
10
C o m m u n i C at i n g w i t h

o t h e r S u r v i v o r S

In Chapter 1, we discussed the pros
and cons of teaming up with other

humans when zombies walk the Earth.
Associating with other people can certainly

be worthwhile: you can protect each other, share
knowledge, pool resources, and so on. Of course,
they can also take your stuff and put you between themselves and the
oncoming zombies. If you decide to take the risk and reach out to your fel-
low life forms, then build the projects in this chapter.

First, we’ll build a beacon to broadcast a voice signal that can be heard
on an FM radio, so any survivors scanning the airwaves can hear your mes-
sage, whether that’s “Stay away!” or “Help, I’m trapped on the roof of a shop-
ping mall!” After that, you’ll also build a Morse code flasher that will blink
out any message you care to translate into dots and dashes.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

182 Chapter 10

Of course, if you want to be the one scanning frequency bands, this
chapter also explains how to hack a radio receiver to search for a signal.
Then, you can lurk silently while you decide whether what’s out there is
worth broadcasting to (see Figure 10-1).

Figure 10-1: Zombies like the radio too.

Project 17: A Raspberry P i Radio Transmit ter Beacon
The Raspberry Pi is a versatile device that can, given the right software, act
as an FM radio transmitter. The only extra hardware you’ll need is a length
of wire to act as an antenna.

What You Will Need
This is another Raspberry Pi project, so you will need to have a working
Raspberry Pi system complete with keyboard, mouse, and screen as described
in Chapter 5. Once the program that transmits the radio signal is up and run-
ning, you can turn off the screen to save power if you wish.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 183

To build this radio transmitter, you’ll need the following parts:

Items Notes Source

 Raspberry Pi Raspberry Pi 2, Model B or B+ Adafruit (2358),
Fry’s (8258726)

 Jumper wire Female-to-female jumper wire Adafruit (826)

 Wire for the
antenna

About 3 feet (1 m) of wire

Any wire will do for the transmitter; just check your box of scavenged
hookup wire for something that will fit into the end of the female-to-female
jumper wire.

You could add the radio transmitter to your existing Raspberry Pi setup.
However, for maximum transmission range, you’ll want to put the transmit-
ter somewhere high up, so I recommend getting a second Pi.

The length of the jumper wire doesn’t matter; it just allows an easy con-
nection between the Raspberry Pi GPIO pin and the antenna wire. The wire
to use for the rest of the antenna should be the right size to poke into one
end of the female-to-female jumper wire and stay there. You might need to
put a kink in the antenna wire so that it stays in place.

radio tranSmitter LegaL ity
If you’re reading this after the zombie apocalypse, there will be
no legal problems with building a transmitter because there won’t
be any government to enforce the regulations. If, however, you are
building in preparation, then the legality of the transmitter in this
project is covered by the same legislation as FM transmitters
designed to be connected to an MP3 player for car audio.

These transmitters are legal in the United States if the effec-
tive range is 200 feet (60 m) or less. If you use a full-length
antenna, this transmitter will have a longer range than that, so
to stay within the law, use a small antenna of about 3 or 4 inches
(7 to 10 cm).

Regulation of the airwaves is necessary so the frequencies used
by emergency services stay clear, but this transmitter uses only
the public broadcast FM wave band. The worst that can happen is one
of your neighbors receives your broadcast instead of their favorite
radio station.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

184 Chapter 10

Construction
To build your transmitter, all you need to do is plug one end of the jumper
wire onto GPIO pin 4 of the Raspberry Pi (Figure 10-2), then plug the
antenna wire into the other end of the jumper wire and fix the other end
of the antenna to a high spot so that the antenna is pulled up vertically.

A B
Figure 10-2: Attaching the antenna

You will get the longest transmission range if you place the whole
Raspberry Pi up high. If you have a watchtower, this would be ideal.

It does not matter if the antenna wire is not very straight. You may find
that some electrical tape wrapped around the junction of the antenna wire
and the jumper wire will prevent the antenna from becoming detached.
Once you’ve strengthened the antenna, you’ve built your radio transmitter
beacon!

Software
I wish I could claim credit for the wonderful piece of software you’ll use
in this project, but as it was developed by those clever folk at the Imperial
College Robotics Society, I can’t. You can find out all about their project at
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an
_FM_Transmitter.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

Communicating with Other Survivors 185

The software uses a sound file to oscillate GPIO pin 4 in just the right
way to generate an FM carrier wave and signal (see the box on frequency
modulation).

To install the software, start an LXTerminal session on your Raspberry
Pi and type the following commands:

$ mkdir pifm
$ cd pifm
$ wget http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
$ tar -xzf Pifm.tar.gz

These commands create a directory ready to install the software, down-
load the software using the wget utility, and then uncompress the down-
loaded file into the newly created directory.

Using the FM Transmitter
To test out the FM transmitter, you need an FM receiver (see “Project 18:
Arduino FM Radio Frequency Hopper” on page 188). You also need to find
an unused frequency, or at least a frequency with only a faint signal. Of
course, this won’t be a problem following the apocalypse, but it’s more of a
challenge with the crowded preapocalypse airwaves. Use your FM receiver
to find a quiet part of the spectrum and make a note of the frequency.

The software you installed includes a sound sample of the Star Wars theme
for testing the transmitter before you record your own, more appropriate
message—although the music is not completely inappropriate to accompany
humanity’s great battle to save itself.

In the LXTerminal, issue the following command to play the tune over
your transmitter:

$ sudo ./pifm sound.wav 103.0

In place of 103.0, substitute the frequency that your radio receiver is
tuned to.

recording a message
To record a message, you’ll need a laptop and some sound-recording or editing
software. I recommend Audacity, which is available free for Windows, OS X,
and Linux from http://audacityteam.org/.

Fiction and history both tell us that when law and order disintegrate,
bad behavior often follows. So think long and hard about what you want to
say in your message. Who knows what gun-toting, supply-stealing outlaws

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

http://audacityteam.org/

186 Chapter 10

are lurking around the corner? You’ll probably want to direct new arrivals
somewhere you can observe them before lowering your defenses, so bear this
in mind when recording your broadcast.

The pifm software requires you to record your message with the sample
rate set at 16 bit 44.1kHz and then export the message as a WAV file. In
the software, change sound.wav to the name of your new sound file, say
my_message.wav.

FrequenCy moduLation
Frequency modulation, or FM as it is nearly always called, is a
way of encoding a signal (in this case a low-frequency sound sig-
nal) on a much higher carrier frequency. The sound signal nudges
the carrier frequency higher or lower than the carrier frequency,
depending on the level of your message signal’s waveform.

Figure 10-3 shows two cycles of the message signal (solid line)
superimposed on the much higher frequency carrier to create the
broadcast signal (dotted line), whose frequency changes as your
message signal changes.

Broadcast Signal
Your Message Signal

Time

Si
gn

al

1.5

1

0.5

0

-0.5

-1

Figure 10-3: Frequency modulation

When the signal is at its maximum, the peaks of the dotted
broadcast signal are closest together. That means the frequency is
higher than average. At the bottom of the waveform, when the sig-
nal has its minimum value, the broadcast signal peaks are farthest
apart (the frequency is lower than average).

In this way, the low-frequency sound wave is encoded onto the
high-frequency carrier wave. When this signal gets to an FM radio
receiver, the circuitry in the receiver extracts the original low-
frequency audio from the carrier signal.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 187

running the transmit ter automatical ly
To maximize the chance of other survivors discovering your message,
repeat this broadcast around the clock. You can configure the Raspberry Pi
to do this for you automatically using a Linux tool called crontab. The crontab
utility lets you schedule programs to run at certain times of day.

Enter the following command into the LXTerminal:

$ sudo crontab -e

This will open a configuration file with the nano editor, as shown in
Figure 10-4.

Figure 10-4: scheduling your broadcasts

Scroll down to the end of the file and add the following line:

*/3 * * * * /home/pi/pifm/pifm /home/pi/pifm/sound.wav 101.0

The first part of the line (*/3) schedules the transmission to run every
3 minutes, 24 hours a day, 7 days a week. If you use a different sound file or
frequency, you need to replace sound.wav with your filename and enter your
chosen frequency. If your message is longer than 3 minutes, change */3 to the
number of minutes you need it to be.

You only need to do this configuration once; the settings will stick even
if the Pi is rebooted.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

188 Chapter 10

Project 18 : Arduino FM Radio Frequency Hopper
After the zombie apocalypse strikes, your chances of survival will be increased
by group living—that is, assuming no bite victims come inside and turn into
zombies. Always be sure that everyone gets checked for zombie-infected
wounds before you grant entry!

You’ll inevitably need to sleep or go on supply runs, and without someone
to watch your back you’ll be vulnerable. (Not to mention the slow descent into
insanity you’ll suffer from lack of human contact—and you thought zombies
were crazy.) Therefore, you’ll likely benefit from having a few companions
around. Other groups of survivors may already be trying to make contact
by broadcasting their own radio messages, as we now are. In fact, another
group might have bought or salvaged this book and made the FM transmit-
ter of Project 17. To find them, you just need to be able to pick up their
transmission.

This project (Figure 10-5) takes a cheap FM receiver and hacks it so
that it automatically scans the FM band for the next station. If someone
has started transmitting on FM, creating a station instead of the hiss of
empty airwaves, you will hear their broadcast. An Arduino simulates the
pressing of the tune button on the radio receiver.

Figure 10-5: FM radio frequency hopper

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 189

What You Will Need
To make this project, you will need the following parts:

Items Notes Source

 Arduino Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 FM radio Simple low-cost FM
headphone radio

Dollar Store (or
equivalently named
establishment in your
country’s currency)

 Powered speaker Electronics store

 Audio lead
(aux lead)

To connect the radio to
the powered speaker

 Red LEDs 2 red LEDs Adafruit (297)

 Barrel jack plug DC power jack with flying
leads, 12V cigarette lighter
adapter, or 5V USB adaptor
and lead

Adafruit (80), eBay

 Right-angle
header pins

12-way right-angle
header pins

eBay

We are using right-angle pins rather than straight header pins as right-
angle pins make it a little easier to solder wires and component leads to this
project.

Look for an FM radio that has a Tune button that moves from one sta-
tion to the next and a Reset button that starts from the beginning of the FM
wave band. The radio I used cost less than $2, including in-ear headphones.

The Arduino and speakers both require power. Although I have suggested
using the barrel jack, you could just as easily use the USB port to power the
Arduino. By now, you should be used to figuring out the most convenient
way to power low-voltage devices from a 12V battery.

Construction
This project assumes the radio uses an SC1088 integrated circuit. This
extremely low-cost chip is used in most very cheap radios, which seem to
use the reference design specified in the datasheet for the chip. (Just search
for “SC1088 datasheet” online; you should turn up a PDF in the first few
results.) The wiring diagram is shown in Figure 10-6. It shows the Arduino
being powered from the DC jack, but it could equally well be powered by
the USB port.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

190 Chapter 10

12V Car
Battery

+-

LED

+

LED

+
Powered USB

Speakers

Audio Lead

USB Lead

Arduino

3V

DC In

A0

A1

GND

5V USB
Adapter

SC1088
Radio

Battery +

Battery -

15

16

Figure 10-6: Radio scanner wiring diagram. The numbers 15 and
16 on the SC1088 radio indicate pin numbers of the chip.

The “tune” and “reset” pins of the SC1088 IC are designed to be con-
nected to momentary pushbuttons that short these pins to the chip’s 3V sup-
ply rail. You can see this configuration in the datasheet’s reference schematic.
When pushbuttons are not shorting the input pins to the supply rail, they are
pulled down to ground by variable resistances that are set inside the chip. We
can emulate the functionality of the pushbutton by connecting these pins to
~3V when we want to simulate a button push, and by leaving the pin float-
ing (not being driven high or low) when we want to simulate a button wait-
ing to be pressed. To make the pin float, we can set the Arduino pin that is
driving it to an input. When acting as an input, an I/O pin is said to be high
impedance, meaning that the pin looks like an open circuit to anything that
is attached to it.

To convert the 5V of the Arduino output pins to 3V, we place red LEDs
between the Arduino pin and the SC1088. These drop the 5V to about 3.3V,
the same level as supplied to the chip. The LEDs will also glow very slightly
when activated, letting you know when the project is in operation.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 191

Step 1 : d isassemble the radio
First, take the radio apart. How to do this will depend on how your radio
is put together. For mine, I just undid two screws and the whole thing came
apart. Figure 10-7a shows the radio in its original state and 10-7b after
removal of the case.

A

B

Figure 10-7: taking the radio apart

Take the button cell battery out because we are going to use the Arduino
to supply power to the radio.

Step 2 : identify the Connection Points
Now we need to identify the points where we need to attach wires and LED
leads. Figure 10-8 shows the underside of the radio’s circuit board.

Start by identifying the location of the Scan and Reset switches. The pins
for these will form a rectangle. The pins are connected in pairs, so both of
the solder points labeled A are actually connected, as are the pair of points
labeled B.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

192 Chapter 10

Negative Battery
Connection (C)

Positive Battery
Connection (D)

Scan Pins
(B)

Reset Pins
(A)

Figure 10-8: The radio PCB

The A connections are for the Reset button. If you follow the track on
the PCB, you will see that one of the A pins connects to pin 16 of the SC1088
(IC pins are numbered 1 to 16 counterclockwise, with a little dot on the IC
package next to pin 1).

Following the track from B, you can see that one pin connects to pin 15
of the SC1088. This is the connection that we will use to scan for the next
station.

If you’re finding it hard to see where the tracks run, use your multimeter
set to continuity mode to identify the pins. Press one probe to the IC pin you
want to find a connection for (15 or 16) and then try the different likely con-
nections on the switches with the other probe until the buzzer on the multi-
meter sounds.

Next, find the two connections needed to power the radio from the
Arduino, which correspond to the battery holder connections on the PCB.
The 3V batteries the radio takes have a negative central connection (C) and
positive connections to the outside frame of the battery holder (D).

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 193

Step 3 : at tach the header Strip
I have suggested a right-angle header strip here, because it’s easier to sol-
der the wires to, but regular header pins work almost as well. Break off a
length of 12 pins and attach them to the Arduino pins 3.3V through to A5
(Figure 10-9). One pin will sit between the two header sockets, uncon-
nected to anything.

Figure 10-9: The Arduino header pins

Step 4: L ink the radio to the arduino
Figure 10-10 shows the radio connected to the Arduino. Use short wires to
connect the 3.3V Arduino pin to the positive battery connection, point D,
that you identified earlier. Connect an Arduino GND connection (it doesn’t
matter which one) to point C, the negative battery connection. Connect the
positive (longer) lead of one LED to Arduino pin A0 and the negative lead of
that same LED to point B. Do the same with another LED to Arduino pin A1
and point A on the radio PCB.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

194 Chapter 10

+3V Supply

GND
Scan

Reset

Figure 10-10: The Arduino connected to the radio

Step 5 : Connect everything together
Finally, plug the powered speakers into the radio’s audio jack. You can test
this using the headphones first. The radio uses headphones or an audio lead
as an antenna, so you may get better results with a longer lead of a few feet
than with a very short lead.

Software
All the source code for this book is available from http://www.nostarch.com/
zombies/. See Appendix C for instructions on installing the Arduino sketch.

The Arduino sketch for this project is called Project_18_Scanner, and I’ll
walk you through it now.

The sketch starts by defining several constants:

const int scanPin = A0;
const int resetPin = A1;const int pulseLength = 1000;
const int period = 5000;
const int numStations = 5;

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

http://www.nostarch.com/zombies/
http://www.nostarch.com/zombies/

Communicating with Other Survivors 195

The scanPin and resetPin constants define the two Arduino pins we’ll
use, and pulseLength defines the length of the simulated button press. The
scan buttons needs to be pressed for a full 1,000 milliseconds (1 second) for
the radio to scan for the next station rather than simply move the frequency
up a step, though this can vary depending on your radio.

The constant period tells the Arduino an amount of time, in milliseconds,
to pause so you have time to register whether you are hearing a transmission
or just white noise.

Next, we define a single global variable:

int count = 0;

This variable, called count, is used to keep track of the number of scans to
make before resetting to the start of the FM band again.

The setup function initializes both pins as inputs (although as we shall
see, this sketch is unusual in that it changes the pin mode of the pins after
their first initialization).

void setup()
{
 pinMode(scanPin, INPUT);
 pinMode(resetPin, INPUT);
}

The loop function is where we actually scan for frequencies:

void loop()
{
 delay(period);
 pinMode(scanPin, OUTPUT);
 digitalWrite(scanPin, HIGH);
 delay(pulseLength);
 pinMode(scanPin, INPUT);
 count ++;
 if (count == numStations)
 {
 count = 0;
 pinMode(resetPin, OUTPUT);
 digitalWrite(resetPin, HIGH);
 delay(pulseLength);
 pinMode(resetPin, INPUT);
 }
}

First of all, the loop delays by the time specified in period. The function
then sends a pulse to the scan pin to begin scanning. When the pulse has
finished, the pin is set back as an input.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

196 Chapter 10

The count variable then increments, and when it has reached the maxi-
mum specified in numStations, a pulse is sent to the reset pin to start scanning
from the beginning of the FM band again. During testing, setting numStations
to 5 will allow you to check whether the project is working and finding dif-
ferent stations. However, after a zombie apocalypse, the airwaves should be
pretty empty, so you may want to reduce this number to just 1, as any signal
you happen across is bound to be transmitted by survivors (or perhaps smart
zombies). If you discover any automated transmissions you want to ignore,
like a distress beacon from your former boss or the murmurings of zombies
inexplicably learning the rudiments of human language, change numStations
to a value of one more than the number of stations you want to ignore.

Using the Radio Scanner
When you first turn everything on, you should hear static. After five seconds
or so, the scan LED will glow very dimly, and the radio will scan for its first
station. After five more seconds, it will move on to the next station, and so
on, until you identify a human friend. Remember: safety in numbers—not
hordes.

Project 19 : Arduino Morse Code Beacon
Morse code is a 19th-century invention that allows you to send messages using
a series of long or short pulses of light or sound. Each letter of the alphabet
is made up of dots and dashes, where a dot is a short pulse and a dash is a
long pulse (three times longer than a dot). For example, the letter z is repre-
sented as this:

z

 --..
And the word zombie would be this:

zombie

 --.. --- -- -… .. .
Morse code uses shorter sequences of dashes and dots for the more com-

monly used letters, so e, as the most common letter used in the English
language, is just a single dot. If you are interested, you can search online for
the complete Morse code, though the software in this project will translate
your message into Morse code for you. Take a look at the code for a table of
Morse codes.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 197

This Arduino-based project uses 12V LED lamps, like those you used
back in “Project 3: LED Lighting” on page 49, to flash a message to any
other survivors in visual range. It’s especially effective at night. Figure 10-11
shows the finished project.

Figure 10-11: A Morse code beacon

What You Will Need
To make this project, you will need the following parts:

Items Notes Source

 Arduino Arduino Uno R3 Adafruit, Fry’s
(7224833), Sparkfun

 Screwshield Adafruit (196)

 1 kΩ resistor Mouser (293-1k-RC)

 MOSFET FQP33N10 MOSFET Adafruit (355)

 MR16 LED lamps 12V 3W Hardware store

 MR16 lamp
sockets

Sockets with trailing leads Hardware store

 Terminal block 2-way terminal block Home Depot, Lowe’s,
Menards

 9V Arduino
battery lead

DC power jack with flying leads
or 12V cigarette lighter adapter

DC power supply

 Wire Bell cable (or other cable)

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

198 Chapter 10

It is best to use a fresh Arduino and screwshield for this project, both
because it will be situated away from your main setup and because your
screwshield from previous projects is probably pretty full by now. This
project will be powered by its own solar power supply and battery (refer to
“Project 1: Solar Recharging” on page 26).

I used three LED lights, but if you want more lamps, just add more in par-
allel. The transistor used to switch the lights is capable of switching up to 20W
of lighting but only with a heatsink, so your combined wattage should be kept
below 10W. If you made “Project 3: LED Lighting” on page 49, I would just
use the same LEDs.

Construction
The layout for the screwshield and wiring schematic are shown in
Figure 10-12.

1k
Ω

12V 5W Lamps

Figure 10-12: Screwshield layout and wiring schematic
for the Morse code beacon

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 199

Step 1 : assemble the Screwshield
Assemble the screwshield following the instructions in “Assembling a
Screwshield” on page 259.

Step 2 : Solder the Components onto the Screwshield
You only need to solder two components for this project: a resistor and metal
oxide semiconductor field effect transistor (MOSFET). MOSFETs are great for
switching fairly high-power loads quickly.

Solder the resistor and transistor in place according to the circuit sche-
matic. When soldering the transistor, make sure you place it so that the
metal tab faces to the right (Figure 10-12). When the components are soldered
into place, the assembly should like Figure 10-13.

Figure 10-13: The top of the screwshield

Step 3 : w ire the underside of the Screwshield
Once the components are secured in place, use their excess leads to make the
connections on the underside (Figure 10-14). Before soldering the resistor lead
that connects to pin 13 on the Arduino, add some insulation to avoid causing
short circuits with the 5V and GND tracks it crosses over.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

200 Chapter 10

Resistor leads

Transistor leads

Figure 10-14: the underside of the screwshield

Step 4: Connect the Lamps
If you want to keep this simple, you can just use a single LED lamp. For a
wider range of visibility, however, connect a few LED lamps and point them
in different directions (Figure 10-15).

Figure 10-15: The lamp assembly

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 201

In Figure 10-15, I’ve fixed three lamp sockets to a bit of wood and con-
nected all three 12V LED lamps to the terminal block. Lamps of this type
usually include a circuit that allows the wires to be connected any way
around, but if your modules have a polarity marked on them with a + and –,
you need to make sure all the + connections are connected to one terminal
of the terminal block and the – connections go to the other. The lamp holders
will have holes allowing them to be attached to the wood with screws.

Step 5 : F inal wiring
Use some bell cable or other wire to connect the lamp assembly to the X
and Vin terminals on the screwshield. Stranded wire is best, as it’s less liable
to break. Make this wire as long as you need it (but above 50 ft, or 15 m,
there might be some reduction in brightness): you may want to site the lamp
assembly high up outside, to make it easier for people to see your message,
while leaving the Arduino in the safety of your bunker. Remember to water-
proof the lamp assembly—sealing it in a transparent plastic bag will do the
trick.

To connect power to the Arduino, use either a cigarette lighter adapter or
a custom lead using alligator clips and a barrel jack plug with flying leads to
connect the Arduino to a 12V solar power supply or battery. Note that this
project requires 12V for the lamps, so you cannot use a 5V USB lead to power
the Arduino.

Software
All the source code for this book is available via http://www.nostarch.com/
zombies/. See Appendix C for instructions on installing the Arduino sketch.
The Arduino sketch for this project is called Project_19_Morse_Beacon.

The sketch uses the Ardiuno’s built-in EEPROM library. The Morse code
message is stored in EEPROM memory every time a change is made, meaning
that the beacon can remember the message even if power to the Arduino is
interrupted. The sketch also makes use of a library from the Arduino com-
munity called EEPROMAnything, which makes saving to and reading from
EEPROM easier. The code for EEPROMAnything is included in the down-
load for this project, so there is nothing to download separately.

First, we load both the official Arduino EEPROM library and
EEPROMAnything:

#include <EEPROM.h>
#include "EEPROMAnything.h"

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

http://www.nostarch.com/�zombies/
http://www.nostarch.com/�zombies/

202 Chapter 10

A number of constants are used to control the project:

const int ledPin = 13;
const int dotDelay = 100; // milliseconds
const int gapBetweenRepeats = 10; // seconds
const int maxMessageLen = 255;

The pin that controls the LEDs is specified in ledPin. The constant dotDelay
defines in milliseconds the duration of a dot flash. Dashes are always three
times the duration of a dot.

The constant gapBetweenRepeats specifies in seconds the time that will
elapse between each repetition of the message, and maxMessageLen specifies
the maximum length, in letters rather than dots and dashes, of the message.
A maximum size is specified because in Arduino code, you have to declare
the size of arrays.

Two global variables are used:

char message[maxMessageLen];
long lastFlashTime = 0;

The message variable will contain the text of the message to be flashed,
and lastFlashTime keeps track of when the message was last flashed, to allow
a break between the repeats.

Two global char arrays are used to contain the dot and dash sequences
for Morse code. The program will only flash characters that it knows how to
send, that is letters, digits, or a space character. All other characters in the mes-
sage are ignored.

char* letters[] = {
 ".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", // A-I
 ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", // J-R
 "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.." // S-Z
};

char* numbers[] = {"-----", ".----", "..---", "...--", "....-", ".....",
"-....", "--...", "---..", "----."};

The setup function sets the ledPin as an output and then starts serial
communication at Serial.begin:

void setup()
{
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Ready");
 EEPROM_readAnything(0, message);

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 203

 if (! isalnum(message[0]))
 {
 strcpy(message, "SOS");
 }
 flashMessage();
}

Serial communication is used to set a new message, either using the serial
monitor of the Arduino IDE or, as you will see in “Using the Morse Beacon” on
page 205, a terminal program running on a Raspberry Pi.

Every time the message is changed, it is saved in EEPROM, so during
the setup process, the sketch reads any stored message from EEPROM. If no
message has been set, the if statement in setup sets the default message to
“SOS.” Finally, at flashmessage, the setup function flashes the message for the
first time.

The loop function first checks whether a new message has been sent over
the serial connection:

void loop()
{
 if (Serial.available()) // Is there anything to be read from USB?
 {
 int n = Serial.readBytesUntil('\n', message, maxMessageLen-1);
 message[n] = '\0';
 EEPROM_writeAnything(0, message);
 Serial.println(message);
 flashMessage();
 }
 if (millis() > lastFlashTime + gapBetweenRepeats * 1000L)
 {
 flashMessage();
 }
}

Any new message is read into the message character array until the new-
line character (\n) is read. The null character '\0' is added to the end of
the message. This is the Arduino’s way of indicating the end of a string of
characters. Once the whole message has been read through, it is saved into
EEPROM (EEPROM_writeAnything), and then the new message begins flashing
immediately.

The remainder of the loop function checks whether enough time has
passed before it can repeat the message. This could be done more simply
using delay, but we would be unable to interrupt the loop if a new message
arrived during the delay.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

204 Chapter 10

The flashMessage function is the most complex function in the sketch.

void flashMessage()
{
 Serial.print("Sending: ");
 Serial.println(message);
 int i = 0;
 while (message[i] != '\0' && i < maxMessageLen)
 {
 if (Serial.available()) return; // new message
 char ch = message[i];
 i++;
 if (ch >= 'a' && ch <= 'z')
 {
 flashSequence(letters[ch - 'a']);
 }
 else if (ch >= 'A' && ch <= 'Z')
 {
 flashSequence(letters[ch - 'A']);
 }
 else if (ch >= '0' && ch <= '9')
 {
 flashSequence(numbers[ch - '0']);
 }
 else if (ch == ' ')
 {
 delay(dotDelay * 4); // gap between words
 }
 }
 lastFlashTime = millis();
}

The flashMessage function starts by echoing the message it is about to
send to reassure you that it is sending what you want it to. It then loops over
every character in the message. Before each character, it uses Serial.available
to check for a new message. If a new message has come in, the function stops
sending its message in order to receive the new message from your computer
or Raspberry Pi; then it begins sending the new message instead.

The flashMessage function determines whether the character is an upper-
case letter, a lowercase letter, a number, or the space character and then takes
the appropriate action.

If the character is a lowercase letter, the index position of the sequence
of dots and dashes held in the letters array is provided as a parameter to the
flashSequence function, which then flashes those dots and dashes. The other
options are handled in the same way.

Finally, when the whole message has been sent, the lastFlashTime variable
is set to the current time so the loop function can work out when it is time
to start flashing the message again.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 205

The work of flashing the sequence of dots and dashes for a particular
character is handled by the flashSequence function:

void flashSequence(char* sequence)
{
 int i = 0;
 while (sequence[i] != NULL)
 {
 flashDotOrDash(sequence[i]);
 i++;
 }
 delay(dotDelay * 3); // gap between letters
}

This loops over each dot or dash, calling flashDotOrDash:

void flashDotOrDash(char dotOrDash)
{
 digitalWrite(ledPin, HIGH);
 if (dotOrDash == '.')
 {
 delay(dotDelay);
 }
 else // must be a -
 {
 delay(dotDelay * 3);
 }
 digitalWrite(ledPin, LOW);
 delay(dotDelay); // gap between flashes
}

The flashDotOrDash function uses the appropriate delay period to flash a
dot or dash.

Using the Morse Beacon
Upload the sketch to your Arduino and power up the project. The default mes-
sage should start to flash. If it doesn’t, go back and check over all your wiring.
To change the message, attach your Arduino to your computer, open the serial
monitor on the Arduino IDE, and type in a new message (Figure 10-16).

Figure 10-16: Changing the message using the
serial monitor

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

206 Chapter 10

Here, the current message, “There are survivors here,” should change to
“Watch out zombies about” when the Send button is pressed.

If you prefer to use your Raspberry Pi to change the message, install
the terminal program screen (your Raspberry Pi will need an Internet
connection):

$ sudo apt-get install screen

Once screen is installed, connect the USB lead between your Raspberry Pi
and the Arduino and then enter the following command on your Raspberry Pi:

$ screen /dev/ttyACM0 9600

At this point, anything you type should be sent to the Arduino, and any
messages coming from the Arduino should be displayed. Figure 10-17 shows
the message being changed using screen. Note that the message will not appear
on the screen as you type it but only after you press enter.

Figure 10-17: Changing the message using the screen command

Once the message has been changed, the Arduino will remember it, so
you can unplug the Arduino to get ready for installation. Unplugging the
Arduino will quit the screen command by closing the serial connection to the
Raspberry Pi.

Now just attach your project to your desired location, preferably one
with 360-degree visibility, and start blinking your message. Figure 10-18
shows the project fixed to my zombie-proof shed.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

Communicating with Other Survivors 207

Figure 10-18: Installing the Morse beacon

If you want to conserve power, only use your beacon at night, when it is
most likely to be spotted. But beware: popular culture gives us mixed messages
on whether zombies are attracted to flashing lights. You may want to reinforce
your stronghold before sending out messages, just in case.

In Chapter 11, we will continue with the theme of communication.
For the final project of this book, we’ll build a pair of haptic communication
devices that will allow you and a fellow survivor to communicate silently,
without alerting zombies to your presence.

The Maker's Guide to the Zombie Apocalypse: Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi
© 2015 Simon Monk

