3. Open the shell and create a simple function for students to print their
names, for example:

>>> def simplefunc():
print('My name is Maximillian

Shufflebottom')

Run the function. Discussion: Talk through the parts of a function (the
def keyword, the function name, and the function body). [5–10 min.]

4. Change the function to accept a parameter name and then print the name
in the function body:

>>> def simplefunc(name):
print('My name is %s' % name)

Discussion: Talk about functions taking parameters. [5–10 min.]

5. Now create a new function that returns a value, for example, the
savings function in Chapter 7:

>>> def savings(pocket_money, paper_route,
spending):

return pocket_money + paper_route – spending

>>> print(savings(10, 10, 5))
15

Discussion: What’s happening here? (Mention that return is a
keyword, similar to def.) [5–10 min.]

6. Discussion: The students have already used the turtle module, but
Python has a lot of different modules. Discuss the relationship between
functions and modules (as groups of functions and variables)Show that
they are both ways to reuse code. [5 min.]

7. Have the student import the time module and print the result of the
asctime function. Then import the sys module and use the readline
function of the stdin object (sys.stdin.readline()).
Discussion: Check the students’ understanding of what’s happening here.
(Focus on the fact that stdin is a variable in the sys module—don’t go
into objects at this point.) [10 min.]

Notes: ● The time and sys modules aren’t the most interesting, but using them
demonstrates that there are other modules besides the turtle.

References: Python for Kids, Chapter 7

	PythonforKidsLessonPlan1_LC
	PythonforKidsLessonPlan2_LC
	PythonforKidsLessonPlan3_LC
	PythonforKidsLessonPlan4_LC
	PythonforKidsLessonPlan5_LC
	PythonforKidsLessonPlan6_LC

