
2
M O D E L I N G P H Y S I C A L O B J E C T S

W I T H O B J E C T - O R I E N T E D
P R O G R A M M I N G

In this chapter I’ll introduce the general
concepts behind object-oriented program-

ming. I’ll show a simple example program
written using procedural programming, intro-

duce classes as the basis of writing OOP code, and
explain how the elements of a class work together. I’ll
then rewrite the first procedural example as a class in
the object-oriented style, and show how you create an
object from a class.

In the remainder of the chapter, I’ll go through some increasingly com-
plex classes that represent physical objects to demonstrate how OOP fixes
the problems of procedural programming we ran into in Chapter 1. This
should give you give you give a solid understanding of the underlying object-
oriented concepts and how they can improve your programming skills.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

22 Chapter 2

Building Software Models of Physical Objects
To describe a physical object in our everyday world, we often reference its
attributes. When talking about a desk, you might describe its color, dimen-
sions, weight, material, and so on. Some objects have attributes that apply
only to them and not others. A car could be described by its number of
doors, but a shirt could not. A box could be sealed or open, empty or full,
but those characteristics would not apply to a block of wood. Additionally,
some objects are capable of performing actions. A car can go forward, back
up, and turn left or right.

To model a real-world object in code, we need to decide what data
will represent that object’s attributes, and what operations it can perform.
These two concepts are often referred to as an object’s state and behavior,
respectively: the state is the data that the object remembers and the behav-
iors are the actions that the object can do.

State and Behavior: Light Switch Example
Listing 2-1 is a software model of a standard two-position light switch writ-
ten in procedural Python. This is a trivial example, but it will demonstrate
state and behavior.

File: LightSwitch_Procedural.py

Procedural light switch

1 def turnOn():
 global switchIsOn
 # turn the light on
 switchIsOn = True

2 def turnOff():
 global switchIsOn
 # turn the light off
 switchIsOn = False

Main code
3 switchIsOn = False # a global Boolean variable

Test code
print(switchIsOn)
turnOn()
print(switchIsOn)
turnOff()
print(switchIsOn)
turnOn()
print(switchIsOn)

Listing 2-1: Model of a light switch written with procedural code

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 23

The switch can only be in one of two positions: on or off. To model the
state, we only need a single Boolean variable. We name this variable switchI-
sOn 3 and say that True means on, and False indicates off. When the switch
comes from the factory it is in the off position, so we initially set switchIsOn
to False.

Next, we look at the behavior. This switch can only perform two actions:
“turn on” and “turn off.” We therefore built two functions, turnOn() 1 and
turnOff() 2, which set the value of the single Boolean variable to True and
False, respectively.

I’ve added some test code at the end to turn the switch on and off a few
times. The output is exactly what we would expect:

False
True
False
True

This is an extremely simplistic example, but starting with small func-
tions like these makes the transition to an OOP approach easier. As I
explained in Chapter 1, because we’ve used a global variable to represent
the state (in this case, the variable switchIsOn) this code will only work for a
single light switch, but one of the main goals of writing functions is to make
reusable code. I’ll therefore rebuild the light switch code using object-
oriented programming, but I need to work through a bit of the underlying
theory first.

Introduction to Classes and Objects
The first step to understanding what an object is and how it works is to
understand the relationship between a class and an object. I’ll give formal
definitions later, but for now, you can think of a class as a template or a
blueprint that defines what an object will look like when one is created. We
create objects from a class.

As an analogy, imagine if we started an on-demand cake baking busi-
ness. Being “on-demand,” we only create a cake when an order for one
comes in. We specialize in Bundt cakes, and have spent a lot of time devel-
oping the cake pan in Figure 2-1 to make sure our cakes are not only tasty,
but also beautiful and consistent.

The pan defines what a Bundt cake will look like when we create one,
but it certainly is not a cake. The pan represents our class. When an order
comes in, we create a Bundt cake from our pan. The cake is an object made
using the cake pan.

Using the pan, we can create any number of cakes. Our cakes could
have different attributes, like different flavors, different types of frosting,
and optional extras like chocolate chips, but all the cakes come from the
same cake pan.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

24 Chapter 2

Figure 2-1: A cake pan as a metaphor for a class

Figure 2-2: A cake as a metaphor for an object made from the cake pan class

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 25

Table 2-1 provides some other real-world examples to help clarify the
relationship between a class and an object.

Table 2-1: Examples of real-world classes and objects

Class Object made from the class

Blueprint for a house House

Sandwich listed on a menu Sandwich in your hand

Die used to manufacture a 25-cent coin A single quarter

Manuscript of a book written by an author Physical or electronic copy of the book

Classes, Objects, and Instantiation
Let’s see how this works in code.

 class Code that defines what an object will remember (its data or state) and the things that
it will be able to do (its functions or behavior).

To get a feel for what a class looks like, here is the code of a light switch
written as a class:

OO_LightSwitch

class LightSwitch():
 def __init__(self):
 self.switchIsOn = False

 def turnOn(self):
 # turn the switch on
 self.switchIsOn = True

 def turnOff(self):
 # turn the switch off
 self.switchIsOn = False

We’ll go through the details in just a bit, but the things to notice are
that this code defines a single variable, self.switchIsOn, which is initial-
ized in one function, and contains two other functions for the behaviors:
turnOn() and turnoff().

If you write the code of a class and try to run it, nothing happens, in
the same way as when you run a Python program that consists of only func-
tions and no function calls. You have to explicitly tell Python to make an
object from the class.

To create a LightSwitch object from our LightSwitch class, we typically use
a line like this:

oLightSwitch = LightSwitch()

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

26 Chapter 2

This says: find the LightSwitch class, create a LightSwitch object from that
class, and assign the resulting object to the variable oLightSwitch.

N O T E As a naming convention in this book, I will generally use the prefix of a lowercase “o”
to denote a variable that represents an object. This is not required, but it’s a way to
remind myself that the variable represents an object.

Another word that you’ll come across in OOP is instance. The words
instance and object are essentially interchangeable; however, to be precise,
we would say that a LightSwitch object is an instance of the LightSwitch class.

 instantiation The process of creating an object from a class.

In the previous assignment statement, we went through the instantia-
tion process to create a LightSwitch object from the LightSwitch class. We can
also use this as a verb; we instantiate a LightSwitch object from the LightSwitch
class.

Writing a Class in Python
Let’s discuss the different parts of a class, and the details of instantiating
and using an object. Listing 2-2 shows the general form of a class in Python.

class <ClassName>():

 def __init__(self, <optional param1>, ..., <optional paramN>):
 # any initialization code here

 # Any number of functions that access the data
 # Each has the form:

 def <functionName1>(self, <optional param1>, ..., <optional paramN>):
 # body of function

 # ... more functions

 def <functionNameN>(self, <optional param1>, ..., <optional paramN>):
 # body of function

Listing 2-2: The typical form of a class in Python

You begin a class definition with a class statement specifying the name
you want to give the class. The convention for class names is to use camel
case, with the first letter uppercase (for example, LightSwitch). Following the
name you can optionally add a set of parentheses, but the statement must
end with a colon to indicate that you’re about to begin the body of the class.
(I’ll explain what can go inside the parentheses in Chapter 10, when we dis-
cuss inheritance.)

Within the body of the class, you can define any number of functions.
All the functions are considered part of the class, and the code that defines

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 27

them must be indented. Each function represents some behavior that
an object created from the class can perform. All functions must have at
least one parameter, which by convention is named self (I’ll explain what
this name means in Chapter 3). OOP functions are given a special name:
method.

 method A function defined inside a class. A method always has at least one parameter,
which is usually named self.

The first method in every class should have the special name __init__.
Whenever you create an object from a class, this method will run automati-
cally. Therefore, this method is the logical place to put any initialization
code that you want to run whenever you instantiate an object from a class.
The name __init__ is reserved by Python for this very task, and must be
written exactly this way, with two underscores before and after the word init
(which must be lowercase). In reality, the __init__() method is not strictly
required. However, it’s generally considered good practice to include it and
use it for initialization.

N O T E When you instantiate an object from a class, Python takes care of constructing the
object (allocating memory) for you. The special __init__() method is called the “ini-
tializer” method, where you give variables initial values. (Most other OOP languages
require a method named new(), which is often referred to as a constructor.)

Scope and Instance Variables
In procedural programming, there are two principal levels of scope: vari-
ables created in the main code have global scope and are available anywhere
in a program, while variables created inside a function have local scope and
only live as long as the function runs. When the function exits, all local
variables (variables with local scope) literally go away.

Object-oriented programming and classes introduce a third level of
scope, typically called object scope, though sometimes referred to as class scope
or more rarely as instance scope. They all mean the same thing: the scope
consists of all the code inside the class definition.

Methods can have both local variables and instance variables. In a
method, any variable whose name does not start with self. is a local vari-
able and will go away when that method exits, meaning other methods
within the class can no longer use that variable. Instance variables have
object scope, which means they are available to all methods defined in a
class. Instance variables and object scope are the keys to understanding
how objects remember data.

 instance variable In a method, any variable whose name begins, by convention, with the prefix self.
(for example, self.x). Instance variables have object scope.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

28 Chapter 2

Just like local and global variables, instance variables are created when
they are first given a value, and do not need any special declaration. The
__init__() method is the logical place to initialize instance variables. Here
we have an example of a class where the __init__() method initializes an
instance variable self.count (read as “self dot count”) to 0 and another
method, increment(), simply adds one to self.count:

class MyClass():
 def __init__(self):
 self.count = 0 # create self.count and set it to 0
 def increment(self):
 self.count = self.count + 1 # increment the variable

When you instantiate an object from the MyClass class, the __init__()
method runs and sets the value of the instance variable self.count to zero. If
you then call the increment() method, the value of self.count goes from zero
to one. If you call increment() again the value goes from one to two, and on
and on.

Each object created from a class gets its own set of instance variables,
independent of any other objects instantiated from that class. In the case of
the LightSwitch class there is only one instance variable, self.switchIsOn, so
every LightSwitch object will have its own self.switchIsOn. Therefore, you can
have multiple LightSwitch objects, each with its own independent value of
True or False for its self.switchIsOn variable.

Differences Between Functions and Methods
To recap, there are three key differences between a function and a method:

1. All methods of a class must be indented under the class statement.

2. All methods have a special first parameter that (by convention) is
named self.

3. Methods in a class can use instance variables, written in the form
self. <variableName>.

Now that you know what methods are, I’ll show you how to create an
object from a class and how to use the different methods that are available
in a class.

Creating an Object from a Class
As I said earlier, a class simply defines what an object will look like. To use a
class, you have to tell Python to make an object from the class. The typical
way to do this is to use an assignment statement like this:

<object> = <ClassName>(<optional arguments>)

This single line of code invokes a sequence of steps that ends with
Python handing you back a new instance of the class, which you typically
store into a variable. That variable then refers to the resulting object.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 29

T HE INS TA N T I AT ION PROCESS

Figure 2-3 shows the steps involved in instantiating a LightSwitch object from
the LightSwitch class, going from the assignment statement into Python, then to
the code of the class, then back out through Python again, and finally back to
the assignment statement.

Instantiation code

oLightSwitch = LightSwitch()

oLightSwitch = LightSwitch()

• Allocates space for a
 LightSwitch object

• Calls _init_() method
 of the LightSwitch class,
 passing in the new object

• Returns the new object

• Assigns the new object
 to oLightSwitch

• _init_() method r
 uns, sets value of
 “self” to the new
 object

• Initializes any
 instance variables

Python LightSwitch class

Figure 2-3: The process of instantiating an object

The process consists of five steps:

1. Our code asks Python to create an object from the LightSwitch class.

2. Python allocates space in memory for a LightSwitch object, then calls the
__init__ () method of the LightSwitch class, passing in the newly created
object.

3. The __init__ () method of the LightSwitch class runs. The new object is
assigned to the parameter self. The code of __init__ () initializes any
instance variables in the object (in this case, the instance variable self.
switchIsOn).

4. Python returns the new object to the original caller.

5. The result of the original call is assigned into the variable oLightSwitch, so
it now represents the object.

You can make a class available in two ways: you can place the code of
the class in the same file with the main program, or you can put the code of
the class in an external file and use an import statement to bring in the con-
tents of the file. I’ll show the first approach in this chapter and the second

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

30 Chapter 2

approach in Chapter 4. The only rule is that the class definition must pre-
cede any code that instantiates an object from the class.

Calling Methods of an Object
After creating an object from a class, to call a method of the object you use
the generic syntax:

<object>.<methodName>(<any additional arguments>)

Listing 2-3 contains the LightSwitch class, code to instantiate an object
from the class, and code to turn that LightSwitch object on and off by calling
its turnOn() and turnOff() methods.

File: OO_LightSwitch_with_Test_Code.py

OO_LightSwitch

class LightSwitch():
 def __init__(self):
 self.switchIsOn = False

 def turnOn(self):
 # turn the switch on
 self.switchIsOn = True

 def turnOff(self):
 # turn the switch off
 self.switchIsOn = False

 def show(self): # added for testing
 print(self.switchIsOn)

Main code
oLightSwitch = LightSwitch() # create a LightSwitch object

Calls to methods
oLightSwitch.show()
oLightSwitch.turnOn()
oLightSwitch.show()
oLightSwitch.turnOff()
oLightSwitch.show()
oLightSwitch.turnOn()
oLightSwitch.show()

Listing 2-3: The LightSwitch class and test code to create an object and call its methods

First we create a LightSwitch object and assign it to the variable oLight-
Switch. We then use that variable to call other methods available in the
LightSwitch class. We would read these lines as “oLightSwitch dot show,”
“oLightSwitch dot turnOn,” and so on. If we run this code, it will output:

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 31

False
True
False
True

Recall that in this class there is a single instance variable named self.
switchIsOn, but its value is remembered and easily accessed when different
methods of the same object run.

Creating Multiple Instances from the Same Class
One of the key features of OOP is that you can instantiate as many objects
as you want from a single class, in the same way that you can make endless
cakes from a Bundt cake pan.

So, if you want two light switch objects, or three, or more, you can just
create additional objects from the LightSwitch class like so:

oLightSwitch1 = LightSwitch() # create a light switch object
oLightSwitch2 = LightSwitch() # create another light switch object

The important point here is that each object that you create from a
class maintains its own version of the data. In this case, oLightSwitch1 and
oLightSwitch2 each have their own instance variable, self.switchIsOn. Any
changes you make to the data of one object will not affect the data of
another object. You can call any of the methods in the class with either
object.

The example in Listing 2-4 creates two light switch objects, and calls
methods on the different objects.

File: OO_LightSwitch_Two_Instances.py

OO_LightSwitch

class LightSwitch():
--- snipped code of LightSwitch class, as in Listing 2-3 ---

Main code
oLightSwitch1 = LightSwitch() # create a LightSwitch object
oLightSwitch2 = LightSwitch() # create another LightSwitch object

Test code
oLightSwitch1.show()
oLightSwitch2.show()
oLightSwitch1.turnOn() # Turn switch 1 on
Switch 2 should be off at start, but this makes it clearer
oLightSwitch2.turnOff()
oLightSwitch1.show()
oLightSwitch2.show()

Listing 2-4: Create two instances of a class and call methods of each

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

32 Chapter 2

Here’s the output when this program is run:

False
False
True
False

The code tells oLightSwitch1 to turn itself on and tells oLightSwitch2 to
turn itself off. Notice that the code in the class has no global variables.
Each LightSwitch object gets its own set of any instance variables (just one in
this case) defined in the class.

While this may not seem like a huge improvement over two simple
global variables which could be used to do the same thing, the implica-
tions of this technique are enormous. You’ll get a better sense of this in
Chapter 4, where I’ll discuss how to create and maintain a large number of
instances made from a class.

Python Data Types Are Implemented as Classes
It might not surprise you that all built-in data types in Python are imple-
mented as classes. Here is a simple example:

>>> myString = 'abcde'
>>> print(type(myString))
<class 'str'>

We assign a string value to a variable. When we call the type() function
and print the results, we see that we have an instance of the str string class.
The str class gives us a number of methods we can call with strings, includ-
ing myString.upper(), myString.lower(), myString.strip(), and so on.

Lists work in a similar way:

>>> myList = [10, 20, 30, 40]
>>> print(type(myList))
<class 'list'>

All lists are instances of the list class, which has many methods includ-
ing myList.append(), myList.count(), myList.index(), and so on.

When you write a class, you are defining a new data type. Your code
provides the details by defining what data it maintains and what operations
it can perform. After creating an instance of your class and assigning it to
a variable, you can use the type() built-in function to determine the class
used to create it, just like with a built-in data type. Here we instantiate a
LightSwitch object and print out its data type:

>>> oLightSwitch = LightSwitch()
>>> print(type(oLightSwitch))
<class 'LightSwitch'>

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 33

Just like with Python’s built-in data types work, we can then use the vari-
able oLightSwitch to call the methods available in the oLightSwitch class.

Definition of an Object
To summarize this section, I’ll give my formal definition of an object.

 object Data, plus code that acts on that data, over time.

A class defines what an object will look like when you instantiate one.
An object is a set of instance variables and the code of the methods in the
class from which the object was instantiated. Any number of objects can
be instantiated from a class, and each has its own set of instance variables.
When you call a method of an object, the method runs and uses the set of
instance variables in that object.

Building a Slightly More Complicated Class
Let’s build on the concepts introduced so far and work through a second,
slightly more complicated example in which we’ll make a dimmer switch
class. A dimmer switch has an on/off switch, but it also has a multi-position
slider that affects the brightness of the light.

The slider can move through a range of brightness values. To make
things straightforward, our dimmer digital slider has 11 positions, from 0
(completely off) through 10 (completely on). To raise or lower the bright-
ness of the bulb to the maximum extent, you must move the slider through
every possible setting.

This DimmerSwitch class has more functionality than our LightSwitch class
and needs to remember more data—namely:

•	 The switch state (on or off)

•	 Brightness level (0 to 10)

And here are the behaviors a DimmerSwitch object can perform:

•	 Turn on

•	 Turn off

•	 Raise level

•	 Lower level

•	 Show (for debugging)

The DimmerSwitch class uses the standard template shown earlier in
Listing 2-2: it starts with a class statement and a first method named __
init__(), then defines a number of additional methods, one for each of the
behaviors listed. The full code for this class is presented in Listing 2-5.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

34 Chapter 2

File: DimmerSwitch.py

DimmerSwitch class

class DimmerSwitch():
 def __init__(self):
 self.switchIsOn = False
 self.brightness = 0

 def turnOn(self):
 self.switchIsOn = True

 def turnOff(self):
 self.switchIsOn = False

 def raiseLevel(self):
 if self.brightness < 10:
 self.brightness = self.brightness + 1

 def lowerLevel(self):
 if self.brightness > 0:
 self.brightness = self.brightness - 1

 # Extra method for debugging
 def show(self):
 print(Switch is on?', self.switchIsOn)
 print('Brightness is:', self.brightness)

Listing 2-5: The slightly more complicated DimmerS witch class

In this __init__() method we have two instance variables: the famil-
iar self.switchIsOn and a new one, self.brightness, which remembers the
brightness level. We assign starting values to both instance variables. All
other methods can access the current value of each of these. In addition
to turnOn() and turnOff(), we also include two new methods for this class:
raiseLevel() and lowerLevel(), which do exactly what their names imply. The
show() method is used during development and debugging and just prints
the current values of the instance variables.

The main code in Listing 2-6 tests our class by creating a DimmerSwitch
object (oDimmer), then calling the various methods.

File: OO_DimmerSwitch_with_Test_Code.py

DimmerSwitch class with test code

class DimmerSwitch():
--- snipped code of DimmerSwitch class, as in Listing 2-5 ---

Main code
oDimmer = DimmerSwitch()

Turn switch on, and raise the level 5 times

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 35

oDimmer.turnOn()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.show()

Lower the level 2 times, and turn switch off
oDimmer.lowerLevel()
oDimmer.lowerLevel()
oDimmer.turnOff()
oDimmer.show()

Turn switch on, and raise the level 3 times
oDimmer.turnOn()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.raiseLevel()
oDimmer.show()

Listing 2-6: DimmerS witch class with test code

When we run this code, the resulting output is:

Switch is on? True
Brightness is: 5
Switch is on? False
Brightness is: 3
Switch is on? True
Brightness is: 6

The main code creates the oDimmer object, then makes calls to the vari-
ous methods. Each time we call the show() method, the on/off state and the
brightness level are printed. The key thing to remember here is that oDimmer
represents an object. It allows access to all methods in the class from which
it was instantiated (the DimmerSwitch class), and it has a set of all instance
variables defined in the class (self.switchIsOn and self.brightness). Again,
instance variables maintain their values between calls to methods of an
object, so the self.brightness instance variable is incremented by one for
each call to oDimmer.raiseLevel().

Representing a More Complicated Physical Object as a Class
Let’s consider a more complicated physical object: a television. With this
more complicated example, we’ll take a closer look at how arguments work
in classes.

A television requires much more data than a light switch to represent
its state, and has more behaviors. To create a TV class, we must consider how
a user would typically use a TV and what the TV would have to remem-
ber. Let’s look at some of the important buttons on a typical TV remote
(Figure 2-4).

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

36 Chapter 2

Power

Mute

1 2 3

4 5 6

7 8

0

9

Get Info

ChannelVolume

Figure 2-4: A simplified TV remote

From this we can determine that to keep track of its state, a TV class
would have to maintain the following data:

•	 Power state (on or off)

•	 Mute state (is it muted?)

•	 List of channels available

•	 Current channel setting

•	 Current volume setting

•	 Range of volume levels available

And the actions that the TV must provide include:

•	 Turn the power on and off

•	 Raise and lower the volume

•	 Change the channel up and down

•	 Mute and unmute the sound

•	 Get information about the current settings

•	 Go to a specified channel

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 37

The code for our TV class is shown in Listing 2-7. We include the __init__()
method for initialization, followed by a method for each of the behaviors.

File: TV.py

TV class

class TV():
 def __init__(self): 1
 self.isOn = False
 self.isMuted = False
 # Some default list of channels
 self.channelList = [2, 4, 5, 7, 9, 11, 20, 36, 44, 54, 65]
 self.nChannels = len(self.channelList)
 self.channelIndex = 0
 self.VOLUME_MINIMUM = 0 # constant
 self.VOLUME_MAXIMUM = 10 # constant
 self.volume = self.VOLUME_MAXIMUM // # integer divide

 def power(self): 2
 self.isOn = not self.isOn # toggle

 def volumeUp(self):
 if not self.isOn:
 return
 if self.isMuted:
 self.isMuted = False # changing the volume while muted unmutes the sound
 if self.volume < self.VOLUME_MAXIMUM:
 self.volume = self.volume + 1

 def volumeDown(self):
 if not self.isOn:
 return
 if self.isMuted:
 self.isMuted = False # changing the volume while muted unmutes the sound
 if self.volume > self.VOLUME_MINIMUM:
 self.volume = self.volume - 1

 def channelUp(self): 3
 if not self.isOn:
 return
 self.channelIndex = self.channelIndex + 1
 if self.channelIndex > self.nChannels:
 self.channelIndex = 0 # wrap around to the first channel

 def channelDown(self): 4
 if not self.isOn:
 return
 self.channelIndex = self.channelIndex - 1
 if self.channelIndex < 0:
 self.channelIndex = self.nChannels - 1 # wrap around to the top channel

 def mute(self):
 if not self.isOn:

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

38 Chapter 2

 return
 self.isMuted = not self.isMuted

 def setChannel(self, newChannel):
 if newChannel in self.channelList:
 self.channelIndex = self.channelList.index(newChannel)
 # if the newChannel is not in our list of channels, don't do anything

 def showInfo(self): 5
 print()
 print('TV Status:')
 if self.isOn:
 print(' TV is: On')
 print(' Channel is:', self.channelList[self.channelIndex])
 if self.isMuted:
 print(' Volume is:', self.volume, '(sound is muted)')
 else:
 print(' Volume is:', self.volume)
 else:
 print(' TV is: Off')

Listing 2-7: The TV class with many instance variables and methods

The __init__() method 1 creates all the instance variables used in all
the methods, and assigns reasonable starting values to each. Technically,
you can create an instance variable inside any method; however, it is a good
programming practice to define all instance variables in the __init__()
method. This avoids the risk of an error when attempting to use an instance
variable in a method before it’s been defined.

The power() method 2 represents what happens when you push the
power button on a remote. If the TV is off, pushing the power button turns
it on; if the TV is on, pushing the power button turns it off. To code this
behavior I’ve used a toggle, which is a Boolean that’s used to represent one of
two states and can easily be switched between them. With this toggle, the not
operator switches the self.isOn variable from True to False, or from False to
True. The code of the mute() method does a similar thing with the self.muted
variable toggling between muted and not-muted, but first has to check that
the TV is on. If the TV is off, calling the mute() method has no effect.

One interesting thing to note is that we don’t really keep track of the
current channel. Instead, we keep track of the index of the current chan-
nel, which allows us to get the current channel at any time by using self.
channelList[self.channelIndex].

The channelUp() 3 and channelDown() 4 methods basically increment and
decrement the channel index, but there is also some clever code in them to
allow for wrap-around. If you’re currently at the last index in the channel list
and the user asks to go to the next channel up, the TV goes to the first chan-
nel in the list. If you’re at the first index in the channel list and the user asks
to go the next channel down, the TV goes to the last channel in the list.

The showInfo() method 5 prints out the current status of the TV based
on the values of the instance variables (on/off, current channel, current
volume setting, and mute setting).

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 39

In Listing 2-8, we’ll create a TV object and call methods of that object.

File: OO_TV_with_Test_Code.py

TV class with test code

--- snipped code of TV class, as in Listing 2-7 ---

Main code
oTV = TV() # create the TV object

Turn the TV on and show the status
oTV.power()
oTV.showInfo()

Change the channel up twice, raise the volume twice, show status
oTV.channelUp()
oTV.channelUp()
oTV.volumeUp()
oTV.volumeUp()
oTV.showInfo()

Turn the TV off, show status, turn the TV on, show status
oTV.power()
oTV.showInfo()
oTV.power()
oTV.showInfo()

Lower the volume, mute the sound, show status
oTV.volumeDown()
oTV.mute()
oTV.showInfo()

Change the channel to 11
oTV.setChannel(11)
oTV.mute()
oTV.showInfo()

Listing 2-8: TV class with test code

When we run this code, here is what we get as output:

TV Status:
 TV is: On
 Channel is: 2
 Volume is: 5

TV Status:
 TV is: On
 Channel is: 5
 Volume is: 7

TV Status:
 TV is: Off

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

40 Chapter 2

TV Status:
 TV is: On
 Channel is: 5
 Volume is: 7

TV Status:
 TV is: On
 Channel is: 5
 Volume is: 6 (sound is muted)

TV Status:
 TV is: On
 Channel is: 11
 Volume is: 6

All of the methods are working correctly, and we get the expected
output.

Passing Arguments to a Method
When calling any function, the number of arguments must match the num-
ber of parameters listed in the matching def statement:

def myFunction(param1, param2, param3):
 # body of function

call to a function:
myFunction(argument1, argument2, argument3)

The same rule applies with methods and method calls. However, you
may notice that whenever we make a call to a method, it appears that we are
specifying one less argument than the number of parameters. For example,
the definition of the power() method in our TV class looks like this:

def power(self):

This implies that the power() method is expecting one value to be
passed in, and whatever is passed in will be assigned to the variable self. Yet
when we started by turning on the TV in Listing 2-8, we made this call:

oTV.power()

When we make the call, we don’t explicitly pass anything inside the
parentheses.

This may seem even stranger in the case of the setChannel() method.
The method is written to accept two parameters:

def setchannel(self, newchannel):
 if newChannel in self.channelList:
 self.channelIndex = self.channelList.index(newChannel)

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 41

But we called setChannel() like this:

oTV.setChannel(11)

It appears that only one value is being passed in.
You might expect Python to generate an error here, due to a mismatch

in the number arguments (1) and the number of parameters (2). In prac-
tice, Python is doing a bit of behind-the-scenes work to make the syntax
easier to follow.

Let’s examine this. Earlier, I said that to make a call to a method of an
object, you use the following generic syntax:

<object>.<method>(<any additional arguments>)

Python takes the <object> you specify in the call and rearranges it to
become the first argument. Any values in the parentheses of the method
call are considered to be the subsequent argument(s). Thus, Python makes
it appear that you wrote this instead:

<method of object>(<object>, <any additional arguments>)

Figure 2-5 shows how this works in our example code, again using the
setChannel() method of the TV class.

#Call
oTV.setChannel(11)
Cal

Method in the TV class
def setChannel(self, newChannel):
 …

oTV.s l(11)

Figure 2-5: Calling a method

Although it looks like we’re only providing one argument here (for
newChannel), there are really two arguments passed in—oTV and 11—and the
method provides two parameters to receive these values (self and newChan-
nel, respectively). Python rearranges the arguments for us when the call
is made. This may seem odd at first, but it will become second nature very
quickly. Writing the call with the object first makes it much easier for a pro-
grammer to see which object is being acted on.

This is a subtle but important feature. Remember that the object (in
this case, oTV) keeps the current settings of all of its instance variables.
Passing the object as the first argument allows the method to run with the
values of the instance variables of that object.

Multiple Instances
Every method is written with self as the first parameter, so the self variable
receives the object used in each call. This has a major implication: it allows

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

42 Chapter 2

any method within a class to work with different objects. I’ll explain how this
works using an example.

In Listing 2-9 we’ll create two TV objects and save them in two variables,
oTV1 and oTV2. Each TV object has a volume setting, a channel list, a channel
setting, and so on. We’ll make calls to a number of different methods of
the different objects. At the end, we’ll call the showInfo() method on each TV
object to see the resulting settings.

File: OO_TV_TwoInstances.py

Two TV objects with calls to their methods
class TV():
--- snipped code of TV class, as in Listing 2-7 ---
Main code
oTV1 = TV() # create one TV object
oTV2 = TV() # create another TV object

Turn both TVs on
oTV1.power()
oTV2.power()

Raise the volume of TV1
oTV1.volumeUp()
oTV1.volumeUp()

Raise the volume of TV2
oTV2.volumeUp()
oTV2.volumeUp()
oTV2.volumeUp()
oTV2.volumeUp()
oTV2.volumeUp()

Change TV2's channel, then mute it
oTV2.setChannel(44)
oTV2.mute()

Now display both TVs
oTV1.showInfo()
oTV2.showInfo()

Listing 2-9: Creating two instances of the TV class and calling methods of each

If we run this code, it will generate the following output:

Status of TV:
 TV is: On
 Channel is: 2
 Volume is: 7

Status of TV:
 TV is: On
 Channel is: 44
 Volume is: 10 (sound is muted)

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 43

Each TV object maintains its own set of the instance variables defined in
the class. This way, each TV object’s instance variables can be manipulated
independently of any other TV object.

Initialization Parameters
The ability to pass arguments to method calls also works when instantiat-
ing an object. So far, when we’ve created our objects, we’ve always set their
instance variables to constant values. However, you’ll often want to create
different instances with different starting values. For example, imagine we
want to instantiate different TVs and identify them using their brand name
and location. This way, we can differentiate between a Samsung television
in the family room and a Sony television in the bedroom. Constant values
would not work for us in this situation.

To initialize an object with different values, we add parameters to the
definition of the __init__() method, like this:

TV class

class TV():
 def __init__(self, brand, location): # pass in a brand and location for the TV
 self.brand = brand
 self.location = location
 --- snipped remaining initialization of TV ---
 ...

In all methods, parameters are local variables, so they literally go away
when the method ends. For example, in the __init__() method of the TV
class shown here, brand and location are local variables that will disappear
when the method ends. However, we often want to save values that are
passed in via parameters to use them in other methods.

In order to allow an object to remember initial values, the standard
approach is to store any values passed in into instance variables. Since
instance variables have object scope, they can be used in other methods in
the class. The Python convention is that the name of the instance variable
should be the same as the parameter name, but prefixed with self and a
period, as in:

def __init__(self, someVariableName):
 self.someVariableName = someVariableName

In the TV class, the line after the def statement tells Python to take the
value of the brand parameter and assign it to an instance variable named
self.brand. The next line does the same thing with the location parameter
and the instance variable self.location. After these assignments, we can use
self.brand and self.location in other methods.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

44 Chapter 2

Using this approach, we can create multiple objects from the same
class, but start each off with different data. So, we can create our two TV
objects like this:

oTV1 = TV('Samsung', 'Family room')
oTV2 = TV('Sony', 'Bedroom')

When executing the first line, Python first allocates space for a TV
object. Then it rearranges the arguments as discussed in the previous sec-
tion, and calls the __init__() method of the TV class with three arguments:
the newly allocated oTV1 object, the brand, and the location.

When initializing the oTV1 object, self.brand is set to the string 'Samsung'
and self.location is set to the string 'Family room'. When initializing oTV2,
its self.brand is set to the string 'Sony', and its self.location gets set to the
string 'Bedroom'.

If we modify the showInfo() method to report the name and location of
the TV:

File: OO_TV_TwoInstances_with_Init_Params.py

def showInfo(self):
 print()
 print('Status of TV:', self.brand)
 print(' Location:', self.location)
 if self.isOn:
 ...

we’ll see this as output:

Status of TV: Sony
 Location: Family room
 TV is: On
 Channel is: 2
 Volume is: 7

Status of TV: Samsung
 Location: Bedroom
 TV is: On
 Channel is: 44
 Volume is: 10 (sound is muted)

We made the same method calls as in the previous example in
Listing 2-9. The difference is that each TV object is now initialized with a
brand and a location, and you can now see that information printed in
response to each call to the modified showInfo() method.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

Modeling Physical Objects with Object-Oriented Programming 45

Classes in Use
Using everything we’ve learned in this chapter, we can now create classes
and build multiple independent instances from those classes. Here are a
few examples of how we might use this:

•	 Say we wanted to model a student in a course. We could have a Student
class that has instance variables for name, emailAddress, currentGrade, and
so on. Each Student object we create from this class would have its own
set of these instance variables, and the values given to the instance vari-
ables would be different for each student.

•	 Consider a game where we have multiple players. A player could be
modeled by a Player class with instance variables for name, points, health,
location, and so on. Each player would have the same capabilities, but
the methods could work differently based on the different values in the
instance variables.

•	 Imagine an address book. We could create a Person class with instance
variables for name, address, phoneNumber, and birthday. We could create as
many objects from the Person class as we want, one for each person we
know. The instance variables in each Person object would contain dif-
ferent values. We could then write code to search through all the Person
objects and retrieve information about the one or ones we are looking
for.

In future chapters, I will explore this concept of instantiating multiple
objects from a single class, and give you tools to help manage a collection of
objects.

OOP as a Solution
Toward the end of Chapter 1, I mentioned three problems that are inherent
in procedural coding. Hopefully, after working through the examples in
this chapter you can now see how object-oriented programming solves all of
those problems:

1. A well-written class can be easily reused in many different programs.
Classes do not need to access global data. Instead, objects provide code
and data at the same level.

2. Object-oriented programming can greatly reduce the number of global
variables required because a class provides a framework in which data
and code that acts on the data exist in one grouping. This also tends to
make code easier to debug.

3. Objects created from a class only have access to their own data—their
set of the instance variables in the class. Even when you have multiple
objects created from the same class, they do not have access to each
other’s data.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

46 Chapter 2

Summary
In this chapter I provided an introduction to object-oriented program-
ming by demonstrating the relationship between a class and an object. The
class defines the shape and capabilities of an object. An object is a single
instance of a class that has its own set of all the data defined in the instance
variables of the class. Each piece of data you want an object to contain is
stored in an instance variable, which has object scope, meaning that it is
available within all methods defined in the class. All objects created from
the same class get their own set of all the instance variables, and because
these may contain different values, calling the methods on different objects
can result in different behavior.

I showed how you create an object from a class, typically through an
assignment statement. After instantiating an object, you can use it to make
calls to any method defined in the class of that object. I also showed how
you can instantiate multiple objects from the same class.

In this chapter, the demonstration classes implemented physical objects
(light switches, TVs). This is a good way to start understanding the concepts
of a class and an object. However, in future chapters I will introduce objects
that do not represent physical objects.

Object-oriented Python (Sample Chapter) © 2021 by Irv Kalb

