
5
S P E A K I N G A P P L I C A T I O N S

Now that you know how to make Python
talk and listen, we’ll create several real-world

applications that utilize those skills. But before
that, you’ll create a local package. Since you’ll

use the mysr and mysay local modules in every chapter
for the reminder of the book, you’ll create a Python
package to contain all local modules. This way, you don’t
need to copy and paste these modules to the folders of
individual chapters. This also helps keep the code con-
sistent throughout the book. You’ll learn how a Python
package works and how to create one yourself along
the way.

In the first application, you’ll build a Guess the Number game that
takes voice commands and talks back to you in a human voice.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

90 Chapter 5

You’ll then learn how to parse text to extract news summaries from
National Public Radio (NPR) and have Python read them out to you. You’ll
also build a script to extract information from Wikipedia based on your
voice inquiries and to speak the answers out.

Finally, you’ll learn how to traverse files in a folder with your voice, with
the aim of building your very own Alexa. You’ll be able to say to the script,
“Python, play Selena Gomez,” and a song by Selena Gomez that’s saved on
your computer will start playing.

As usual, you can download all the code for all the scripts from https://
www.nostarch.com/make-python-talk/. Before you begin, set up the folder
/mpt/ch05/ for this chapter.

NE W SKIL L S

•	 Learning how Python packages work

•	 Creating your self-made local Python package

•	 Parsing the source code of a news website to extract news summaries

•	 Extracting answers to your queries from Wikipedia and converting them to
voice

•	 Traversing files in a folder on your computer by using the os module

	Create Your Self-Made Local Python Package
In Chapter 3, you built a self-made local module mysr to contain all speech
recognition–related code. Whenever you need to use the speech-recognition
feature, you import voice_to_text() from the module. Similarly, you built
a self-made local module mysay in Chapter 4 to contain all text-to-speech-
related code. You import print_say() from the module whenever you use
the text-to-speech feature.

You’ll use these two self-made local modules in this chapter and other
chapters in this book. To make these modules work, you need to put the mod-
ule files (namely, mysr.py and mysay.py) in the same directory as the script that
uses these two modules. This means you’d potentially have to copy and paste
these files into the directory of almost every chapter in this book. You may
wonder: is there a more efficient way to do this?

The answer is yes, and that’s what Python packages are for.
Next, you’ll first learn what a Python package is and how it works. You’ll

then learn how to create your self-made local package. Finally, you’ll use a
Python script to test and import your package.

What’s a Python Package?
Many people think that Python modules and Python packages are the
same. They’re not.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 91

A Python module is a single file with the .py extension. In contrast, a
Python package is a collection of Python modules contained in a single
directory. The directory must have a file named __init__.py to distinguish
it from a directory that happens to have .py extension files in it.

I’ll guide you through the process of creating a local package
step-by-step.

Create Your Own Python Package
To create a local Python package, you need to create a separate directory
for it and place all related files into it. In this section, you’ll create a local
package to contain both our speech recognition and text-to-speech module
files—namely, mysr.py and mysay.py.

Create a Package Directory

First, you need to create a directory for the package.
In this book, you use a separate directory for each chapter. For example,

all Python scripts and related files in this chapter are placed in the directory
/mpt/ch05/. Since you are creating a package to be used for all chapters in
this book, you’ll create a directory parallel to all chapters. Specifically, you’ll
use the directory /mpt/mptpkg/, where mptpkg is the package name. The dia-
gram in Figure 5-1 explains the position of the package relative to the book
chapters.

.
appendixch6ch1

ch1

mptpkg

Figure 5-1: The position of the mptpkg package relative to the chapter folders

As you can see, the package directory is parallel to the chapter directo-
ries, which are all contained in the directory for the book, /mpt, as in Make
Python Talk.

Create Necessary Files for Your Package

Next, you need to create and place necessary files in the package.
First, copy and paste the two modules you created in Chapters 3 and 4,

mysr.py and mysay.py, in the package directory /mpt/mptpkg/. Do not make
any changes to the two files.

Then save the following script, __init__.py, in the package directory /mpt/
mptpkg/ (or you can download it from the book’s resources):

from .mysr import voice_to_text
from .mysay import print_say

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

92 Chapter 5

The purpose of this file is twofold: it imports voice_to_text() and
print_say() so you can use those functions at the package level, and it also
tells Python that the directory is a package, not a folder that happens to
have Python scripts in it.

Finally, save the following script, setup.py, in the book directory /mpt,
one level above the package directory /mpt/mptpkg/. The script is also avail-
able from the book’s resources.

from setuptools import setup
setup(name='mptpkg',
version='0.1',
description='Install local package for Make Python Talk',
author='Mark Liu',
author_email='mark.liu@uky.edu',
packages=['mptpkg'],
zip_safe=False)

The file provides information about the package, such as the package
name, author, version, descriptions, and so on.

You’ll learn how to install this local package on your computer next.

Install Your Package

Because you’ll modify the local package and add more features to it later in
the book, it’s better to install the package in editable mode.

Open your Anaconda prompt (Windows) or a terminal (Mac or Linux)
and activate your virtual environment for this book, chatting. Run the fol-
lowing command:

pip install -e path-to-mpt

Replace path-to-mpt with the actual directory path of /mpt. For example,
the book directory /mpt is C:\mpt on my office computer that runs the Windows
operating system, so I installed the local package using this command:

pip install -e C:\mpt

On my Linux machine, the path to the /mpt directory is /home/mark/
Desktop/mpt, so I installed the local package using this command:

pip install -e /home/mark/Desktop/mpt

The -e option tells the Python to install the package in editable mode
so that you can modify the package anytime you need to.

With that, the local package is installed on your computer.

Test Your Package
Now that you have installed your self-made local package, you’ll learn how
to import it.

You’ll write a Python script to test the package you just created.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 93

Let’s revisit the script repeat_me1.py from Chapter 4. Enter the follow-
ing lines of code in your Spyder editor and save it as repeat_me2.py in your
Chapter 5 directory /mpt/ch05/:

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

while True:
 print('Python is listening...')
 inp = voice_to_text()
 if inp == "stop listening":
 print_say(f'you just said {inp}; goodbye!')
 break
 else:
 print_say(f'you just said {inp}')
 continue

First, import the functions voice_to_text() and print_say() from the mptpkg
package directly. Recall that in the script __init__.py, you’ve already imported
the two functions from the modules .mysr and .mysay to the package. As a
result, here you can directly import the two functions from the package.

The rest of the script is the same as that in repeat_me1.py. It repeats what
you say. If you say, “Stop listening,” the script stops.

The following is an interaction with repeat_me2.py, with my voice input
in bold:

Python is listening...
you just said how are you
Python is listening...
you just said I am testing a python package
Python is listening...
you just said stop listening; goodbye!

As you can see, the script is working properly, which means you’ve suc-
cessfully imported functions from the local package.

More on Python Packages
Before you move on, I want to mention a couple of things about Python
packages.

First, you can add more modules to your package. Later in this book,
you’ll add more modules to the existing local package mptpkg. You’ll use
just one local package for the whole book. This will reduce the number of
directories and help organize your files.

Second, if you have an interesting package that you want to share with
the rest of the world, you can easily do so. You just need to add a few more
files, such as the license, a README file, and so on. For a tutorial on how
to distribute your Python packages, see, for example, the Python Packaging
Authority website, https://packaging.python.org/tutorials/packaging-projects/.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

https://packaging.python.org/tutorials/packaging-projects/

94 Chapter 5

Interactive Guess the Number Game
Guess the Number is a popular game in which one player writes down a num-
ber and asks the other player to guess it in a limited number of attempts.
After each guess, the first player tells whether the guess is correct, too high,
or too low.

Various versions of the game are available online and in books, and
we’ll look at our own version to guess a number between one and nine.
Start a new script and save it as guess_hs.py; the hs stands for hear and say.

Because the script is relatively long, I’ll break it into three parts and
explain them one by one. Listing 5-1 gives the first part.

1 import time
import sys

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

Print and announce the rules of the game in a human voice
2 print_say('''Think of an integer,
 bigger or equal to 1 but smaller or equal to 9,
 and write it on a piece of paper''')
print_say("You have 5 seconds to write your number down")
Wait for five seconds for you to write down the number
time.sleep(5)
print_say('''Now let's start. I will guess a number and you can say:
 too high, that is right, or too small''')
The script asks in a human voice whether the number is 5
print_say("Is it 5?")
The script is trying to get your response and save it as re1
Your response has to be 'too high', 'that is right', or 'too small'
3 while True:
 re1 = voice_to_text()
 print_say(f"You said {re1}")
 if re1 in ("too high", "that is right", "too small"):
 break
If you say "that is right", game over
 if re1 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
--snip--

Listing 5-1: Part 1 of the Guess the Number game

We start the script by importing needed modules 1. We import the time
module so we can pause the script for a period of time. We also import the
sys module to exit the script when it is finished.

As discussed in the previous section, we import voice_to_text() and
print_say() from the local package mptpkg to convert voice to text as well as
to print out and speak the text message.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 95

The script then speaks and prints out the rules of the game 2. Since
the instructions span several lines, we put them in triple quotation marks to
make them more readable.

N O T E 	 When you have text that spans multiple lines and you want to print it or convert it to
speech, use triple quotation marks; for example:

 print(''' Line 1 text,
 line 2 text,
 line 3 text''')

The script announces that you have five seconds to write down a num-
ber then pauses for five seconds by using sleep() to give you time to write
your number.

The script then begins to guess; it will ask in a human voice whether
the number is five. At 3, we start an infinite loop to take your voice input.
When you speak into the microphone, the computer converts your voice
input into a text string variable named re1. The script repeats what you said
back to you. Your response needs to be one of three phrases: “too high,”
“that is right,” or “too small.” If it isn’t, the script will keep asking you for
a response until it matches one of the phrases. This gives you a chance to
have a correct response before the script moves on to the next step.

If your response is “that is right,” the computer will say, “Yay, lucky me!”
and exit the script. We’ll enter the behavior for the response “too high”
next. Listing 5-2 shows the middle part of the guess_hs.py script.

--snip--
If you say "too high", the computer keeps guessing
elif re1 == "too high":
 # The computer guesses 3 the second round
 print_say("Is it 3?")
 # The computer is trying to get your response to the second guess
 while True:
 re2 = voice_to_text()
 print_say(f"You said {re2}")
 if re2 in ("too high", "that is right", "too small"):
 break
 # If the second guess is right, game over
 if re2 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
 # If the second guess is too small, the computer knows it's 4
 elif re2 == "too small":
 print_say("Yay, it is 4!")
 sys.exit
 # If the second guess is too high, the computer guesses the third time
 elif re2 == "too high":
 # The third guess is 1
 print_say("Is it 1?")
 # The computer is getting your response to the third guess
 while True:
 re3 = voice_to_text()
 print_say(f"You said {re3}")

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

96 Chapter 5

 if re3 in ("too high", "that is right", "too small"):
 break
 # If the third guess is too small, the computer knows it's 2
 if re3 == "too small":
 print_say("It is 2!")
 sys.exit
 # If the third guess is right, game over
 elif re3 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
--snip--

Listing 5-2: The “too high” behavior

If your response is “too high,” the computer will keep guessing, this
time a lower number. The second guess from the computer will be three
because guessing three reduces the number of attempts the computer
needs to find out the answer. The script will detect and catch your response
to the second guess.

Here are the options for your response to the second guess: If it’s “that
is right,” the computer will say “Yay, lucky me!” and exit the script. If it’s
“too small,” the computer will know that the number is four and say so. If
it’s “too high,” the computer will make a third guess of one.

Then, the computer captures your response to the third guess. If
your response is “too small,” the computer will know that the number is
two. If your response is “that is right,” the computer will say, “Yay, lucky
me!” and exit.

Now let’s look at the final section of guess_hs.py, which handles a “too
small” response to the first guess. Listing 5-3 shows the code.

--snip--
If you say "too small", the computer keeps guessing
elif re1 == "too small":
 # The computer guesses 7 the second round
 print_say("Is it 7?")
 # The computer is trying to get your response to the second guess
 while True:
 re2 = voice_to_text()
 print_say(f"You said {re2}")
 if re2 in ("too high", "that is right", "too small"):
 break
 # If the second guess is right, game over
 if re2 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit
 # If the second guess is too high, the computer knows it's 6
 elif re2 == "too high":
 print_say("Yay, it is 6!")
 sys.exit
 # If the second guess is too small, the computer guesses the third time
 elif re2 == "too small":
 # The third guess is 8

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 97

 print_say("Is it 8?")
 while True:
 re3 = voice_to_text ()
 print_say(f"You said {re3}")
 if re3 in ("too high", "that is right", "too small"):
 break
 # If the third guess is too small, the computer knows it's 9
 if re3 == "too small":
 print_say("It is 9!")
 sys.exit
 # If the third guess is right, game over
 elif re3 == "that is right":
 print_say("Yay, lucky me!")
 sys.exit

Listing 5-3: The “too small” behavior

The final section of the script is similar to the middle section. If you
tell the computer that the first guess of five is “too small,” the computer will
give you a second guess of seven. The script will then catch your response to
the second guess.

If you respond “that is right,” the computer will say, “Yay, lucky me!” and
exit the script. If you say “too high,” the computer will know that the number
is six. If your response is “too small,” the computer will make a third guess of
eight.

The computer then captures your response to the third guess. If your
response is “too small,” the computer will know that the number is nine. If
your response is “that is right,” the computer will say, “Yay, lucky me!” and
exit the script.

If you have a good internet connection in a fairly quiet environment,
you can have close-to-perfect communication with the computer. The inter-
net connection is important because we use the Google Web Speech API to
convert voice input into text. The SpeechRecognition module has an offline
method called recognize_sphinx(), but it makes a lot of mistakes, so we use
the online method.

Here’s the written output from the script when my number was 8 (my
voice input is in bold):

Please think of an integer,
bigger or equal to 1 but smaller or equal to 9,
and write on a piece of paper
You have 5 seconds to write it down
Now let's start. I will guess a number and you can say:
too high, that is right, or too small
Is it 5?
You said too small
Is it 7?
You said too small
Is it 8?
You said that is right
Yay, lucky me!

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

98 Chapter 5

The script understood every word I said perfectly. This is, of course,
partly because I chose certain words to avoid ambiguity. When building
your own projects, you’ll want to use voice commands that are unique or
put the words in context to get consistently correct results. Since each voice
command is usually short, the Python script may have difficulty grasping
the context of your voice input and returning the right words.

For example, if you say “too large” into the microphone, the script may
return “two large,” which is a phrase that does make sense. That is why we
use “too high” instead of “too large” in guess_hs.py.

Similarly, when I spoke “too low” into the microphone, the script returned
“tulo” from time to time. When I use “too small,” I get the correct response
each time.

T RY IT OU T

Run guess_hs.py and play a few rounds. See if Python can understand each of
your responses on the first try.

Speaking Newscast
In this project, we’ll scrape the NPR News website to collect the latest news
summary and have Python read it out loud. This project is split into two
scripts: one to scrape and organize the news, another to handle the speech
recognition and text-to-speech features. Let’s start with the web scraping.

Scrape the News Summary
First, we need to scrape the information from the news site and compile it
into a clean and readable format.

Different news sites arrange their content differently, so the methods
for scraping are often slightly different. You can refer to Chapter 6 for the
basics of web scraping. If you’re interested in scraping other news sites,
you’ll need to adjust this code based on the features of the website. Let’s
first look at the site and the corresponding source code.

The news we’re interested in is on the front page of the NPR News
website, shown in Figure 5-2.

One handy feature of this page is the short news summaries. As you can
see, the front page lists the latest news with a short summary for each news
article.

You want to extract the news title and the teaser of each news article
and print them out. To do this, you need to locate the corresponding tags
in the HTML program.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 99

Figure 5-2: News summaries on the NPR News front page

While on the web page, press CTRL-U on your keyboard. The source
code for the web page should appear. You can see that it’s almost 2,000
lines long. To locate the tags you need, press CTRL-F to open a search
box at the top-right corner. Because the title of the first news article starts
with “Answering Your Coronavirus Questions,” as shown in Figure 5-2, you
should enter Answering Your Coronavirus Questions and click Search. Then
skip to the corresponding HTML code, shown in Listing 5-4.

--snip--
1 <div class="item-info">
 <div class="slug-wrap">
 <h3 class="slug">
<a href="https://www.npr.org/series/821003492/the-national-conversation-with-
all-things-considered">The National Conversation With All Things Considered

</h3>
 </div>
2 <h2 class="title">
<a href="https://www.npr.org/2020/04/28/847585398/answering-your-coronavirus-
questions-new-symptoms-economy-and-virtual-celebratio" data-
metrics='{"action":"Click Featured Story Headline 1-
3","category":"Aggregation"}' >Answering Your Coronavirus Questions: New
Symptoms, Economy And Virtual Celebrations

</h2>
3 <p class="teaser">
<a href="https://www.npr.org/2020/04/28/847585398/answering-your-coronavirus-
questions-new-symptoms-economy-and-virtual-celebratio"><time datetime="2020-
04-28">April 28, 2020 • </time>On this
broadcast of The National Conversation, we answer your questions
about the economy, mental health and new symptoms of COVID-19. We'll also
look at how people are celebrating big life events.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

100 Chapter 5

</p>
</div>
--snip--

Listing 5-4: Part of the source code for the NPR News front page

Notice that all the title and teaser information are encapsulated in a
parent <div> tag with a class attribute of item-info 1. Information for the
news title is held in a child <h2> tag with a class attribute of title 2. The
information for the teaser is held in a child <p> tag with a class attribute of
teaser 3.

We’ll use these patterns to write a Python script to extract the informa-
tion we need. The script news.py will scrape the information and organize
all titles and summaries in a clean and concise way. I’ve added comments in
places that need more detailed explanations.

The script will compile the news summary and print it out in text. Enter
Listing 5-5 and save it as news.py.

Import needed modules
import requests
import bs4

Obtain the source code from the NPR news website
1 res = requests.get('https://www.npr.org/sections/news/')
res.raise_for_status()
Use beautiful soup to parse the code
soup = bs4.BeautifulSoup(res.text, 'html.parser')
Get the div tags that contain titles and teasers
div_tags = soup.find_all('div',class_="item-info")
Index different news
2 news_index = 1
Go into each div tag to retrieve the title and the teaser
3 for div_tag in div_tags:
 # Print the news index to separate different news
 print(f'News Summary {news_index}')
 # Retrieve and print the h2 tag that contains the title
 h2tag = div_tag.find('h2', class_="title")
 print(h2tag.text)
 # Retrieve and print the p tag that contains the teaser
 ptag = div_tag.find('p', class_="teaser")
 print(ptag.text)
 # Limit to the first 10 news summaries
 news_index += 1
 if news_index>10:
 break

Listing 5-5: Python code to scrape the NPR News front page

We start by importing the needed modules bs4 and requests (bs4 is the
newest version of the Beautiful Soup library). Follow the three steps in
Chapter 2 for installing these modules if you need to.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 101

At 1, we obtain the source code for the NPR News front page, which
is in HTML format. We then use the bs4 module to parse HTML files.
Because the information we need is encapsulated in <div> tags with a
class attribute of item-info, we find all such tags and put them in a list called
div_tags. To separate different news summaries, we create a variable news
_index to mark them 2.

We then go into each individual <div> tag we’ve collected 3. First, we
print out the news summary index to separate out individual news items.
Second, we extract the <h2> tag that contains the news title and print it out.
Third, we extract the <p> tag that contains the news summary and print it out.
Finally, we stop if the news index exceeds 10 so that we limit the printout to
10 news summaries.

If you run news.py, the output will look like Listing 5-6.

News Summary 1
Answering Your Coronavirus Questions: New Symptoms, Economy And Virtual Celebrations
April 28, 2020 • On this broadcast of The National Conversation, we answer your questions
about the economy, mental health and new symptoms of COVID-19. We'll also look at how people
are celebrating big life events.
News Summary 2
More Essential Than Ever, Low-Wage Workers Demand More
April 28, 2020 • In this lockdown, low-wage workers have been publicly declared "essential" —
up there with doctors and nurses. But the workers say their pay, benefits and protections
don't reflect it.
News Summary 3
We Asked All 50 States About Their Contact Tracing Capacity. Here's What We Learned
April 28, 2020 • To safely reopen without risking new COVID-19 outbreaks, states need enough
staffing to do the crucial work of contact tracing. We surveyed public health agencies to
find out how much they have.
News Summary 4
Coronavirus Has Now Killed More Americans Than Vietnam War
April 28, 2020 • The number of lives taken by COVID-19 in the U.S. has reached a grim
milestone: More people have died of the disease than the 58,220 Americans who perished in the
Vietnam War.
--snip--

Listing 5-6: News summary scraped from the NPR News front page

Now we’ll get Python to read the news to us.

Add the Text-to-Speech Features
The next step is to have the text-to-speech module convert the news sum-
mary into spoken words. Add Listing 5-7 into a new file and save it as
news_hs.py.

Import needed modules
import requests
import bs4
import sys

Import functions from the local package mptpkg
from mptpkg import voice_to_text

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

102 Chapter 5

from mptpkg import print_say
Define the news_teaser() function
1 def news_teaser():
 --snip--
 2 print_say(f'News Summary {news_index}')
 h2tag = div_tag.find('h2', class_="title")
 print_say(h2tag.text)
 ptag = div_tag.find('p', class_="teaser")
 print_say(ptag.text)
 --snip--
Print and ask you if you like to hear the news summary
print_say("Would you like to hear the NPR news summary?")
Capture your voice command
inp = voice_to_text().lower()
If you answer yes, activate the newscast
if inp == "yes":
 news_teaser()
Otherwise, exit the script
else:
 sys.exit

Listing 5-7: Python code for a voice-activated newscast

We first import the usual modules, and we import voice_to_text() and
print_say() from the self-made mptpkg package.

We then define a function called news_teaser() 1, which accomplishes
whatever news.py does. The only exception is that instead of just printing
out the news index, title, and teaser, it both prints and speaks them 2. We
then set the script to ask, “Would you like to hear the NPR news summary?”
The voice_to_text() function captures your voice response and converts it
into a string variable with all lowercase letters. If you say yes, Python will
start broadcasting the news. If you answer anything other than yes, the
script will exit.

T RY IT OU T

Run news_hs.py and hear news from NPR. To save time, modify the script so
that you’ll hear only the first 5 news summaries instead of 10.

Voice-Controlled Wikipedia
We’ll build a talking Wikipedia in this section. Unlike with the newscaster
project, we’ll use the wikipedia module to get the information we need
directly. After that, we’ll get the script to understand questions you ask,
retrieve the answer, and read it aloud.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 103

Access Wikipedia
Python has a wikipedia module that does the work of delving into topics you
want to know about, so we don’t have to code that part ourselves. The mod-
ule is not in the Python standard library or the Anaconda navigator. You
should install it with pip. Open the Anaconda prompt (in Windows) or a
terminal (in Mac or Linux) and run the following command:

pip install wikipedia

Next, run the following script as wiki.py:

import wikipedia

my_query = input("What do you want to know?\n")
answer = wikipedia.summary(my_query)
print(answer)

After the script is running, in the IPython console in the lower-right
panel, enter the name of a topic you want to know about. The script will
save your inquiry as the variable my_query. The summary() function will pro-
duce a summary answer to your question. Finally, the script prints out the
answer from Wikipedia.

I entered U.S. China trade war and got the following result:

What do you want to know?
U.S. China trade war
China and the United States have been engaged in a trade war through
increasing tariffs and other measures since 2018. Hong Kong economics
professor Lawrence J. Lau argues that a major cause is the growing battle
between China and the U.S. for global economic and technological dominance.
He argues, "It is also a reflection of the rise of populism, isolationism,
nationalism and protectionism almost everywhere in the world, including in the
US."

This answer is relatively short. Most searches in Wikipedia will have a
much longer result. If you want to limit the length of the responses to, say,
the first 200 characters, you can enter [0:200] after answer.

Add Speech Recognition and Text to Speech
We’ll now add the speech recognition and text-to-speech features to the
script. Enter Listing 5-8 as wiki_hs.py.

import wikipedia

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

104 Chapter 5

Ask what you want to know
1 print_say("What do you want to know?")
Capture your voice input
2 my_query = voice_to_text()
print_say (f"you said {my_query}")
Obtain answer from Wikipedia
ans = wikipedia.summary(my_query)
Say the answer in a human voice
print_say(ans[0:200])

Listing 5-8: Python code for a voice-controlled talking Wikipedia

Once you start the script, a voice asks, “What do you want to know?” 1.
At 2, the script calls voice_to_text() to convert your voice input into text.
Then, the script retrieves the response to your question from Wikipedia,
saves it as a string variable ans, and converts it to a human voice.

After running the script, if you say to the microphone, “US Federal
Reserve Bank,” you’ll get a result similar to this:

What do you want to know?
you said U.S. federal reserve bank
The Federal Reserve System (also known as the Federal Reserve or simply the
Fed) is the central banking system of the United States of America. It was
created on December 23,
1913, with the enactment

I’ve added the [0:200] character limit behind the variable ans, so only
the first 200 characters of the result are printed and spoken.

And just like that, you have your own voice-controlled talking
Wikipedia. Ask away!

T RY IT OU T

Run wiki_hs.py and ask Wikipedia about the city you live in now (or the state if
the city is not in Wikipedia). See what the output is like.

Voice-Activated Music Player
Here you’ll learn how to get Python to play a certain artist or genre of
music just by asking for it with a phrase like “Python, play Selena Gomez.”
You’ll speak the name of the artist you want to listen to, and the script will
receive that as keywords and then search for those keywords in a particular
folder. To do this, you need to be able to traverse files and folders.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 105

Traverse Files in a Folder
Suppose you have a subfolder chat in your chapter folder. If you want to list
all files in the subfolder, you can use this traverse.py script:

import os

with os.scandir("./chat") as files:
 for file in files:
 print(file.name)

First, the script imports the os module. This module gives the script
access to functionalities that are dependent on the operating system, such
as accessing all files in a folder.

Next, you put all files in the subfolder chat into a list called files. The
script goes through all items in the list, and prints out the name of each item.

The output from the preceding script is as follows after I run it on my
computer:

book.xlsx
desk.pdf
storm.txt
graduation.pptx
--snip--
HilaryDuffSparks.mp3
country
classic
lessons.docx
SelenaGomezWolves.mp3
TheHeartWantsWhatItWantsSelenaGomez.mp3

As you can see, we can traverse all the files and subfolders in a folder
and print out their names. Filenames include the file extension. Subfolders
have no extension after the subfolder name. For example, I have two fold-
ers, country and classic, in the folder chat. As a result, you see country and
classic in the preceding output.

Next, you’ll use this feature to select a song you want to play.

Python, Play Selena Gomez
The script in Listing 5-9, play_selena_gomez.py, can pick out a song by what-
ever artist you name (for example, Selena Gomez) and play it. Either save
your songs in the subfolder chat or replace the file path with a path to some-
where on your computer that you keep music.

Import the required modules
import os
import random
from pygame import mixer

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

106 Chapter 5

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

Start an infinite loop to take your voice commands
1 while True:
 print_say("how may I help you?")
 inp = voice_to_text()
 print_say(f"you just said {inp}")
 # Stop the script if you say 'stop listening'
 if inp == "stop listening":
 print_say("Goodbye! ")
 break
 # If 'play' is in voice command, music mode is activated
 2 elif "play" in inp:
 # Remove the word play from voice command
 3 inp = inp.replace('play ','')
 # Separate first and last names
 names = inp.split()
 # Extract the first name
 Firstname = names[0]
 # Extract the last name
 if len(names)>1:
 lastname = names[1]
 # If no last name, use the first name as last name;
 else:
 lastname = firstname
 # Create a list to contain songs
 mysongs = []
 # If either first name or last name in the file name, put in list
 with os.scandir("./chat") as files:
 for file in files:
 4 if (firstname in file.name or lastname in file.name) \
and "mp3" in file.name:
 mysongs.append(file.name)
 # Randomly select one from the list and play
 5 mysong = random.choice(mysongs)
 print_say(f"play the song {mysong} for you")
 mixer.init()
 mixer.music.load(f'./chat/{mysong}')
 mixer.music.play()
 break

Listing 5-9: Python code to voice activate a song by an artist on your computer

We first import the needed modules. In particular, we import the os
module to traverse files and the random module to randomly select a song
from a list the script will build. We use mixer() in the pygame module to play
the music file.

We then start an infinite loop 1 to put the script in standby mode to
wait for your voice commands. If the script detects the word play in your
voice command, the music mode is activated 2. We then replace the word
play and the whitespace behind it with an empty string 3 so that your
command “Play Selena Gomez” becomes Selena Gomez. The next command

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 107

separates the first name and the last name. For artists who are known by
just their first names (such as Madonna, Prince, or Cher), we put their first
name as a placeholder in the variable lastname.

We then traverse through all files in the subfolder chat. If a file has the
mp3 extension and contains either the first or the last name 4, it will be added
to the list mysongs. We use choice() from the random module to randomly select
a song in the list mysongs 5 and load it with mixer.music.load(). After that, we
use mixer.music.play() to play it.

As a result, once you say to the script, “Play Selena Gomez,” one
of the two songs in the subfolder chat, SelenaGomezWolves.mp3 or
TheHeartWantsWhatItWantsSelenaGomez.mp3, will start playing.

N O T E 	 We use the pygame module to play music files in this book. Depending on which
operating system you are using, other modules, such as playsound or vlc, can also
play music files in Python. Alternatively, you can use os.system() to open music files
in your computer’s default music player, as discussed in Chapter 3.

T RY IT OU T

Save several songs by your favorite artist, making sure that the filenames con-
tain the artist’s first and last name. Then edit and run play_selena_gomez.py so
that when you say, “Python, play Firstname Lastname,” one of your songs will
start playing.

Python, Play a Country Song
What we’ll do now is similar to interacting with the script play_selena_gomez.py,
but here you’ll learn how to access different subfolders by using the os module
as well as a different way of playing music files.

Suppose you’ve organized your songs by genre. You put all classical
music files in the subfolder classic, and all country music files in the folder
country, and so on. You’ve placed these subfolders in the folder chat you just
created.

We want to write a script so that when you say, “Python, play a country
song,” the script will randomly select a song from the folder country and play
it. Enter the code in Listing 5-10 and save it as play_genre.py.

Import needed modules
import os
import random
from pygame import mixer

Import functions from the local package mptpkg
from mptpkg import voice_to_text
from mptpkg import print_say

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

108 Chapter 5

while True:
 print_say("how may I help you?")
 inp = voice_to_text().lower()
 print_say(f'you just said {inp}')
 if inp == "stop listening":
 print_say('Goodbye!')
 break
 elif "play a" in inp and "song" in inp:
 # Remove 'play a' and 'song' so that only the genre name is left
 1 inp = inp.replace('play a ','')
 2 inp = inp.replace(' song','')

 # Go to the genre folder and randomly select a song
 with os.scandir(f"./chat/{inp}") as entries:
 mysongs = [entry.name for entry in entries]
 # Use pygame mixer to play the song
 3 mysong = random.choice(mysongs)
 print_say(f"play the song {mysong} for you")
 mixer.init()
 mixer.music.load(f"./chat/{inp}/{mysong}")
 mixer.music.play()
 break

Listing 5-10: Python code to voice activate a song by genre

Python checks for the terms play a and song in the voice command and
activates the music mode if it finds them. The script then replaces play a 1
and song 2 as well as the whitespace behind them with an empty string,
leaving only the genre—country, in this case—in the voice command. This
is used as the folder for the script to search: in this case, ./chat/country.
Finally, the script randomly selects a song from the folder 3 and plays it.

Note that we use lower() after voice_to_text() in the script so that the voice
command is all lowercase. We do this because the script sometimes converts
the voice command into play A Country Song. We can avoid mismatch due to
capitalization. On the other hand, the path and filenames are not case sensi-
tive, so even if you have capital letters in your path or filenames, there will not
be any mismatch.

T RY IT OU T

Organize your music into various categories. Save a few songs in the subfolder
classic in the chat folder you created. If you say, “Play a classic song,” see if a
song in the folder will start playing.

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Speaking Applications 109

	Summary
In this chapter, you first learned to create a Python package to contain the
local text-to-speech and speech recognition modules. After that, you built
several real-world applications that can understand voice commands, react,
and speak.

You created a voice-controlled, talking Guess the Number game. In the
game, you pick a number between one and nine and interact with the script
to let it guess. Then you learned how to parse text to extract a news summary
from the NPR website, adding the speech recognition and text-to-speech fea-
tures to make a voice-controlled newscast.

You learned how to use the wikipedia module to obtain answers to your
inquiries.

You traversed files in a folder on your computer by using the os module,
and then created a script that plays a genre or artist when you ask it to.

Now that you know how to make Python talk and listen, you’ll apply both
features to many other interesting situations throughout the rest of the book
so that you can interact with your computer via voice only.

	End-of-Chapter Exercises

1.	 Modify guess_hs.py so that the third guess of the script is two instead
of one.

2.	 Change wiki.py so that it prints out the first 300 characters of the result
from Wikipedia.

3.	 Modify play_genre.py so that the script plays music by using the os module
and your default music player on your computer, instead of the pygame
module.

4.	 Suppose the music files on your computer are not in MP3 format but in
WAV format. How can you modify play_selena_gomez.py so that the script
still works?

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

Make Python Talk (Sample Chapter) © 5/26/21 by Mark Liu

M A K E P Y T H O N T A L K
M A R K L I U

5/26/21

