
To write effective network programs, you
need to understand how to use human-

readable names to identify nodes on the
internet, how those names are translated into

addresses for network devices to use, and how traffic
makes its way between nodes on the internet, even if
they’re on opposite sides of the planet. This chapter
covers those topics and more.

We’ll first have a look at how IP addresses identify hosts on a network.
Then we’ll discuss routing, or sending traffic between network hosts that
aren’t directly connected, and cover some common routing protocols.
Finally, we’ll discuss domain name resolution (the process of translating
human-readable names to IP addresses), potential privacy implications of
DNS, and the solutions to overcome those privacy concerns.

You’ll need to understand these topics to provide comprehensive net-
work services and locate the resources used by your services, such as third-
party application programming interfaces (APIs). This information should

2
R E S O U R C E L O C A T I O N A N D

T R A F F I C R O U T I N G

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

18 Chapter 2

also help you debug inevitable network outages or performance issues your
code may encounter. For example, say you provide a service that integrates
the Google Maps API to provide interactive maps and navigation. Your ser-
vice would need to properly locate the API endpoint and route traffic to it.
Or your service may need to store archives in an Amazon Simple Storage
Service (S3) bucket via the Amazon S3 API. In each example, name resolu-
tion and routing play an integral role.

The Internet Protocol
The Internet Protocol (IP) is a set of rules that dictate the format of data sent
over a network—specifically, the internet. IP addresses identify nodes on a
network at the internet layer of the TCP/IP stack, and you use them to facil-
itate communication between nodes.

IP addresses function in the same way as postal addresses; nodes send
packets to other nodes by addressing packets to the destination node’s IP
address. Just as it’s customary to include a return address on postal mail,
packet headers include the IP address of the origin node as well. Some pro-
tocols require an acknowledgment of successful delivery, and the destination
node can use the origin node’s IP address to send the delivery confirmation.

Two versions of IP addresses are in public use: IPv4 and IPv6. This
chapter covers both.

IPv4 Addressing
IPv4 is the fourth version of the Internet Protocol. It was the first IP version
in use on the internet’s precursor, ARPANET, in 1983, and the predomi-
nant version in use today. IPv4 addresses are 32-bit numbers arranged in
four groups of 8 bits (called octets) separated by decimal points.

N O T E RFCs use the term octet as a disambiguation of the term byte, because a byte’s stor-
age size has historically been platform dependent.

The total range of 32-bit numbers limits us to just over four billion pos-
sible IPv4 addresses. Figure 2-1 shows the binary and decimal representa-
tion of an IPv4 address.

11000000

192

10101000

168

00000001

1

00001010

10

. . .

. . .

(Binary)

(Decimal)

Figure 2-1: Four 8-bit octets representing an IPv4 address in both binary
and decimal formats

The first line of Figure 2-1 illustrates an IPv4 address in binary form.
The second line is the IPv4 address’s decimal equivalent. We usually write
IPv4 addresses in the more readable decimal format when displaying them
or when using them in code. We will use their binary representation when
we’re discussing network addressing later in this section.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 19

Network and Host IDs
The 32 bits that compose an IPv4 address represent two components: a
network ID and a host ID. The network ID informs the network devices
responsible for shuttling packets toward their destination about the next
appropriate hop in the transmission. These devices are called routers.
Routers are like the mail carrier of a network, in that they accept data from
a device, examine the network ID of the destination address, and deter-
mine where the data needs to be sent to reach its destination. You can think
of the network ID as a mailing address’s ZIP code.

Once the data reaches the destination network, the router uses the
host ID to deliver the data to the specific recipient. The host ID is like
your street address. In other words, a network ID identifies a group of
nodes whose address is part of the same network. We’ll see what network
and host IDs look like later in this chapter, but Figure 2-2 shows IPv4
addresses sharing the same network ID.

Network ID: 10.0.0.0

10.0.1.1 10.0.1.2 10.0.1.3 10.0.1.4

Figure 2-2: A group of nodes sharing the same network ID

Figure 2-3 shows the breakdown of common network ID and host ID
sizes in a 32-bit IPv4 address.

Network

Network

Network

Network

Network Network

Host Host

Host

Host

Host

Host

8 bits

16 bits

24 bits

First octet Second octet Third octet Fourth octetNetwork ID

24 bits

16 bits

8 bits

Host ID

10 1 2 3

172 16 1 2

192 168 1 2

Figure 2-3: Common network ID and host ID sizes

The network ID portion of an IPv4 address always starts with the left-
most bit, and its size is determined by the size of the network it belongs
to. The remaining bits designate the host ID. For example, the first 8 bits
of the IPv4 address represent the network ID in an 8-bit network, and the
remaining 24 bits represent the host ID.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

20 Chapter 2

Figure 2-4 shows the IP address 192.168.156.97 divided into its network ID
and host ID. This IP address is part of a 16-bit network. This tells us that the
first 16 bits form the network ID and the remaining 16 bits form the host ID.

11000000

192

10101000

168

10011100

156

01100001

97

. . .

. . .

11000000 10101000. 00000000 00000000..

192 168. 0 0..

Network ID: 192.168.0.0

00000000 00000000. 10011100 01100001..

0 0. 156 97..

Host ID: 0.0.156.97

Figure 2-4: Deriving the network ID and the host ID from an IPv4 address in a 16-bit network

To derive the network ID for this example, you take the first 16 bits
and append zeros for the remaining bits to produce the 32-bit network ID
of 192.168.0.0. You prepend zeroed bits to the last 16 bits, resulting in the
32-bit host ID of 0.0.156.97.

Subdividing IPv4 Addresses into Subnets
IPv4’s network and host IDs allow you to subdivide, or partition, the more
than four billion IPv4 addresses into smaller groups to keep the network
secure and easier to manage. All IP addresses in these smaller networks,
called subnets, share the same network ID but have unique host IDs. The
size of the network dictates the number of host IDs and, therefore, the
number of individual IP addresses in the network.

Identifying individual networks allows you to control the flow of infor-
mation between networks. For example, you could split your network into a
subnet meant for public services and another for private services. You could
then allow external traffic to reach your public services while preventing
external traffic from reaching your private network. As another example,
your bank provides services such as online banking, customer support,
and mobile banking. These are public services that you interact with after
successful authentication. But you don’t have access to the bank’s internal
network, where its systems manage electronic transfers, balance ledgers,
serve internal email, and so on. These services are restricted to the bank’s
employees via the private network.

Allocating Networks with CIDR

You allocate networks using a method known as Classless Inter-Domain
Routing (CIDR). In CIDR, you indicate the number of bits in the network ID
by appending a network prefix to each IP address, consisting of a forward
slash and an integer. Though it’s appended to the end of the IP address,

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 21

you call it a prefix rather than a suffix because it indicates how many of the
IP address’s most significant bits, or prefixed bits, constitute the network ID.
For example, you’d write the IP address 192.168.156.97 from Figure 2-4 as
192.168.156.97/16 in CIDR notation, indicating that it belongs to a 16-bit
network and that the network ID is the first 16 bits of the IP address.

From there, you can derive the network IP address by applying a subnet
mask. Subnet masks encode the CIDR network prefix in its decimal repre-
sentation. They are applied to an IP address using a bitwise AND to derive
the network ID.

Table 2-1 details the most common CIDR network prefixes, the corre-
sponding subnet mask, the available networks for each network prefix, and
the number of usable hosts in each network.

Table 2-1: CIDR Network Prefix Lengths and Their Corresponding Subnet Masks

CIDR network
prefix length Subnet mask Available networks Usable hosts per network

8 255.0.0.0 1 16,777,214

9 255.128.0.0 2 8,388,606

10 255.192.0.0 4 4,194,302

11 255.224.0.0 8 2,097,150

12 255.240.0.0 16 1,048,574

13 255.248.0.0 32 524,286

14 255.252.0.0 64 262,142

15 255.254.0.0 128 131,070

16 255.255.0.0 256 65,534

17 255.255.128.0 512 32,766

18 255.255.192.0 1,024 16,382

19 255.255.224.0 2,048 8,190

20 255.255.240.0 4,096 4,094

21 255.255.248.0 8,192 2,046

22 255.255.252.0 16,384 1,022

23 255.255.254.0 32,768 510

24 255.255.255.0 65,536 254

25 255.255.255.128 131,072 126

26 255.255.255.192 262,144 62

27 255.255.255.224 524,288 30

28 255.255.255.240 1,048,576 14

29 255.255.255.248 2,097,152 6

30 255.255.255.252 4,194,304 2

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

22 Chapter 2

You may have noticed that the number of usable hosts per network is
two less than expected in each row because each network has two special
addresses. The first IP address in the network is the network address, and
the last IP address is the broadcast address. (We’ll cover broadcast addresses
a bit later in this chapter.) Take 192.168.0.0/16, for example. The first IP
address in the network is 192.168.0.0. This is the network address. The last
IP address in the network is 192.168.255.255, which is the broadcast address.
For now, understand that you do not assign the network IP address or the
broadcast IP address to a host’s network interface. These special IP addresses
are used for routing data between networks and broadcasting, respectively.

The 31- and 32-bit network prefixes are purposefully absent from Table 2-1,
largely because they are beyond the scope of this book. If you’re curious about
31-bit network prefixes, RFC 3021 covers their application. A 32-bit network
prefix signifies a single-host network. For example, 192.168.1.1/32 represents a
subnetwork of one node with the address 192.168.1.1.

Allocating Networks That Don’t Break at an Octet Boundary

Some network prefixes don’t break at an octet boundary. For example,
Figure 2-5 derives the network ID and host ID of 192.168.156.97 in a 19-bit
network. The full IP address in CIDR notation is 192.168.156.97/19.

11000000

192

10101000

168

100

156

01100001

97

. . .

. . .

11000000 10101000. 100 00000000..

192 168. 128 0..

Network ID: 192.168.128.0

00000000 00000000. 000 01100001..

0 0. 28 97..

Host ID: 0.0.28.97

11100

00000 11100

Figure 2-5: Deriving the network ID and the host ID from the IPv4 address in a 19-bit network

In this case, since the network prefix isn’t a multiple of 8 bits, an octet’s
bits are split between the network ID and host ID. The 19-bit network exam-
ple in Figure 2-5 results in the network ID of 192.168.128.0 and the host ID
of 0.0.28.97, where the network ID borrows 3 bits from the third octet, leav-
ing 13 bits for the host ID.

Appending a zeroed host ID to the network ID results in the network
address. In a comparable manner, appending a host ID in which all its bits
are 1 to the network ID derives the broadcast address. But the third octet’s
equaling 156 can be a little confusing. Let’s focus on just the third octet.
The third octet of the network ID is 1000 0000. The third octet of the
host ID of all ones is 0001 1111 (the first 3 bits are part of the network ID,
remember). If we append the network ID’s third octet to the host ID’s third
octet, the result is 1001 1111, which is the decimal 156.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 23

Private Address Spaces and Localhost

RFC 1918 details the private address spaces of 10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16 for use in local networks. Universities, corporations, govern-
ments, and residential networks can use these subnets for local addressing.

In addition, each host has the 127.0.0.0/8 subnet designated as its local
subnet. Addresses in this subnet are local to the host and simply called
localhost. Even if your computer is not on a network, it should still have an
address on the 127.0.0.0/8 subnet, most likely 127.0.0.1.

Ports and Socket Addresses
If your computer were able to communicate over the network with only one
node at a time, that wouldn’t provide a very efficient or pleasant experience.
It would become annoying if your streaming music stopped every time you
clicked a link in your web browser because the browser needed to interrupt
the stream to retrieve the requested web page. Thankfully, TCP and UDP
allow us to multiplex data transmissions by using ports.

The operating system uses ports to uniquely identify data transmission
between nodes for the purposes of multiplexing the outgoing application
data and demultiplexing the incoming data back to the proper application.
The combination of an IP address and a port number is a socket address, typi-
cally written in the format address:port.

Ports are 16-bit unsigned integers. Port numbers 0 to1023 are well-
known ports assigned to common services by the Internet Assigned Numbers
Authority (IANA). The IANA is a private US nonprofit organization that
globally allocates IP addresses and port numbers. For example, HTTP uses
port 80. Port 443 is the HTTPS port. SSH servers typically listen on port 22.
(These well-known ports are guidelines. An HTTP server may listen to any
port, not just port 80.)

Despite these ports being well-known, there is no restriction on which
ports services may use. For example, an administrator who wants to obscure
a service from attackers expecting it on port 22 may configure an SSH server
to listen on port 22422. The IANA designates ports 1024 to 49151 as semi-
reserved for lesser common services. Ports 49152 to 65535 are ephemeral
ports meant for client socket addresses as recommended by the IANA. (The
port range used for client socket addresses is operating-system dependent.)

A common example of port usage is the interaction between your web
browser and a web server. Your web browser opens a socket with the operat-
ing system, which assigns an address to the socket. Your web browser sends
a request through the socket to port 80 on the web server. The web server
sends its response to the socket address corresponding to the socket your
web browser is monitoring. Your operating system receives the response
and passes it onto your web browser through the socket. Your web browser’s
socket address and the web server’s socket address (server IP and port 80)
uniquely identify this transaction. This allows your operating system to
properly demultiplex the response and pass it along to the right application
(that is, your web browser).

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

24 Chapter 2

Network Address Translation
The four billion IPv4 addresses may seem like a lot until you consider there
will be an estimated 24.6 billion Internet of Things (IoT) devices by 2025,
according to the Ericsson Mobility Report of June 2020 (https://www.ericsson
.com/en/mobility-report/reports/june-2020/iot-connections-outlook/). In fact, we’ve
already run out of unreserved IPv4 addresses. The IANA allocated the last
IPv4 address block on January 31, 2011.

One way to address the IPv4 shortage is by using network address transla-
tion (NAT), a process that allows numerous nodes to share the same public
IPv4 address. It requires a device, such as a firewall, load balancer, or router
that can keep track of incoming and outgoing traffic and properly route
incoming traffic to the correct node.

Figure 2-6 illustrates the NAT process between nodes on a private net-
work and the internet.

10.0.0.2 10.0.0.3

Internet

Network address translation

10.0.0.3:50926

1.2.3.4:50926

Figure 2-6: Network address translation between
a private network and the internet

In Figure 2-6, a NAT-capable device receives a connection from the cli-
ent socket address 10.0.0.3:50926 destined for a host on the internet. First,
the NAT device opens its own connection to the destination host using
its public IP 1.2.3.4, preserving the client’s socket address port. Its socket
address for this transaction is 1.2.3.4:50926. If a client is already using
port 50926, the NAT device chooses a random port for its socket address.
Then, the NAT device sends the request to the destination host and
receives the response on its 1.2.3.4:50926 socket. The NAT device knows
which client receives the response because it translates its socket address
to the client socket address that established the connection. Finally, the
client receives the destination host’s response from the NAT device.

The important thing to remember with network address translation
is that a node’s private IPv4 address behind a NAT device is not visible or
directly accessible to other nodes outside the network address–translated

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 25

network segment. If you’re writing a service that needs to provide a public
address for its clients, you may not be able to rely on your node’s private
IPv4 address if it’s behind a NAT device. Hosts outside the NAT device’s
private network cannot establish incoming connections. Only clients in
the private network may establish connections through the NAT device.
Instead, your service must rely on the NAT device’s properly forwarding a
port from its public IP to a socket address on your node.

Unicasting, Multicasting, and Broadcasting
Sending packets from one IP address to another IP address is known as unicast
addressing. But TCP/IP’s internet layer supports IP multicasting, or sending a
single message to a group of nodes. You can think of it as an opt-in mailing
list, such as a newspaper subscription.

From a network programming perspective, multicasting is simple.
Routers and switches typically replicate the message for us, as shown in
Figure 2-7. We’ll discuss multicasting later in this book.

192.168.1.10 Network switch

192.168.1.11

192.168.1.12

192.168.1.13

192.168.1.14

192.168.1.15

Figure 2-7: The 192.168.1.10 node sending a packet to a subset of network addresses

Broadcasting is the ability to concurrently deliver a message to all IP
addresses in a network. To do this, nodes on a network send packets to the
broadcast address of a subnet. A network switch or router then propagates
the packets out to all IPv4 addresses in the subnet (Figure 2-8).

192.168.1.10 Network switch

192.168.1.11

192.168.1.12

192.168.1.13

192.168.1.14

192.168.1.15

Figure 2-8: The 192.168.1.10 node sending a packet to all addresses on its subnet

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

26 Chapter 2

Unlike multicasting, the nodes in the subnet don’t first need to opt in
to receiving broadcast messages. If the node at 192.168.1.10 in Figure 2-8
sends a packet to the broadcast address of its subnet, the network switch will
deliver a copy of that packet to the other five IPv4 addresses in the same
subnet.

Resolving the MAC Address to a Physical Network Connection
Recall from Chapter 1 that every network interface has a MAC address
uniquely identifying the node’s physical connection to the network. The
MAC address is relevant to only the local network, so routers cannot use
a MAC address to route data across network boundaries. Instead, they can
route traffic across network boundaries by using an IPv4 address. Once a
packet reaches the local network of a destination node, the router sends the
data to the destination node’s MAC address and, finally, to the destination
node’s physical network connection.

The Address Resolution Protocol (ARP), detailed in RFC 826 (https://tools.ietf
.org/html/rfc826/), finds the appropriate MAC address for a given IP address—
a process called resolving the MAC address. Nodes maintain ARP tables that
map an IPv4 address to a MAC address. If a node does not have an entry in
its ARP table for a destination IPv4 address, the node will send a request to
the local network’s broadcast address asking, “Who has this IPv4 address?
Please send me your MAC address. Oh, and here is my MAC address.” The
destination node will receive the ARP request and respond with an ARP
reply to the originating node. The originating node will then send the data
to the destination node’s MAC address. Nodes on the network privy to this
conversation will typically update their ARP tables with the values.

IPv6 Addressing
Another solution to the IPv4 shortage is to migrate to the next generation
of IP addressing, IPv6. IPv6 addresses are 128-bit numbers arranged in eight
colon-separated groups of 16 bits, or hextets. There are more than 340 unde-
cillion (2128) IPv6 addresses.

Writing IPv6 Addresses
In binary form, IPv6 addresses are a bit ridiculous to write. In the interest
of legibility and compactness, we write IPv6 addresses with lowercase hexa-
decimal values instead.

N O T E IPv6 hexadecimal values are case-insensitive. However, the Internet Engineering
Task Force (IETF) recommends using lowercase values.

A hexadecimal (hex) digit represents 4 bits, or a nibble, of an IPv6
address. For example, we’d represent the two nibbles 1111 1111 in their
hexadecimal equivalent of ff. Figure 2-9 illustrates the same IPv6 address
in binary and hex.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 27

100110101100001

(Binary)

4d61 : 6e64 : 792c : 2042 : 656e : 2c20 : 4c69 : 6c79 (Hex)

100110101100001: 100110101100001:

: 100110101100001 100110101100001: 100110101100001:

: 100110101100001 100110101100001:

Figure 2-9: Binary and hex representations of the same IPv6 address

Even though hexadecimal IPv6 addresses are a bit more succinct than
their binary equivalent, we still have some techniques available to us to sim-
plify them a bit more.

Simplifying IPv6 Addresses

An IPv6 address looks something like this: fd00:4700:0010:0000:0000:
0000:6814:d103. That’s quite a bit harder to remember than an IPv4
address. Thankfully, you can improve the IPv6 address’s presentation
to make it more readable by following a few rules.

First, you can remove all leading zeros in each hextet. This sim-
plifies your address without changing its value. It now looks like this:
fd00:4700:10:0:0:0:6814:d103. Better, but still long.

Second, you can replace the leftmost group of consecutive, zero-value
hextets with double colons, producing the shorter fd00:4700:10::6814:d103. If
your address has more than one group of consecutive zero-value hextets, you
can remove only the leftmost group. Otherwise, it’s impossible for routers to
accurately determine the number of hextets to insert when repopulating the
full address from its compressed representation. For example, fd00:4700:
0000:0000:ef81:0000:6814:d103 rewrites to fd00:4700::ef81:0:6814:d103. The
best you could do with the sixth hextet is to remove the leading zeros.

IPv6 Network and Host Addresses

Like IPv4 addresses, IPv6 addresses have a network address and a host
address. IPv6’s host address is commonly known as the interface ID. The net-
work and host addresses are both 64 bits, as shown in Figure 2-10. The first
48 bits of the network address are known as the global routing prefix (GRP),
and the last 16 bits of the network address are called the subnet ID. The
48-bit GRP is used for globally subdividing the IPv6 address space and rout-
ing traffic between these groups. The subnet ID is used to further subdivide
each GRP-unique network into site-specific networks. If you run a large ISP,
you are assigned one or more GRP-unique blocks of IPv6 addresses. You
can then use the subnet ID in each network to further subdivide your allo-
cated IPv6 addresses to your customers.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

28 Chapter 2

The GRP gets determined for you when you request a block of IPv6
addresses from your ISP. IANA assigns the first hextet of the GRP to a
regional internet registry (an organization that handles the allocation of
addresses for a global region). The regional internet registry then assigns
the second GRP hextet to an ISP. The ISP finally assigns the third GRP hex-
tet before assigning a 48-bit subnet of IPv6 addresses to you.

N O T E For more information on the allocation of IPv6 addresses, see IANA’s “IPv6 Global
Unicast Address Assignments” document at https://www.iana.org/assignments/
ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml.

: 0000:0000:0000:0001

Interface ID

fd28:e1d0:d184

GRP

: 0001

Subnet ID

(16 bits / 1 hextet)(48 bits / 3 hextets) (64 bits / 4 hextets)

Figure 2-10: IPv6 global routing prefix, subnet ID, and interface ID

The first hextet of an IPv6 address gives you a clue to its use. Addresses
beginning with the prefix 2000::/3 are meant for global use, meaning every
node on the internet will have an IPv6 address starting with 2 or 3 in the
first hex. The prefix fc00::/7 designates a unique local address like the
127.0.0.0/8 subnet in IPv4.

N O T E IANA’s “Internet Protocol Version 6 Address Space” document at https://www.iana
.org/assignments/ipv6-address-space/ipv6-address-space.xhtml provides
more details.

Let’s assume your ISP assigned the 2600:fe56:7891::/48 netblock to you.
Your 16-bit subnet ID allows you to further subdivide your netblock into a
maximum of 65,536 (216) subnets. Each of those subnets supports over
18 quintillion (264) hosts. If you assign 1 to the subnet as shown in Figure 2-10,
you’d write the full network address as 2600:fe56:7891:1::/64 after removing
leading zeros and compressing zero value hextets. Further subnetting your
netblock may look like this: 2600:fe56:7891:2::/64, 2600:fe56:7891:3::/64,
2600:fe56:7891:4::/64.

IPv6 Address Categories
IPv6 addresses are divided into three categories: anycast, multicast, and
unicast. Notice there is no broadcast type, as in IPv4. As you’ll see, anycast
and multicast addresses fulfill that role in IPv6.

Unicast Addresses

A unicast IPv6 address uniquely identifies a node. If an originating node
sends a message to a unicast address, only the node with that address will
receive the message, as shown in Figure 2-11.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 29

Sender

Node
Node

Node

Node

Node

Figure 2-11: Sending to a unicast address

Multicast Addresses

Multicast addresses represent a group of nodes. Whereas IPv4 broadcast
addresses will propagate a message out to all addresses on the network,
multicast addresses will simultaneously deliver a message to a subset of net-
work addresses, not necessarily all of them, as shown in Figure 2-12.

Sender

Node
Node

Node

Node

Node

Figure 2-12: Sending to a multicast address

Multicast addresses use the prefix ff00::/8.

Anycast Addresses

Remember that IPv4 addresses must be unique per network segment, or
network communication issues can occur. But IPv6 includes support for
multiple nodes using the same network address. An anycast address rep-
resents a group of nodes listening to the same address. A message sent
to an anycast address goes to the nearest node listening to the address.
Figure 2-13 represents a group of nodes listening to the same address,
where the nearest node to the sender receives the message. The sender
could transmit to any of the nodes represented by the dotted lines, but
sends to the nearest node (solid line).

Sender

Node
Node

Node

Node

Node

Figure 2-13: Sending to an anycast address

The nearest node isn’t always the most physically close node. It is up to
the router to determine which node receives the message, usually the node

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

30 Chapter 2

with the least latency between the origin and the destination. Aside from
reducing latency, anycast addressing increases redundancy and can geolo-
cate services.

Sending traffic around the world takes a noticeable amount of time, to
the point that the closer you are to a service provider’s servers, the better
performance you’ll experience. Geolocating services across the internet is
a common method of placing servers geographically close to users to make
sure performance is optimal for all users across the globe. It’s unlikely you
access servers across an ocean when streaming Netflix. Instead, Netflix geo-
locates servers close to you so that your experience is ideal.

Advantages of IPv6 Over IPv4
Aside from the ridiculously large address space, IPv6 has inherent advan-
tages over IPv4, particularly with regard to efficiency, autoconfiguration,
and security.

Simplified Header Format for More Efficient Routing

The IPv6 header is an improvement over the IPv4 header. The IPv4 header
contains mandatory yet rarely used fields. IPv6 makes these fields optional.
The IPv6 header is extensible, in that functionality can be added without
breaking backward compatibility. In addition, the IPv6 header is designed
for improved efficiency and reduced complexity over the IPv4 header.

IPv6 also lessens the loads on routers and other hops by ensuring that
headers require minimal processing, eliminating the need for checksum
calculation at every hop.

Stateless Address Autoconfiguration

Administrators manually assign IPv4 addresses to each node on a network
or rely on a service to dynamically assign addresses. Nodes using IPv6 can
automatically configure or derive their IPv6 addresses through stateless
address autoconfiguration (SLAAC) to reduce administrative overhead.

When connected to an IPv6 network, a node can solicit the router for
its network address parameters using the Neighbor Discovery Protocol (NDP).
NDP leverages the Internet Control Message Protocol, discussed later in
this chapter, for router solicitation. It performs the same duties as IPv4’s
ARP. Once the node receives a reply from the router with the 64-bit net-
work address, the node can derive the 64-bit host portion of its IPv6 address
on its own using the 48-bit MAC address assigned to its network interface.
The node appends the 16-bit hex FFFE to the first three octets of the MAC
address known as the originally unique identifier. To this, the node appends
the remaining three octets of the MAC address, the network interface con-
troller (NIC) identifier. The result is a unique 64-bit interface ID, as shown
in Figure 2-14. SLAAC works only in the presence of a router that can
respond with router advertisement packets. Router advertisement packets con-
tain information clients need to automatically configure their IPv6 address,
including the 64-bit network address.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 31

48-bit MAC address

24-bit OUI 24-bit NIC+ +FFFE

64-bit interface ID

16 bits

Figure 2-14: Deriving the interface ID from the MAC address

If you value your privacy, the method SLAAC uses to derive a unique
interface ID should concern you. No matter which network your device is
on, SLAAC will make sure the host portion of your IPv6 address contains
your NIC’s MAC address. The MAC address is a unique fingerprint that
betrays the hardware you use and allows anyone to track your online activ-
ity. Thankfully, many people raised these concerns, and SLAAC gained
privacy extensions (https://tools.ietf.org/html/rfc4941/), which randomize the
interface ID. Because of this randomization, it’s possible for more than one
node on a network to generate the same interface ID. Thankfully, the NDP
will automatically detect and fix any duplicate interface ID for you.

Native IPsec Support

IPv6 has native support for IPsec, a technology that allows multiple nodes to
dynamically create secure connections between each other, ensuring that
traffic is encrypted.

N O T E RFC 6434 made IPsec optional for IPv6 implementations.

The Internet Control Message Protocol
The Internet Protocol relies on the Internet Control Message Protocol (ICMP) to
give it feedback about the local network. ICMP can inform you of network
problems, unreachable nodes or networks, local network configuration,
proper traffic routes, and network time-outs. Both IPv4 and IPv6 have their
own ICMP implementations, designated ICMPv4 and ICMPv6, respectively.

Network events often result in ICMP response messages. For instance,
if you attempt to send data to an unreachable node, a router will typi-
cally respond with an ICMP destination unreachable message informing you
that your data couldn’t reach the destination node. A node may become
unreachable if it runs out of resources and can no longer respond to incom-
ing data or if data cannot route to the node. Disconnecting a node from a
network will immediately make it unreachable.

Routers use ICMP to help inform you of better routes to your destina-
tion node. If you send data to a router that isn’t the appropriate or best

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

32 Chapter 2

router to handle traffic for your destination, it may reply with an ICMP redirect
message after forwarding your data onto the correct router. The ICMP
redirect message is the router’s way of telling you to send your data to the
appropriate router in the future.

You can determine whether a node is online and reachable by using an
ICMP echo request (also called a ping). If the destination is reachable and
receives your ping, it will reply with its own ICMP echo reply message (also
called a pong). If the destination isn’t reachable, the router will respond
with a destination unreachable message.

ICMP can also notify you when data reaches the end of its life before
delivery. Every IP packet has a time-to-live value that dictates the maximum
number of hops the packet can take before its lifetime expires. The packet’s
time-to-live value is a counter and decrements by one for every hop it takes.
You will receive an ICMP time exceeded message if the packet you sent doesn’t
reach its destination by the time its time-to-live value reaches zero.

IPv6’s NDP relies heavily on ICMP router solicitation messages to prop-
erly configure a node’s NIC.

Internet Traffic Routing
Now that you know a bit about internet protocol addressing, let’s explore
how packets make their way across the internet from one node to another
using those addresses. In Chapter 1, we discussed how data travels down
the network stack of the originating node, across a physical medium, and
up the stack of the destination node. But in most cases, nodes won’t have
a direct connection, so they’ll have to make use of intermediate nodes to
transfer data. Figure 2-15 shows that process.

The intermediate nodes (Nodes 1 and 2 in Figure 2-15) are typically
routers or firewalls that control the path data takes from one node to the
other. Firewalls control the flow of traffic in and out of a network, primarily
to secure networks behind the firewall.

No matter what type of node they are, intermediate nodes have a net-
work stack associated with each network interface. In Figure 2-15, Node 1
receives data on its incoming network interface. The data climbs the stack
to Layer 3, where it’s handed off to the outgoing network interface’s stack.
The data then makes its way to Node 2’s incoming network interface before
ultimately being routed to the server.

The incoming and outgoing network interfaces in Node 1 and Node 2
may send data over different media types using IPv4, so they must use
encapsulation to isolate the implementation details of each media type
from the data being sent. Let’s assume Node 1 receives data from the client
over a wireless network and it sends data to Node 2 over an Ethernet con-
nection. Node 1’s incoming Layer 1 knows how to convert the radio signals
from the wireless network into bits. Layer 1 sends the bits up to Layer 2.
Layer 2 converts the bits to a frame and extracts the packet and sends it up
to Layer 3.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 33

Client

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Server

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Node 1

Layer 3

L2 in

L1 in

L2 out

L1 out

Node 2

Layer 3

L2 in

L1 in

L1 out

L1 out

Figure 2-15: Routing packets through two hops

Layer 3 on both the incoming and outgoing NICs speak IPv4, which
routes the packet between the two interface network stacks. The outgoing
NIC’s Layer 2 receives the packet from its Layer 3 and encapsulates it before
sending the frame onto its Layer 1 as bits. The outgoing Layer 1 converts the
bits into electric signals suitable for transmission over Ethernet. The data in
transport from the client’s Layer 7 never changed despite the data’s travers-
ing multiple nodes over different media on its way to the destination server.

Routing Protocols
The routing overview in Figure 2-15 makes the process look easy, but the
routing process relies on a symphony of protocols to make sure each packet
reaches its destination no matter the physical medium traversed or network
outages along the way. Routing protocols have their own criteria for deter-
mining the best path between nodes. Some protocols determine a route’s
efficiency based on hop count. Some may use bandwidth. Others may use
more complicated means to determine which route is the most efficient.

Routing protocols are either internal or external depending on whether
they route packets within an autonomous system or outside of one. An autono-
mous system is an organization that manages one or more networks. An ISP is
an example of an autonomous system. Each autonomous system is assigned
an autonomous system number (ASN), as outlined in RFC 1930 (https://
tools.ietf.org/html/rfc1930/). This ASN is used to broadcast an ISP’s network

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

34 Chapter 2

information to other autonomous systems using an external routing protocol.
An external routing protocol routes data between autonomous systems. The only
routing protocol we’ll cover is BGP since it is the glue of the internet, binding
all ASN-assigned ISPs together. You don’t need to understand BGP in depth,
but being familiar with it can help you better debug network issues related to
your code and improve your code’s resiliency.

The Border Gateway Protocol
The Border Gateway Protocol (BGP) allows ASN-assigned ISPs to exchange
routing information. BGP relies on trust between ISPs. That is, if an ISP
says it manages a specific network and all traffic destined for that network
should be sent to it, the other ISPs trust this claim and send traffic accord-
ingly. As a result, BGP misconfigurations, or route leaks, often result in very
public network outages.

In 2008, Pakistan Telecommunications Company effectively took
down YouTube worldwide after the Pakistani Ministry of Communications
demanded the country block youtube.com in protest of a YouTube video.
Pakistan Telecom used BGP to send all requests destined for YouTube to a
null route, a route that drops all data without notification to the sender. But
Pakistan Telecom accidentally leaked its BGP route to the world instead of
restricting it to the country. Other ISPs trusted the update and null routed
YouTube requests from their clients, making youtube.com inaccessible for two
hours all over the world.

In 2012, Google’s services were rerouted through Indonesia for 27 min-
utes when the ISP Moratel shared a BGP route directing all Google traffic to
Moratel’s network as if Moratel was now hosting Google’s network infrastruc-
ture. There was speculation at the time that the route leakage was malicious,
but Moratel blamed a hardware failure.

BGP usually makes news only when something goes wrong. Other
times, it plays the silent hero, serving a significant role in mitigating dis-
tributed denial-of-service (DDOS) attacks. In a DDOS attack, a malicious
actor directs traffic from thousands of compromised nodes to a victim node
with the aim of overwhelming the victim and consuming all its bandwidth,
effectively denying service to legitimate clients. Companies that specialize
in mitigating DDOS attacks use BGP to reroute all traffic destined for the
victim node to their AS networks, filter out the malicious traffic from the
legitimate traffic, and route the sanitized traffic back to the victim, nullify-
ing the effects of the attack.

Name and Address Resolution
The Domain Name System (DNS) is a way of matching IP addresses to domain
names, which are the names we enter in an address bar when we want to visit
websites. Although the internet protocol uses IP addresses to locate hosts,
domain names (like google.com) are easier for humans to understand and
remember. If I gave you the IP address 172.217.6.14 to visit, you wouldn’t
know who owned that IP address or what I was directing you to visit. But if

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 35

I gave you google.com instead, you’d know exactly where I was sending you.
DNS allows you to remember a hostname instead of its IP address in the
same way that your smartphone’s contact list frees you from having to mem-
orize all those phone numbers.

All domains are children of a top-level domain, such as .com, .net, .org, and
so on. Take nostarch.com, for instance. No Starch Press registered the nostarch
domain on the .com top-level domain from a registrar with the authority from
IANA to register .com domains. No Starch Press now has the exclusive author-
ity to manage DNS records for nostarch.com and publish records on its DNS
server. This includes the ability for No Starch Press to publish subdomains—a
subdivision of a domain—under its domain. For example, maps.google.com is a
subdomain of google.com. A longer example is sub3.sub2.sub1.domain.com, where
sub3 is a subdomain under sub2.sub1.domain.com, sub2 is subdomain under
sub1.domain.com, and sub1 is a subdomain under domain.com.

If you enter https://nostarch.com in your web browser, your computer
will consult its configured domain name resolver, a server that knows how to
retrieve the answer to your query. The resolver will start by asking one of the
13 IANA-maintained root name servers for the IP address of nostarch.com.
The root name server will examine the top-level domain of the domain
you requested and give your resolver the address of the .com name server.
Your resolver will then ask the .com name server for nostarch.com’s IP address,
which will examine the domain portion and direct your resolver to ask
No Starch Press’s name server. Finally, your resolver will ask No Starch Press’s
name server and receive the IP address that corresponds to nostarch.com.
Your web browser will establish a connection to this IP address, retrieve the
web page, and render it for you. This hierarchical journey of domain resolu-
tion allows you to zero in on a specific web server, and all you had to know
was the domain name. No Starch Press is free to move its servers to a differ-
ent ISP with new IP addresses, and yet you’ll still be able to visit its website
by using nostarch.com.

Domain Name Resource Records
Domain name servers maintain resource records for the domains they serve.
Resource records contain domain-specific information, used to satisfy domain
name queries, like IP addresses, mail server hostnames, mail-handling rules,
and authentication tokens. There are many resource records, but this section
focuses on only the most common ones: address records, start-of-authority
records, name server records, canonical name records, mail exchange records,
pointer records, and text records.

N O T E For more details on types of resource records, see Wikipedia’s entry at https://
en.wikipedia.org/wiki/List_of_DNS_record_types.

Our exploration of each resource record will use a utility called dig to
query domain name servers. This utility may be available on your operat-
ing system, but in case you don’t have dig installed, you can use the G Suite
Toolbox Dig utility (https://toolbox.googleapps.com/apps/dig/) in a web browser

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

36 Chapter 2

and receive similar output. All domain names you’ll see are fully qualified,
which means they end in a period, displaying the domain’s entire hierarchy
from the root zone. The root zone is the top DNS namespace.

Dig’s default output includes a bit of data relevant to your query but
irrelevant to your study of its output. Therefore, I’ve elected to snip out
header and footer information in dig’s output in each example to follow.
Also please be aware that the specific output in this book is a snapshot from
when I executed each query. It may look different when you execute these
commands.

The Address Record

The Address (A) record is the most common record you’ll query. An A record
will resolve to one or more IPv4 addresses. When your computer asks its
resolver to retrieve the IP address for nostarch.com, the resolver ultimately
asks the domain name server for the nostarch.com Address (A) resource
record. Listing 2-1 shows the question and answer sections when you query
for the google.com A record.

$ dig google.com. a
-- snip --

1 ;QUESTION
2 google.com. 3IN 4A
5 ;ANSWER
6 google.com. 7299 IN A 8172.217.4.46

-- snip --

Listing 2-1: DNS answer of the google.com A resource record

Each section in a DNS reply begins with a header 1, prefixed with a
semicolon to indicate that the line is a comment rather than code to be
processed. Within the question section, you ask the domain name server
for the domain name google.com 2 with the class IN 3, which indicates
that this record is internet related. You also use A to ask for the A record 4
specifically.

In the Answer section 5, the domain name server resolves the google
.com A record to six IPv4 addresses. The first field of each returned line is
the domain name 6 you queried. The second field is the TTL value 7 for the
record. The TTL value tells domain name resolvers how long to cache or
remember the record, and it lets you know how long you have until the
cached record expires. When you request a DNS record, the domain name
resolver will first check its cache. If the answer is in its cache, it will sim-
ply return the cached answer instead of asking the domain name server
for the answer. This improves domain name resolution performance for
records that are unlikely to change frequently. In this example, the record
will expire in 299 seconds. The last field is the IPv4 address 8. Your web
browser could use any one of the six IPv4 addresses to establish a connec-
tion to google.com.

The AAAA resource record is the IPv6 equivalent of the A record.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 37

The Start of Authority Record

The Start of Authority (SOA) record contains authoritative and administrative
details about the domain, as shown in Listing 2-2. All domains must have an
SOA record.

$ dig google.com. soa
-- snip --
;QUESTION
google.com. IN SOA
;ANSWER
google.com. 59 IN SOA 1ns1.google.com. 2dns-admin.google.com. 3248440550
900 900 1800 60
-- snip --

Listing 2-2: DNS answer of the google.com SOA resource record

The first four fields of an SOA record are the same as those found in
an A record. The SOA record also includes the primary name server 1,
the administrator’s email address 2, and fields 3 used by secondary name
servers outside the scope of this book. Domain name servers primarily con-
sume SOA records. However, the email address is useful if you wish to con-
tact the domain’s administrator.

N O T E The administrator’s email address is encoded as a name, with the at sign (@) replaced
by a period.

The Name Server Record

The Name Server (NS) record returns the authoritative name servers for the
domain name. Authoritative name servers are the name servers able to provide
answers for the domain name. NS records will include the primary name
server from the SOA record and any secondary name servers answering
DNS queries for the domain. Listing 2-3 is an example of the NS records for
google.com.

$ dig google.com. ns
-- snip --
;QUESTION
google.com. IN NS
;ANSWER
google.com. 21599 IN NS 1ns1.google.com.
google.com. 21599 IN NS ns2.google.com.
google.com. 21599 IN NS ns3.google.com.
google.com. 21599 IN NS ns4.google.com.
-- snip --

Listing 2-3: DNS answer of the google.com NS resource records

Like the CNAME record, discussed next, the NS record will return a
fully qualified domain name 1, not an IP address.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

38 Chapter 2

The Canonical Name Record

The Canonical Name (CNAME) record points one domain at another. Listing 2-4
shows a CNAME record response. CNAME records can make administration
a bit easier. For example, you can create a CNAME record named mail.yourdo-
main.com and direct it to Gmail’s login page. This not only is easier for your
users to remember but also gives you the flexibility of pointing the CNAME
at another email provider in the future without having to inform your users.

$ dig mail.google.com. a
-- snip --
;QUESTION
mail.google.com. IN A
;ANSWER

1 mail.google.com. 21599 IN CNAME 2googlemail.l.google.com.
googlemail.l.google.com. 299 IN A 172.217.3.229
-- snip --

Listing 2-4: DNS answer of the mail.google.com CNAME resource record

Notice that you ask the domain name server for the A record of the
subdomain mail.google.com. But in this case, you receive a CNAME instead.
This tells you that googlemail.l.google.com 2 is the canonical name for mail
.google.com 1. Thankfully, you receive the A record for googlemail.l.google.com
with the response, alleviating you from having to make a second query. You
now know your destination IP address is 172.217.3.229. Google’s domain
name server was able to return both the CNAME answer and the corre-
sponding Address answer in the same reply because it is an authority for
the CNAME answer’s domain name as well. Otherwise, you would expect
only the CNAME answer and would then need to make a second query to
resolve the CNAME answer’s IP address.

The Mail Exchange Record

The Mail Exchange (MX) record specifies the mail server hostnames that
should be contacted when sending email to recipients at the domain.
Remote mail servers will query the MX records for the domain portion of a
recipient’s email address to determine which servers should receive mail for
the recipient. Listing 2-5 shows the response a mail server will receive.

$ dig google.com. mx
-- snip --
;QUESTION
google.com. IN MX
;ANSWER
google.com. 599 IN MX 110 aspmx.l.google.com.
google.com. 599 IN MX 50 alt4.aspmx.l.google.com.
google.com. 599 IN MX 30 alt2.aspmx.l.google.com.
google.com. 599 IN MX 20 alt1.aspmx.l.google.com.
google.com. 599 IN MX 40 alt3.aspmx.l.google.com.
-- snip --

Listing 2-5: DNS answer of the google.com MX resource records

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 39

In addition to the domain name, TLL value, and record type, MX records
contain the priority field 1, which rates the priority of each mail server. The
lower the number, the higher the priority of the mail server. Mail servers
attempt to deliver emails to the mail server with the highest priority, then
resort to the mail servers with the next highest priority if necessary. If more
than one mail server shares the same priority, the mail server will pick one at
random.

The Pointer Record

The Pointer (PTR) record allows you to perform a reverse lookup by accepting
an IP address and returning its corresponding domain name. Listing 2-6
shows the reverse lookup for 8.8.4.4.

$ dig 4.4.8.8.in-addr.arpa. ptr
-- snip --
;QUESTION

1 4.4.8.8.in-addr.arpa. IN PTR
;ANSWER
4.4.8.8.in-addr.arpa. 21599 IN PTR 2google-public-dns-b.google.com.
-- snip --

Listing 2-6: DNS answer of the 8.8.4.4 PTR resource record

To perform the query, you ask the domain name server for the IPv4
address in reverse order 1 with the special domain in-addr.arpa appended
because the reverse DNS records are all under the .arpa top-level domain.
For example, querying the pointer record for the IP 1.2.3.4 means you need
to ask for 4.3.2.1.in-addr.arpa. The query in Listing 2-6 tells you that the IPv4
address 8.8.4.4 reverses to the domain name google-public-dns-b.google.com 2.
If you were performing a reverse lookup of an IPv6 address, you’d append
the special domain ip6.arpa to the reversed IPv6 address as you did for the
IPv4 address.

N O T E See Wikipedia for more information on reverse DNS lookup: https://en.wikipedia
.org/wiki/Reverse_DNS_lookup.

The Text Record

The Text (TXT) record allows the domain owner to return arbitrary text.
These records can contain values that prove domain ownership, values that
remote mail servers can use to authorize email, and entries to specify which
IP addresses may send mail on behalf of the domain, among other uses.
Listing 2-7 shows the text records associated with google.com.

$ dig google.com. txt
-- snip --
;QUESTION
google.com. IN TXT
;ANSWER

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

40 Chapter 2

google.com. 299 IN TXT
 1"facebook-domain-verification=22rm551cu4k0ab0bxsw536tlds4h95"
google.com. 299 IN TXT "docusign=05958488-4752-4ef2-95eb-aa7ba8a3bd0e"
google.com. 299 IN TXT "v=spf1 include:_spf.google.com ~all"
google.com. 299 IN TXT
 "globalsign-smime-dv=CDYX+XFHUw2wml6/Gb8+59BsH31KzUr6c1l2BPvqKX8="
-- snip --

Listing 2-7: DNS answer of the google.com TXT resource records

The domain queries and answers should start to look familiar by now.
The last field in a TXT record is a string of the TXT record value 1. In
this example, the field has a Facebook verification key, which proves to
Facebook that Google’s corporate Facebook account is who they say they are
and has the authority to make changes to Google’s content on Facebook. It
also contains Sender Policy Framework rules, which inform remote mail serv-
ers which IP addresses may deliver email on Google’s behalf.

N O T E The Facebook for Developers site has more information about domain verification at
https://developers.facebook.com/docs/sharing/domain-verification/.

Multicast DNS
Multicast DNS (mDNS) is a protocol that facilitates name resolution over a
local area network (LAN) in the absence of a DNS server. When a node
wants to resolve a domain name to an IP address, it will send a request to an
IP multicast group. Nodes listening to the group receive the query, and the
node with the requested domain name responds to the IP multicast group
with its IP address. You may have used mDNS the last time you searched for
and configured a network printer on your computer.

Privacy and Security Considerations of DNS Queries
DNS traffic is typically unencrypted when it traverses the internet. A poten-
tial exception occurs if you’re connected to a virtual private network (VPN)
and are careful to make sure all DNS traffic passes through its encrypted
tunnel. Because of DNS’s unencrypted transport, unscrupulous ISPs or
intermediate providers may glean sensitive information in your DNS que-
ries and share those details with third parties. You can make a point of visit-
ing HTTPS-only websites, but your DNS queries may betray your otherwise
secure browsing habits and allow the DNS server’s administrators to glean
the sites you visit.

Security is also a concern with plaintext DNS traffic. An attacker could
convince your web browser to visit a malicious website by inserting a response
to your DNS query. Considering the difficulty of pulling off such an attack,
it’s not an attack you’re likely to experience, but it’s concerning nonethe-
less. Since DNS servers often cache responses, this attack usually takes place
between your device and the DNS server it’s configured to use. RFC 7626
(https://tools.ietf.org/html/rfc7626/) covers these topics in more detail.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Resource Location and Traffic Routing 41

Domain Name System Security Extensions

Generally, you can ensure the authenticity of data sent over a network
in two ways: authenticating the content and authenticating the channel.
Domain Name System Security Extensions (DNSSEC) is a method to prevent the
covert modification of DNS responses in transit by using digital signatures
to authenticate the response. DNSSEC ensures the authenticity of data by
authenticating the content. DNS servers cryptographically sign the resource
records they serve and make those signatures available to you. You can then
validate the responses from authoritative DNS servers against the signatures
to make sure the responses aren’t fraudulent.

DNSSEC doesn’t address privacy concerns. DNSSEC queries still tra-
verse the network unencrypted, allowing for passive observation.

DNS over TLS

DNS over TLS (DoT), detailed in RFC 7858 (https://tools.ietf.org/html/rfc7858/),
addresses both security and privacy concerns by using Transport Layer Security
(TLS) to establish an encrypted connection between the client and its DNS
server. TLS is a common protocol used to provide cryptographically secure
communication between nodes on a network. Using TLS, DNS requests and
responses are fully encrypted in transit, making it impossible for an attacker
to eavesdrop on or manipulate responses. DoT ensures the authenticity of
data by authenticating the channel. It does not need to rely on cryptographic
signatures like DNSSEC because the entire conversation between the DNS
server and the client is encrypted.

DoT uses a different network port than does regular DNS traffic.

DNS over HTTPS

DNS over HTTPS (DoH), detailed in RFC 8484 (https://tools.ietf.org/html/
rfc8484/) aims to address DNS security and privacy concerns while using a
heavily used TCP port. Like DoT, DoH sends data over an encrypted con-
nection, authenticating the channel. DoH uses a common port and maps
DNS requests and responses to HTTP requests and responses. Queries over
HTTP can take advantage of all HTTP features, such as caching, compres-
sion, proxying, and redirection.

What You’ve Learned
We covered a lot of ground in this chapter. You learned about IP addressing,
starting with the basics of IPv4 multicasting, broadcasting, TCP and UDP
ports, socket addresses, network address translation, and ARP. You then
learned about IPv6, its address categories, and its advantages over IPv4.

You learned about the major network-routing protocols, ICMP and
DNS. I’ll again recommend the TCP/IP Guide by Charles M. Kozierok (No
Starch Press, 2005) for its extensive coverage of the topics in this chapter.

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

Network Programming with Go (Sample Chapter) © 9/14/20 by Adam Woodbeck

