
n this chapter, we’ll explore using sound with the
micro:bit. We’ll teach the micro:bit to play music
and even imitate speech, and we’ll get it to hear
sound by connecting it to a microphone. You’ll

try out a couple of experiments and create two simple
projects: the first project is a musical doorbell that lets
the Mad Scientist know when visitors have arrived,
and the second is a Shout- o-meter that measures and
displays the volume of sounds it detects.

2
SUPER SONIC

CHAPTER 240

Connecting a Loudspeaker
to a micro:bit
There are a couple of ways to hear sound from your micro:bit.
Which one you should choose depends on how much sound you
want to make.

The Quiet Method: Headphones
Perhaps the easiest way to get sound from your micro:bit is to
use alligator clip cables to connect the micro:bit to a pair of
headphones (see Figure 2-1).

Figure 2-1: Alligator clips attached to headphones

If you look closely at the metal plug on the headphones, you
should see that it is really made of three pieces separated by rings
of plastic. This means the plug has three connections. The section
closest to the headphones’ wire is the ground connection. Connect
this to the micro:bit’s GND (0V) connection with an alligator clip.

The other two connectors are the audio signals for your left
and right ears. If you want to hear sound in both ears, place
the alligator clip so that it spans both of the two connectors
on the end. You can also attach the alligator clip to the very
tip for sound in just one ear (as shown in Figure 2-1). Either
way, clip the other end of the alligator clip to any of the three
micro:bit pins: 0, 1, or 2. Micro:bit users traditionally use pin 0
for audio.

SuPER SoNIC 41

NOTE Headphones designed for use with a cellphone
that include a microphone will have four connectors on the
plug rather than three. This shouldn’t make a difference. You
can still use the tip as the audio connection and the connector
closest to the plug body as the GND connection.

To upgrade this method slightly, you can use an audio
jack adapter like the one shown in Figure 2-2. Just plug your
headphones straight into the adapter, with the black wire con-
nected to GND and the other to pin 0. Adapters like this fit
directly onto the headphones and provide a more reliable con-
nection than alligator clips.

Figure 2-2: An adapter to connect an alligator clip to a 3.5 mm audio jack

CHAPTER 242

The Ghetto Blaster Method: Speaker
With an amplified speaker such as the one shown in Figure 2-3,
you can produce a lot more sound using the same connection
methods described earlier: either connecting directly to the
speaker plug or using an audio jack adapter.

Figure 2-3: Connecting a micro:bit to an amplified speaker

Some speakers are designed especially for use with micro:bits.
Some of these have cables that end in alligator clips to attach
to your micro:bit, while others, like the Monk Makes Speaker
for micro:bit shown in Figure 2-4, end in pins similar to the
micro:bit’s, making it easy to connect the two with alligator
clip cables.

Figure 2-4: The Monk Makes Speaker for micro:bit

SuPER SoNIC 43

Amplified speakers need a power source. In some cases,
the amplified speaker may have its own batteries or uSB
cable. otherwise, the micro:bit itself could power the speaker,
in which case the devices will have to connect in three places:
to GND (0V) and 3V on the micro:bit in order to power the
speaker and to pin 0 (or one of the other pins) for the audio sig-
nal coming from the micro:bit.

Whatever you’re using for audio output, let’s test it out!

Experiment 1:
Generating Sounds
In this experiment, you’ll learn how to generate sounds using
your micro:bit and a loudspeaker or headphones.

What You’ll Need
To carry out this experiment, you just need:

Micro:bit

Speaker or headphones

Alligator clip cables

You can find sources for these in the appendix.
Here we’ll assume you’re using a Monk Makes Speaker

for micro:bit and a set of alligator clips, but any of the speaker
connection methods listed earlier will work.

Construction
1. Connect the speaker using one of the methods shown in

Figures 2-1 to 2-4. Then plug your micro:bit into your
 computer.

2. Go to https://github.com/simonmonk/mbms/ to access this
book’s code repository and click the link for Experiment 1:
Generating Sounds. once the program has opened, click
Download and then copy the hex file onto your micro:bit.
If you get stuck, head back to Chapter 1, where we discuss
the process of getting programs onto your micro:bit in full.

https://github.com/simonmonk/mbms/

CHAPTER 244

If you prefer to use Python, download the code from the
same website. For instructions for downloading and using the
book’s examples, see “Downloading the Code” on page 34.
The Python file for this experiment is Experiment_01.py.

3. once you’ve successfully programmed the micro:bit, press
button A. You should hear a tone through your speaker or
headphones!

Code
You won’t need much code for this experiment. Whether you
use Blocks code or MicroPython, it’s just a matter of detecting
button A being pressed and then playing a -.

Blocks Code
The Blocks code for this experiment is shown here.

The code uses the on button A pressed block to run the
play tone block every time button A is pressed. You drop
the play tone block into the on button A pressed block so it
clicks into place. Then from the drop- down menu, select the
tone you want to hear (in this case Middle C) and the dura-
tion of the note (1 beat).

MicroPython Code
Here’s the MicroPython version of the code:

from microbit import *
import music

while True:
 if button_a.was_pressed():
 music.pitch(262, 1000)

Python has a huge number of libraries, which are col-
lections of code that do a specific thing. By asking your code

SuPER SoNIC 45

to use these libraries, you get access to a lot of functionality
without having to write complicated code yourself. The music
library is an example: it contains functions you can use to
make your micro:bit make sound. To make MicroPython use
the music library, you first import the library using the import
music command.

While Blocks code will handle some things on its own, like
knowing how often to run code and what order to run it in,
MicroPython requires you to make that clear in the code itself.
Here, you use a while True: loop to tell the micro:bit to keep
checking whether someone has pressed button A.

When someone does press button A, the note plays using
the pitch command, which needs two pieces of information: the
frequency of the note (262 is middle C) and the duration of
the note in milliseconds (in this case, 1000 milliseconds or
1 second).

Things to Try
You might like to try changing the tone produced. If you are
using Blocks code, go back to the browser and click the Edit
button to alter the code, then click Middle C. This will open
up a mini keyboard where you can choose a different note to
play. To change the note in MicroPython, enter a new number
instead of 262 for the frequency. Then click the Flash button
again. Later in this chapter, you’ll learn a better way to choose
notes using MicroPython.

You could also try making both buttons A and B play
tones and even have them play different tones—a chord!

How It Works: Frequency and Sound
How does the micro:bit create sound in the speaker? Essen-
tially, the micro:bit switches a current (the flow of electricity)
on and off incredibly fast, causing part of the speaker to
vibrate, creating sound. The speed at which the micro:bit
switches the current on and off determines the frequency of
the sound, and that’s what makes different tones. I’ll explain
this in more detail.

Figure 2-5 shows the parts of a loudspeaker. A rigid, usu-
ally metal frame holds a cone in place. The narrow end of this

CHAPTER 246

cone is cylindrical and has a coil of wire wrapped around it.
Around this coil, fixed to the frame of the loudspeaker, is a
strong magnet.

When a current passes through the coil, it—and hence the
whole cone—moves back and forth very rapidly. This vibration
creates pressure waves in the air that we hear as sound.

Cone

Frame

Fixed
magnet Coil

Terminals

Sound waves

Figure 2-5: A loudspeaker

To make a particular sound, the speaker cone needs
to move back and forth a certain number of times per sec-
ond. The number of times per second the speaker moves
is its frequency, measured in hertz (shortened to Hz). The
higher the frequency, the higher the pitch of the sound. A
frequency of 262 Hz corresponds to middle C on a piano.
The C an octave higher has a frequency of 524 Hz, or double
middle C. In music, when you go up an octave, you double
the frequency.

The micro:bit controls the current and therefore the fre-
quency by turning pin 0 on and off very rapidly. When pin 0 is
off, it has an output voltage of 0V, and when it is on, it has a
voltage of 3V. If you were to draw a chart of the output voltage
against time, it would look like Figure 2-6.

For obvious reasons, this type of wave is called a square
wave. Since a micro:bit’s outputs can only ever be on or off, this
is the only kind of wave that we can generate from the micro:bit.

SuPER SoNIC 47

0V

3V

Time

Voltage

Figure 2-6: A square wave

When the micro:bit sends its signal to the amplified
speaker, the speaker takes the low current signal from the
micro:bit and increases the current to drive the speaker with
more power, making everything louder.

Now let’s experiment with making sounds.

Experiment 2: It Speaks!
The micro:bit’s MicroPython software has a really neat fea-
ture that allows you to make your micro:bit read out phrases.
In this experiment, we will try out this feature and have our
micro:bit talk to us.

Although the software that generates the speech was
designed for use with English, by experimenting with the
spelling, you should be able to make the library speak in
other languages.

This feature isn’t (at the time of writing) available through
the Blocks code, so we’ll be using MicroPython.

What You’ll Need
This project uses exactly the same hardware as Experiment 1.

Micro:bit

Speaker or headphones

Alligator clip cables

Construction
1. Connect the speaker using one of the methods shown in

Figures 2-1 to 2-4.

CHAPTER 248

2. This project uses the speech library, which is not available
in Blocks code, so this experiment code is for Python only.
Go to https://github.com/simonmonk/mbms/ and down-
load the Experiment_02.py file. You’ll also find code for the
other projects and instructions for downloading and using
the book’s examples on the GitHub page. Flash the pro-
gram onto your micro:bit.

3. once the micro:bit has been successfully programmed,
press button A on the micro:bit. You should hear a message
being spoken through your speaker or headphones. The Mad
Scientist likes to hear this voice as it’s a reminder of their
dear old friend Professor Hawkins, who alas is no longer
with us.

Code
The MicroPython code for the experiment is listed here:

from microbit import *
import speech

while True:
 if button_a.was_pressed():
 speech.say("Mad Scientists love micro bits")

Aside from importing the speech library, getting the
micro:bit to speak is as simple as putting some text for it to
say in the say function.

The speech library is quite sophisticated—you can even
use it to vary the pitch to make your micro:bit sing! You can
find out all about the library at https://microbit- micropython
.readthedocs.io/en/latest/tutorials/speech.html.

Project: Musical DoorBell
Difficulty: Easy

The Mad Scientist is particularly partial to a musical doorbell.
In fact, you will not be surprised to hear that one of the scien-
tist’s favorite tunes is “Imperial March” from Star Wars.

In Chapter 10, we will revisit this project, adding a second
micro:bit that will make the doorbell work wirelessly.

https://github.com/simonmonk/mbms/
https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html
https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html

SuPER SoNIC 49

This project (shown in Figure 2-7) is a variation on Exper-
iment 1, except that instead of playing a single tone when a
button is pressed, the doorbell will play tunes. We’ll have but-
ton A play one tune and button B play another. You can see
a short video of the project in action here: https://youtu.be/
xmLupw4PxYQ/.

Figure 2-7: The musical doorbell project

Giving the visitor two tunes to choose from allows them
to indicate the level of urgency of their visit. Then if the Mad
Scientist is busy, they can just ignore the person at the door!

What You’ll Need
For this project, you will need the following items:

Micro:bit To be the controller for this project and pro-
vide two buttons to press
3 × Alligator clip cables To connect the micro:bit to
the speaker (Longer cables will make this easier)
USB power adapter or 3V battery pack with power
switch To power the micro:bit and speaker
Speaker To play the doorbell tune (I recommend the
Monk Makes Speaker for micro:bit)
Adhesive putty or self- adhesive pads To attach the
micro:bit to the door frame and the speaker to the inside
of the door frame

https://youtu.be/xmLupw4PxYQ/
https://youtu.be/xmLupw4PxYQ/

CHAPTER 250

If you use batteries for this project, it’s a good idea to use
a battery box with a power switch so that when not in use, the
doorbell can be switched off to save the batteries. otherwise,
the batteries will be exhausted after only a day or so of use. A
uSB power supply offers a longer- term solution that can be left
on all the time.

Construction
When building a new project, it’s always worth constructing
and testing it at your desk before you fit it into place where it
will be used.

1. Connect the speaker to the micro:bit using the three alli-
gator cables, as shown in Figure 2-7.

It’s a good idea to use color- coding for your cables,
with black for GND, red for 3V, and any other color for the
audio connection from pin 0 of the micro:bit. using differ-
ent colors will help you keep track of the connections.

2. Go to https://github.com/simonmonk/mbms/ to access
the book’s code repository and click the link for Musical
Doorbell. once the program has opened, click Download
and then copy the hex file onto your micro:bit. If you get

https://github.com/simonmonk/mbms/

SuPER SoNIC 51

stuck on this, head back to Chapter 1, where we discuss
the process of getting programs onto your micro:bit in full.
If you prefer to use Python, download the code from the
same website, along with instructions for downloading and
using the book’s examples. The Python file for this experi-
ment is ch_02_Doorbell.py.

3. once the micro:bit has been successfully programmed,
press button A on the micro:bit and you should hear a
tune playing (Scott Joplin’s “The Entertainer”). Now press
button B and you will hear Frédéric Chopin’s “Funeral
March.”

4. once you have everything working, disconnect the micro:bit
from your computer and plug it into your uSB power adapter
or battery box. Test it out again to make sure you’ve got it
working. Then fix the micro:bit part of the project onto one
side of your door and the speaker side of the project to the
other side of the door. There are a few things to note here:

Firstly, sticking things to walls, even with adhesive
putty, can make a mess, so make sure you get permis-
sion if you need to. This is especially true if you are using
sticky pads, as these can attach quite permanently to
paint.

Secondly, the alligator clips will need to pass from
one side of the door to the other in such a way that they
don’t get too pinched when the door closes. So work out
where they need to go before you start sticking anything
down. In Chapter 10, we will make another version of
this project that uses a second micro:bit to provide a
wireless link.

Finally, if you are using a uSB power adapter, you
will need a power outlet that’s close enough for the uSB
power adapter to reach your micro:bit.

Code
Now let’s talk through the code for the project.

CHAPTER 252

Blocks Code
Here’s the Blocks code.

The code is similar to that of Experiment 1, with a few
differences. First, we have two stacks of code: one for button A
and one for button B. Second, we choose once from the repeating
menu, because we want the melody to play only once.

Third, we use the start melody block to play a whole
sequence of notes rather than just a single note. Notice that
these tunes are already available in the blocks—you just need
to select them from the menu!

MicroPython Code
Here is the MicroPython version of the program:

from microbit import *
import music

while True:
 if button_a.was_pressed():
 music.play(music.ENTERTAINER)
 elif button_b.was_pressed():
 music.play(music.FUNERAL)

This works exactly the same as the Blocks code. The music
.play method is equivalent to the start melody block, and we use
if statements to check which button was pressed. The if state-
ments allow button A and button B to play different tunes.

SuPER SoNIC 53

The same predefined tunes are available to play in both
Blocks and MicroPython code.

Things to Try
Picking from a selection of predefined tunes is all very well,
but the Mad Scientist may have particular tastes in music.
They may want to compose their own tunes!

If you are using Blocks code, you can make your own tune
by creating a list of play tone blocks, like the example shown
here. You fill out the notes you want played, and each note is
played in turn.

So if you know all the notes for a particular tune, you can
create it like this. You’ll also need to specify how long each
note needs to play. You may have to experiment a bit before
you get your music to sound just the way you want.

Now let’s see how to create a tune in MicroPython:

from microbit import *
import music

notes = ['A4:4', 'A', 'A', 'F:2', 'C5:2', 'A4:4', 'F:2', 'C5:2',
 'A4:4']

while True:
 if button_a.was_pressed():
 music.play(notes)

The music library for MicroPython takes care of playing
whole tunes by letting you use a special notation to write
your own melodies. Each note is made up of a string of char-
acters (see Chapter 1 for more information on strings). The

CHAPTER 254

first character of the string is the note name (a letter A to
G). Next comes an octave number—middle C is in octave
number 4, so you will probably want to restrict your tune
to around octaves 3, 4, and 5. The octave number is optional,
and if you don’t give it, Python will assume you want the
first octave.

once you specify an octave number, the music library
will assume that octave applies to all following notes until
you specify a different octave number.

Next, you can optionally put a colon followed by a dura-
tion. The duration is measured in quarter- notes. For example,
to play middle C for a half- note, you would write C4:2.

To string together several notes, you have to create a list.
So far we’ve used variables that hold only a single element. A
list is like a variable that can hold multiple elements, and you
can access and use each element independently. To indicate that
the notes variable contains a list of values, rather than just a
single value, you’ll separate the array values by commas and
enclose the whole thing between [and].

In our array, each element is a note string. To play the
whole sequence of notes, you use the play function, providing it
with the list of notes to play. This example plays the opening
few notes from the Star Wars “Imperial March.”

Here, you see we import the usual microbit library, as
well as the music library. We save our tune in a variable called
notes. Then we make another while True: loop so that the code
keeps running and checking whether the button was pressed.
We tell the program that if button A is pressed, it should play
the notes variable.

Project: Shout- o-meter
Difficulty: Easy

The Mad Scientist likes to measure things. To that end, this
project makes a simple sound meter that indicates the volume
of a noise. Then the scientist can tell the neighbors off for
making too much noise—and prove they really are.

SuPER SoNIC 55

What You’ll Need
For this project, you need a microphone to pick up sounds so
you can measure their volume. I’m going to use the microphone
built into the Monk Makes Sensor, which has a bunch of sen-
sors. The sound’s volume then appears on the micro:bit’s LED
display. The louder the sound, the more LEDs will light up.

For this project, you will need the following items:

Micro:bit To be the controller for this project and pro-
vide two buttons to press
3 × Alligator clip cables To connect the micro:bit to
the speaker (Longer cables will make this easier)
Any micro:bit power source Can be the uSB com-
puter cable or a battery box
Monk Makes Sensor for micro:bit To supply a
microphone

Construction
1. Connect the sensor board to the micro:bit using the three alli-

gator clips, as shown in Figure 2-8. You need to connect 3V on
the sensor to 3V on the micro:bit, GND to GND, and the hole
with the microphone picture to pin 0 on the micro:bit.

It’s a good idea to stick to the color- coding of the cables,
with black for GND, red for 3V, and any other color for the
microphone connection from pin 0 of the micro:bit.

Figure 2-8: The Shout- o-meter project

CHAPTER 256

2. Go to https://github.com/simonmonk/mbms/ to access
the book’s code repository and click the link for Shout-O-
Meter. once the program has opened, click Download
and then copy the hex file onto your micro:bit. If you get
stuck on this, head back to Chapter 1, where we discuss
in detail how to get programs onto your micro:bit.

If you prefer to use Python, then download the code
from the same website, along with instructions for down-
loading and using the book’s examples. The Python file for
this experiment is ch_2_Shoutometer.py.

3. once you’ve programmed the micro:bit, try whistling near
the microphone (Figure 2-9) and notice how the LEDs
jump in response to the sound level. You can also try tap-
ping the microphone. You can see a short video of the
project in action here: https://youtu.be/6pGDSHmfFng/.

Microphone

Figure 2-9: The Monk Makes Sensor for
micro:bit microphone

Code
The Blocks version of this code is able to make use of the built-
 in plot bar graph of block, whereas the MicroPython version is
more complicated because we have to implement our own ver-
sion of this feature.

https://github.com/simonmonk/mbms/
https://youtu.be/6pGDSHmfFng/

SuPER SoNIC 57

Blocks Code
The Blocks language includes a useful block called plot bar
graph of that makes the code for displaying the sound level
really easy.

We put a forever block in, so the code inside is constantly
running. Then we add the plot bar graph of block, which will
display the loudness from the microphone.

As you can see, the analog value read from pin 0 of the
micro:bit has 511 subtracted from it before being passed to
plot bar graph of with a maximum value of up to set to 512.
The reason for this bit of math is discussed in “How It Works:
Microphone output” on page 59.

Getting the right blocks assembled can be tricky, espe-
cially when it comes to math. Fortunately, the editor allows
you to freely move blocks around, so if they are not in the right
place to give you the results you want, you can just drag them
to where they should be. See Chapter 1 for more information
on editing code.

MicroPython Code
The MicroPython version of the code is a little more complicated
than the Blocks code. MicroPython does not have a built- in bar
graph display, so we have to write our own. The plot bar graph
of block provides a nice, smooth display, despite rapidly chang-
ing data. To get the same result in MicroPython, I had to add
code to read the maximum sound level from 10 samples.

CHAPTER 258

from microbit import *

def sound_level():
 max_level = 0
 for i in range(0, 10):
 sound_level = (pin0.read_analog() - 511) / 100
 if sound_level > max_level:
 max_level = sound_level
 return max_level

def bargraph(a):
 display.clear()
 for y in range(0, 5):
 if a > y:
 for x in range(0, 5):
 display.set_pixel(x, 4-y, 9)

while True:
 bargraph(sound_level())
 sleep(10)

We use the sound_level function and make a for loop to
take 10 samples of sound. Each sample value is (as with the
Blocks version of the code) the analog value with 511 subtracted
from it. However in this case, to scale down the number of rows
to be lit to 0 to 4, we divide the resulting value by 100. We then
compare the sound level stored in the variable sound_level to
the variable max_level and, if it is greater, max_level is changed
to be the sound_level. When all 10 samples have been taken,
the largest one will be in max_level, and this value is returned
by the function.

The bargraph function takes a value, represented by a, to
display. The higher the value, the more LEDs will be lit, indi-
cating a louder noise. This value should be between 0 and 4.
However, if it is greater than 4, it doesn’t matter—all the LEDs
in the display will turn on, but nothing else will happen. The
function works by looping over each row of the display, and, if
the value of a is greater than the row number, every LED on
that row is illuminated by the inner for loop that asks whether
x is in the range of 0 to 4.

All the main while loop has to do is call the function
bargraph, supplying it with the sound level returned by the
function sound_level.

SuPER SoNIC 59

How It Works: Microphone Output
Figure 2-10 shows a graph of the output of the microphone
when it is detecting sound. Voltage is on the vertical axis, and
time in on the horizontal axis.

Figure 2-10: A sample of sound

As you can see from the left- hand side of the plot, before
the sound starts, the output voltage from the sensor is level
at about 1.5V. When the sound starts, the voltage oscillates
above and below this 1.5V value as the microphone picks up
the pressure waves of the sound. A reading of 1.5V on the
micro:bit gives an analog value of 511. This is why we subtract
511 from the reading before displaying it on the micro:bit; oth-
erwise, half the LEDs would be on during silence.

Summary
In this chapter, the Mad Scientist explored the world of sound,
both by producing music and speech from the micro:bit and
by detecting sound using a microphone. We have started our
exploration of the micro:bit with a couple of easy projects.

In the next chapter, we will take a look at light. We’ll
measure light with a special sensor and use the micro:bit’s
LED display. Then we’ll tackle a large project, using the multi-
colored NeoPixel display and combining light with sound to
make a light- controlled musical instrument. After that, we’ll
move on to other, even more challenging projects.

