THE MANGA GUIDE™ TO

LINEAR ALGEBRA

SHIN TAKAHASHI
IROHA INOUE
TREND-PRO CO., LTD.

COMICS INSIDE!
INDEX

SPECIAL CHARACTERS
AND NUMBERS
3-D projections of linear
transformations, 185
θ (theta), 180

A
addition
with matrices, 70
with vectors, 125
axis, expressing with
vectors, 127

B
basis, 140–148, 156–158
binomial coefficients, 60

c
co-domain, 39, 45
cofactor matrices, 110
cofactors, calculating
inverse matrices
using, 88, 108–111
column vectors, 126
combinations, 55–60
complex numbers, 25
computer graphics
systems, linear
transformations
used by, 184
conventional linear
transformations, 184
coordinates, 161–162
Cramer’s rule, 111–112

d
dependence, linear, 135,
138–139, 143
determinants
calculating, 96–105,
111–112
overview, 95
diagonalization, multiplicity
and, 224–229
diagonalizing matrices,
221, 225
diagonal matrices, 80–81
dimensions, 149–162
dimension theorem
for linear
transformations, 189–192
domain, 39, 44–45

e
eigenbasis, 229
eigenvalues
calculating, 216–218
finding pth power of n×n
matrix, 219–221,
224–229
overview, 210–215
relation of linear
algebra to, 24
eigenvectors
calculating, 216–218
finding pth power of n×n
matrix, 219–221,
224–229
overview, 210–215
relation of linear
algebra to, 24
elementary matrices, 196

elements
in matrices, 67
in sets, 30, 32
equations, writing as
matrices, 69
equivalence, 29

F
functions
defined, 39
domain and range, 44–45
and images, 40–43
inverse, 48–49
linear transformations, 50–61
onto and one-to-one, 46–47
overview, 35–39
f(x), 40–43

G
Gaussian elimination,
88–89, 91, 108
geometric interpretation,
of vectors, 127–130
graphs, of vectors, 144

I
i (imaginary unit), 25–26
identity matrices, 82–84, 92
images
and functions, 40–44
overview, 174, 189–192
imaginary numbers, 25
imaginary unit (i), 25–26
implication, 27–28
independence, linear, 132–139, 143, 146–147
integers, 25
inverse functions, 48–49
inverse matrices
 calculating using Gaussian elimination, 88–94
 calculating using cofactors, 108–111
 overview, 86–87
invertible matrices, 94
irrational numbers, 25

K
 kernel, 189–192
L
 linear algebra, overview, 9–20
 linear dependence, 135, 138–139, 143
 linear independence, 132–139, 143, 146–147
 linear map, 167
 linear operation, 167
 linear spans, 154–155
 linear systems, solving with Cramer’s rule, 111–112
 linear transformations
 3-D projections of, 185
 applications of, 173–177
 dimension theorem for, 189–192
 functions and, 50–61
 overview, 166–173
 rank, 193–203
 relation of linear algebra to, 24
 relationship with matrices, 168, 203
 rotation, 180–181
 scaling, 179
 translation, 182–184
 lower triangular matrices, 79
M
 main diagonal
 diagonal matrices and, 80
 identity matrices and, 82
 overview, 67
 symmetric matrices
 and, 79
 triangular matrices
 and, 79
 matrices
 calculations with, 70–76
 determinants, 95–105, 111–112
 diagonal, 80–81
 diagonalizable, 225–227
 eigenvalues and eigenvectors, 215
 identity, 82–84
 inverse
 calculating using Gaussian elimination, 88–94
 calculating using cofactors, 108–111
 overview, 86–87
 lower triangular, 79
 multiplication with, 72–76
 overview, 62–69
 rank of, 196–203
 relation of linear algebra to, 24
 relationship with linear transformations, 203
 symmetric, 79
 transpose, 78
 upper triangular, 79
 writing systems of equations as, 69
 zero, 77
multiplicity, and diagonalization, 224–229
multiplication
 with diagonal matrices, 80–81
 with identity matrices, 82–83
 with matrices, 72–76
 with vectors, 125
N
 natural order, 103
 non-diagonalizable matrices, 227–229
 number systems, 25–26
O
 objects, in sets, 30
 one-dimensional dependence, 135, 138–139, 143
 one-dimensional independence, 132–139, 143, 146–147
 one-to-one functions, 46–47
 onto functions, 46–47
P
 permutations, 55–60
 perspective projection, 185
 planes, 128
 points, 127
 polynomial roots, 224
 propositions, 27
R
 range, 44–45
 rank
 of matrices, calculating, 196–203
 overview, 193–195
 rational numbers, 25
 real numbers, 25
 \mathbb{R}^n, 126
rotating linear transformations, 180–181, 184
row vectors, 126
rules
 of determinants, 101
 functions as, 39
S
Sarrus' rule, 98
scalar multiplication
 with matrices, 72
 with vectors, 125
scaling linear transformations, 179, 184
set theory
 sets, 30–31
 set symbols, 32
 subsets, 33–34
square matrices
 multiplying, 75
 overview, 67
straight lines, 127
subscripts, 66
subsets, 33–34
subspaces, 150–155
subtraction
 with matrices, 71
 with vectors, 125
symbols
 for equivalence, 29
 for functions, 39
 \(f(x) \), 40–43
 for imaginary units, 25–26
 for inverse functions, 49
 for propositions, 28
 of sets, 32
 for subsets, 33
 for transpose matrices, 78
 symmetric matrices, 79
 systems of equations,
 writing as matrices, 69
T
target set, 39
term indexes, 101
theta (\(\theta \)), 180
3-D projections of linear transformations, 185
transformations, linear. See linear transformations
translating linear transformations, 182–184
transpose matrices, 78
triangular matrices, 79
U
upper triangular matrices, 79
V
vectors
 basis, 140–148
 calculating, 125–126
 dimensions of, 149–162
 geometric interpretation of, 127–130
 linear independence, 132–139
 overview, 116–124
 relation of linear algebra to, 24
 vector space, 129
Z
zero matrices, 77