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I M P L E M E N T I N G  W E B  D A T A  A N D 

P R O C E S S I N G  I M A G E S

Real-life chatbots should respond to a variety 
of inputs, such as questions from users on 

unfamiliar topics or even images sent through 
messaging apps. For example, chatbot app users 

can send not only text messages, but also photos, and 
the bot is supposed to react appropriately to both.

This chapter provides some examples of how to use other libraries from 
Python’s AI ecosystem when developing a bot application. First, you’ll com-
bine spaCy with Wikipedia to find information about keywords taken from 
a user’s question. Next, you’ll obtain descriptive tags for a submitted image 
with the help of Clarifai, an image and video recognition tool, so your app 
can interpret visual content.

Then you’ll put all the components together to build a Telegram bot 
that can generate relevant responses to text and images by extracting infor-
mation from Wikipedia.  
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How It Works 
Figure 12-1 shows a diagram of the bot we’ll build in this chapter. The bot is 
designed to understand text messages and pictures, and respond with text 
from Wikipedia. 

Bot

Text 
message Photo

Wikipedia
A piece of relevant 

information

Keywords,
descriptive

tags

NLP tool

Text 
message Keywords

Image recognition
tool

Image pixels

Descriptive tags
(sea, boat . . . )

User

Figure 12-1: How a bot that can process text messages and pictures works 

Using this bot, the user can post either a text message or a picture. If 
the post is a picture, the bot sends it to an image recognition tool for pro-
cessing. This tool returns a verbal description of the picture in the form of 
descriptive tags. If the post is a text message, the bot uses an NLP tool like 
spaCy to extract a keyword or a keyphrase from it. The bot then uses either 
the tag or the keyphrase to find the most relevant content on Wikipedia (or 
somewhere else on the web) and return a piece of it to the user. You can use 
this scenario in chatbots you design to hold a conversation on various topics 
for fun, learning, or personal use.

Making Your Bot Find Answers to Questions 
from Wikipedia 

Let’s start with a discussion of techniques that you can implement in your 
bot to make it interpret a wide range of text messages. Previous chapters 
talked about how bots used for business purposes typically ask for certain 
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information from the user and then use the answer to fill an order or book-
ing request. In contrast, a bot designed to hold informal conversations 
should be able to answer a diverse range of user questions. 

One way to help a chatbot answer user questions is to choose a keyword 
or keyphrase in the question that provides a clue as to what information 
should be included in the answer. Once you have this keyword or keyphrase, 
you can use it to search for the answer using tools like the Wikipedia API for 
Python. Wikipedia’s API lets you access and parse Wikipedia content pro-
grammatically, performing a search for a keyword to retrieve content from 
the most relevant Wikipedia article. The following sections describe how to 
do this. 

But before proceeding to the examples, make sure you’re using one 
of the most recent spaCy models, because the accuracy of the dependency 
parsing is higher in newer versions. You can check the version of your cur-
rent model using the following command:

nlp.meta['version'] 

Then visit the https://explosion.ai/demos/displacy/ demo page (discussed 
in Chapter 7) to see the latest stable versions of spaCy models available. 
Alternatively, you can visit spaCy’s documentation at https://spacy.io/usage/ 
to check for the newest version of spaCy. Both spaCy and its models follow 
the same versioning scheme. Based on that information, you might want to 
update the model you currently use. Refer to Chapter 2 for details on how 
to download and install a spaCy model. 

Determining What the Question Is About 
Some words in a question are more important than others when you’re try-
ing to determine what the speaker is asking about. Sometimes it’s enough to 
look at a single word in the question, such as the noun that follows a prepo-
sition. For example, a user might use any of the following questions to ask 
the bot to find some information about rhinos: 

Have you heard of rhinos? Are you familiar with rhinos? What could you tell me about rhinos? 

Let’s look at what the dependency parsing of such sentences might look 
like. Figure 12-2 shows a graphical representation of the parsing of the first 
sentence. 

Have you heard of rhinos?

VERB VERB ADP NOUNPRON

aux

nsubj
prep pobj

Figure 12-2: The dependency parsing of a sentence  
containing an object of a preposition 

https://explosion.ai/demos/displacy
https://spacy.io/usage
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The parsing illustrates that in this kind of question you can get the 
word “rhinos” by extracting the object of the preposition. “Rhinos” would 
be the most helpful word in the question for finding an answer. The follow-
ing code fragment shows how you might extract the first occurrence of an 
object of the preposition in the question: 

doc = nlp(u"Have you heard of rhinos?")
for t in doc:
  if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = (' '.join([child.text for child in t.lefts]) + ' ' + t.text).lstrip()
    break
    

In the code, we also pick up the left children of the object of the prepo-
sition, because the object might have important modifiers, as in the follow-
ing example: “What can you say about wild mountain goats?” When given 
this question, the code should assign “wild mountain goats” to the phrase 
variable.

Notice the use of the break statement at the end, which guarantees that 
only the first object of a preposition in a sentence will be picked up. For 
example, in the sentence, “Tell me about the United States of America,” the 
phrase “the United States” would be picked up, but not “America.”

But this is not always desirable behavior. What if a user asked, “Tell me 
about the color of the sky.”? This is where we need to apply more compli-
cated logic. In particular, we might want to to pick up any prepositional 
object that follows the first prepositional object, provided the latter is 
dependent on the former. 

Here is how you might implement this logic:

doc = nlp(u"Tell me about the color of the sky.")
for t in doc:
  if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = (' '.join([child.text for child in t.lefts]) + ' ' + t.text).lstrip()
    if bool([prep for prep in t.rights if prep.dep_ == 'prep']): 
      prep = list(t.rights)[0]
      pobj = list(prep.children)[0] 
      phrase = phrase + ' ' + prep.text + ' ' + pobj.text
    break
...

Note that this code will process a prepositional object that is a 
dependent of the first prepositional object only if the former exists in 
the sentence. Otherwise, this code will work the same as the code shown 
previously. 

Now let’s look at another type of question in the following examples 
where two words, a verb and its subject, provide the best information about 
what a user wants in response to the questions: 

Do you know what an elephant eats? Tell me how dolphins sleep. What is an API?
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Figure 12-3 shows what a dependency parsing for one of these sentences 
might look like. 

Tell me how dolphins sleep.

VERB ADV NOUN VERBPRON

nsubj

advmod

dobj

ccomp

Figure 12-3: The dependency parsing of a sentence in which a  
subject/verb pair is the most informative element for discovering  
what the speaker wants to know 

Looking through the parsing shown in the figure, notice that the sub-
ject/verb pair that occurs at the end of the sentence is the most informative 
when trying to determine what the speaker asks about. Programmatically, 
you can extract the subject and verb pair from a sentence using the follow-
ing code: 

doc = nlp(u"Do you know what an elephant eats?")
for t in reversed(doc):
  if t.dep_ == 'nsubj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = t.text + ' ' + t.head.text
    break
    

While examining this code, notice that we loop backward from the end 
of the sentence using Python’s reversed() function. The reason is that we 
need to pick up the last subject/verb pair in the sentence, as in this example: 
“Do you know what an elephant eats?” In this sentence, we’re interested in 
the phrase “elephant eats” rather than “you know,” which is also a subject/ 
verb pair.

Additionally, in some questions, the last noun in the sentence is the 
direct object of a verb that matters to determine what the question is about, 
as in the following example: 

How to feed a cat?

In this sentence, extracting the direct object “cat” wouldn’t be suf-
ficient, because we also need the word “feed” to understand the question. 
Ideally, we’d generate the keyphrase “feeding a cat.” That is, we’d replace 
the infinitive “to” form of the verb with a gerund by adding “-ing,” optimiz-
ing the keyphrase for an internet search. Figure 12-4 shows the dependency 
parsing for this sentence.
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How to feed a cat?

ADV VERB DET NOUNPART

det

dobj
advmod

aux

Figure 12-4: Dependency parsing of a sentence with a  
verb/direct object pair as the most informative phrase 

This syntactic parsing shows that extracting the required phrase is 
easy, because the direct object and its transitive verb are connected with a 
direct link. 

The code implementation for the extraction discussed here might look 
like this: 

doc = nlp(u"How to feed a cat?")
for t in reversed(doc):
  if t.dep_ == 'dobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
    phrase = t.head.lemma_ + 'ing' + ' ' + t.text
    break
    

In this case, we once again loop backward from the end of the sen-
tence. To understand why, consider the following sentence: “Tell me some-
thing about how to feed a cat.” It contains two verb/direct object pairs, but 
we’re interested only in the one that occurs at the end of the sentence. 

Try It Yourself
Modify the code in the previous section that extracts the phrase “elephant 
eats” so the keyphrase being extracted from the sentence includes possible 
modifiers of the subject, excluding a possible determiner. For example, 
in the sentence, “Tell me how a female cheetah hunts,” your script should 
return “female cheetah hunts” and remove the “a” determiner from the 
noun chunk. As an example of how you might implement this, look at the 
code that follows Figure 12-2. In that code, you picked up modifiers for the 
object of the preposition being extracted. 

Also, add a check to see whether the verb included in the phrase being 
extracted has a direct object, and if so, append the direct object to the key-
phrase. For example, the question “Do you know how many eggs a sea turtle 
lays?” should give you the following keyphrase: “sea turtle lays eggs.” 

Using Wikipedia to Answer User Questions
Now that you have a keyphrase that can help you find the information 
needed to generate a relevant response to the user’s question, you need to 
retrieve the information. A bot can get answers to user questions from sev-
eral places, and the proper source to use depends on the application, but 
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Wikipedia is a good place to start. The wikipedia Python library (https://pypi 
.org/project/wikipedia/) allows you to access Wikipedia articles from within 
your Python code. 

You can install the library via pip as follows:

pip install wikipedia

To test the newly installed library, use the following script, which relies 
on a code fragment from the previous section to extract a keyword from 
a submitted sentence. Then it uses that keyword as a Wikipedia search term. 

import spacy
import wikipedia
nlp = spacy.load('en')
doc = nlp(u"What do you know about rhinos?")
for t in doc:
  if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):

    u phrase = (' '.join([child.text for child in t.lefts]) + ' ' + t.text).
    lstrip()
    break

v wiki_resp = wikipedia.page(phrase)
print("Article title: ", wiki_resp.title)
print("Article url: ", wiki_resp.url)
print("Article summary: ", wikipedia.summary(phrase, sentences=1))

In this script, we extract a keyword or keyphrase from the submitted 
sentence u and send it to the wikipedia.page() function, which returns the 
most relevant article for the given keyword v. Then we simply print out the 
article’s title, URL, and first sentence.

The output this script generates should look like this:

Article title:  Rhinoceros
Article url:  https://en.wikipedia.org/wiki/Rhinoceros
Article summary:  A rhinoceros (, from Greek  rhinokero–s, meaning 'nose-horned', from  rhis, 
meaning 'nose', and  keras, meaning 'horn'), commonly abbreviated to rhino, is one of ...

Try It Yourself
Enhance the script in the previous section so it can “see” the children of 
the first prepositional object and the dependent prepositional objects. For 
example, in the question, “Have you heard of fried eggs with yellow toma-
toes?” it should extract the keyphrase “fried eggs with yellow tomatoes.”   

Reacting to Images Sent in a Chat
In addition to text messages, users of messenger apps often post images. 
Other people usually respond to these with comments about what is shown 
in the picture. For example, a user posts a photo of grapes, to which another 
user leaves the following comment: “I love fruit. It contains lots of fiber and 

https://pypi.org/project/wikipedia/
https://pypi.org/project/wikipedia/
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vitamins.” How can you teach a bot to do the same? One way is to gener-
ate descriptive tags for an image that the bot can use in processing. This 
is where you need an image recognition tool, like Clarifai, which provides 
built-in models trained with photos from different domains, such as apparel, 
travel, or celebrities. 

Clarifai allows a bot to obtain a set of categories for a submitted photo, 
making it possible for the bot to guess what is depicted in the image. You can 
get useful categories for a photo in two steps. First, you use Clarifai’s gen-
eral image recognition model to obtain descriptive tags (objects with prob-
abilities) that can give you a general idea of what is shown in the photo. For 
example, the presence of the “no person” tag indicates that no people are in 
the photo.

Second, after examining the tags, you can apply more specific models 
to the same photo, such as Clarifai’s Food or Apparel models. Both are 
trained to recognize food and fashion-related items, respectively. This time, 
you’ll obtain another, more granular set of tags to give you a better idea of 
the contents of the photo. For the entire list of Clarifai’s image recognition 
models, visit its Models page at https://www.clarifai.com/models/.

Generating Descriptive Tags for Images Using Clarifai
Clarifai offers a Python client to interact with its recognition API. You can 
install the latest stable package using pip: 

pip install clarifai --upgrade

Before you can start using the Clarifai library, you must obtain an API 
key by creating an account and then clicking the GET API KEY button at 
https://www.clarifai.com/. 

Once you have the key, you can test the Clarifai library. The following 
simple script passes an image to a Clarifai model and prints a list of tags 
expressing possible categories for the image: 

from clarifai.rest import ClarifaiApp, client, Image
app = ClarifaiApp(api_key='YOUR_API_KEY')

u model = app.public_models.general_model
filename = '/your_path/grape.jpg'

v image = Image(file_obj=open(filename, 'rb'))
response = model.predict([image])

w concepts = response['outputs'][0]['data']['concepts']
for concept in concepts:
  print(concept['name'], concept['value'])

In this example, we call Clarifai’s Predict API with the general model u.  
Clarifai takes only the pixels as input, so make sure you’re opening an image 
file in 'rb' mode v, which opens the file in binary format for reading. The 

https://www.clarifai.com/models/
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Predict API generates a list of descriptive tags, such as fruit, grape, health, 
and so on w, for the submitted photo, allowing the code to “understand” 
what it shows. 

The grape.jpg file used in this example contains the photo shown in 
Figure 12-5. 

Figure 12-5: The photo submitted to Clarifai in the preceding script 

The list of concepts that the script generates for the photo should look 
as follows: 

no person 0.9968359470367432
wine 0.9812138080596924
fruit 0.9805494546890259
juicy 0.9788177013397217
health 0.9755384922027588
grow 0.9669009447097778
grape 0.9660607576370239
...

Each entry represents a category and the probability that the image fits 
within the category. Thus, the first tag in the list tells us that the submitted 
photo contains no person with a probability of 0.99. Note that not all the 
tags will provide a direct description of the depicted content. For example, 
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the tag “wine” is included here, perhaps because wine is made from grapes. 
The presence of indirect tags in the list gives your bot more options to 
interpret the image.

Using Tags to Generate Text Responses to Images
Now that you know how to obtain descriptive tags for an image, how can 
you use these tags to respond to the image? Or how can you choose the 
most important tags from the generated list? Think about the following 
general considerations: 

•	 You might want to take into account only the tags with high likelihoods. 
For that, you can choose a threshold of likelihood for the tags. For 
example, consider only the top five or 10 tags. 

•	 You might choose only those tags that are in the context of the cur-
rent chat. Chapter 11 showed an example of how to maintain the con-
text of the current chat in a Telegram bot using the context.user_data 
dictionary. 

•	 You might iterate over the generated tags, searching for a particular 
tag. For example, you might search for the tag “fruit” or “health” to 
determine whether you should continue the conversation on this topic. 

The bot discussed in the next section will implement the third option. 

Putting All the Pieces Together in a Telegram Bot
In the rest of this chapter, we’ll build a Telegram chatbot that uses the 
Wikipedia API and the Clarifai API. This bot will respond intelligently to 
text and images of food. Refer back to Chapter 11 for details on how to cre-
ate a new bot in Telegram.

Importing the Libraries
The import section of the code must include all the libraries that we’ll 
use in the bot’s code. In this example, we include the libraries required to 
access the Telegram Bot API, Wikipedia API, Clarifai API, and spaCy.

import spacy
import wikipedia
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters
from clarifai.rest import ClarifaiApp, Image 

If you’ve followed the instructions provided in this chapter and 
Chapter 11, all of these libraries should be available on your system.

Writing the Helper Functions
Next, we need to implement the helper functions that will be invoked 
from within the bot’s callback functions. The keyphrase() function takes a 
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sentence as a Doc object and tries to extract the most informative word or 
a phrase from it, as discussed in the earlier section “Determining What the 
Question Is About” on page 171. The following implementation uses the 
code fragments you saw in that section, adjusting them so we can use them 
within a single function: 

def keyphrase(doc): 
  for t in doc:
    if t.dep_ == 'pobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
      return (' '.join([child.text for child in t.lefts]) + ' ' + t.text).
      lstrip()
  for t in reversed(doc):
    if t.dep_ == 'nsubj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
      return t.text + ' ' + t.head.text
  for t in reversed(doc):
    if t.dep_ == 'dobj' and (t.pos_ == 'NOUN' or t.pos_ == 'PROPN'):
      return t.head.text + 'ing' + ' ' + t.text 
  return False

Note that the conditions are arranged in order of priority in this code. 
Thus, if the object of the preposition is found, we extract it and quit without 
checking for the other conditions. Of course, some complicated questions 
might meet multiple conditions, but checking for this would complicate the 
function implementation. 

Like the keyphrase() function, the photo_tags() function is supposed 
to determine the most descriptive word for a user’s input. But unlike 
keyphrase(), it analyzes a photo. It performs the analysis with the help of 
Clarifai, which generates a set of descriptive tags for a submitted photo. 
This implementation uses only two Clarifai models: the general model  
and the food model. 

def photo_tags(filename):
  app = ClarifaiApp(api_key=CLARIFAI_API_KEY)
  model = app.public_models.general_model
  image = Image(file_obj=open(filename, 'rb'))
  response = model.predict([image])
  concepts = response['outputs'][0]['data']['concepts']
  for concept in concepts:
    if concept['name'] == 'food':
      food_model = app.public_models.food_model
      result = food_model.predict([image])
      first_concept = result['outputs'][0]['data']['concepts'][0]['name']
      return first_concept
  return response['outputs'][0]['data']['concepts'][1]['name']  

This code starts by applying the general model. If the tag 'food' is 
found in the generated list, it applies the food model to obtain more 
descriptive tags for the food items shown in the image. This implementa-
tion will use the first tag only as the keyword for the search. 
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Now that we have the keyword or keyphrase, determined either in the 
keyphrase() function or in the photo_tags() function, we need to obtain a 
piece of information that is closely related to this keyword or keyphrase. 
The following wiki() function does the trick: 

def wiki(concept):
  nlp = spacy.load('en')
  wiki_resp = wikipedia.page(concept)
  doc = nlp(wiki_resp.content)
  if len(concept.split()) == 1:
    for sent in doc.sents:
      for t in sent:
        if t.text == concept and t.dep_ == 'dobj':
          return sent.text
  return list(doc.sents)[0].text

The algorithm we use here searches for a sentence in the retrieved con-
tent that includes the keyword as the direct object. 

But this simple implementation can intelligently process only a single-
word input. When a word is submitted, the algorithm we use here just 
extracts the first sentence from the Wikipedia article found with the help 
of this word. 

Writing the Callback and main() Functions
Next, we add the bot’s callback functions. The start() function simply 
sends a greeting to the user in response to the /start command. 

def start(update, context):
    update.message.reply_text('Hi! This is a conversational bot. Ask me something.')

The text_msg() function is the callback for the bot’s user text messages 
handler. 

def text_msg(update, context):
  msg = update.message.text
  nlp = spacy.load('en')
  doc = nlp(msg)
  concept = keyphrase(doc)
  if concept != False:
    update.message.reply_text(wiki(concept))
  else: 
    update.message.reply_text('Please rephrase your question.')

First, we apply spaCy’s pipeline to the message, converting it to a Doc 
object. Then we send the Doc to the keyphrase() function discussed earlier 
to extract a keyword or keyphrase from the message. The returned keyword 
or keyphrase is then sent to the wiki() function to obtain a piece of relevant 
information, which should be a single sentence in this implementation. 
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The photo() function shown in the following code is the callback for the 
bot’s handler for the photos submitted by the user: 

def photo(update, context):
  photo_file = update.message.photo[-1].get_file()
  filename = '{}.jpg'.format(photo_file.file_id)
  photo_file.download(filename) 
  concept = photo_tags(filename)
  update.message.reply_text(wiki(concept))  

The function retrieves the submitted image as a file and sends it for 
further processing to the helper functions discussed earlier in the section 
“Writing the Helper Functions.” 

Finally, we add the main() function in which we register handlers for 
both text messages and photos. 

def main():
    updater = Updater("YOUR_TOKEN", use_context=True)
    disp = updater.dispatcher
    disp.add_handler(CommandHandler("start", start))
    disp.add_handler(MessageHandler(Filters.text, text_msg))
    disp.add_handler(MessageHandler(Filters.photo, photo))
    updater.start_polling()
    updater.idle()
if __name__ == '__main__':
    main()

The main() function for this Telegram bot is quite concise. We create 
the Updater and pass the bot’s token to it. Then we obtain the dispatcher to 
register handlers. In this example, we register just three handlers. The first 
one is the handler for the /start command. The second handles text mes-
sages coming from the user. The third one handles photos posted by the 
user. After registering handlers, we start the bot by invoking updater.start 
_polling() and then invoking updater.idle() to block the script to wait for a 
user message or an exit shortcut (ctrl-C). 

Testing the Bot
Now that we’ve created the bot, it’s time to test it. You can test it either on a 
smartphone or a computer. On a smartphone, in the Telegram app search for 
your bot’s name followed by the @ sign, and then enter the /start command 
to start a chat. On a computer, use Telegram Web at https://web.telegram.org.

After receiving a greeting from the bot, send it a simple request, such as 
“Tell me about fruit.” The bot should respond with a single sentence that it 
extracts from a relevant Wikipedia article. For simplicity, choose a sentence 
that uses the direct object from the sentence (“fruit” in this example) as the 
keyword. 

You can also submit a photo to check which comment the bot will give 
in response. Figure 12-6 illustrates a screenshot of such a test.
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Figure 12-6: A screenshot of the bot we created 

Remember that this implementation can properly process only photos 
of food. 

Try It Yourself
Note that the bot implementation provided in the preceding section 
can’t generate smart responses to many different types of user input. The 
wiki() function we used can properly process only those requests for which 
 keyphrase() returns a single word. It also works best if that keyword is a direct 
object. Also, the bot can only intelligently respond to images of food. 

Enhance the wiki() function so it can process phrases instead of only 
one word, such as “dolphins sleep.” Finding an appropriate sentence for 
such a phrase requires using dependency labels, because you’ll need to find 
a subject/verb pair. In addition, you’ll need to reduce the words to their 
lemmas. For example, “dolphins sleep” and “dolphin sleeps” should satisfy 
the search criteria. 

You might also want to enhance the functionality of the photo_tags() 
function so it can process not only food photos, but also those that show 
something else—for example, apparel. 
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Summary 
In this chapter, you saw examples of how to use spaCy along with other 
libraries in Python’s AI ecosystem to build an AI-powered application that 
can process data of different types. By using the Wikipedia and Clarifai 
Python APIs, we designed a chatbot that could react to images and pull text 
from Wikipedia, techniques that make the bot a smarter interlocutor. 

After reading this book, you might want to expand and improve on 
what you’ve learned. The most natural way to enhance your knowledge is to 
continue to experiment with chatbots. Start by building a Telegram script 
with Python using the instructions provided in Chapter 11; next, enhance 
its functionality using instructions provided in this chapter. Then work on 
improving the algorithms you learned in this book to make them more suit-
able for your use cases. 
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