
11
e V e n t - D r i V e n P r o g r a m m i n g

So far, the programs you’ve written have
been mostly sequential because they have

followed the lines of code in order, from
top to bottom. Some statements might have

made a comparison or called a subroutine to take a
detour, but overall the order of statements has been
mostly linear.

In some ways, this is comparable to how you go about your daily rou-
tine: you wake up, make your bed, take a shower, eat your breakfast, watch
TV, comb your hair, and so on. But what if the phone rings during your rou-
tine? If you’re expecting a call from a friend to confirm that night’s party,
you’d better take it! Even though you’re doing something at that moment,
you’re also listening for the phone. The minute you hear the ring (the
event), you drop everything and take the call (let’s just hope it isn’t your
aunt calling to see if you finished reading Little House on the Freeway).

Similarly, many computer programs (especially games) use event-
driven programming, which means they listen and respond to events raised

150 Chapter 11

by the operating system (see Figure 11-1). Think of an event as a signal
that’s raised in response to an action, like moving or clicking the mouse,
clicking a button, typing on the keyboard, having a timer expire, and so
on. Some objects in the Small Basic library can see these events and tell
you when they happen. Programmers say that an object raised an event.
You can write some exciting applications and games by handling these
events (like a super fun explosion farming game). These games typically
wait patiently for the player to move the mouse or press some keys, and
then they take action.

KeyDown KeyUp

MouseDown MouseMove

Sub OnKeyDown

EndSub

...
Sub OnMouseMove

EndSub

......

Event handler Event handler

Your application

Small Basic library

Events

Figure 11-1: The event-driven programming model

In Figure 11-1, the events are at the top. When a user triggers an action
(like pressing a key), the Small Basic library knows about it. If you want to
know when an event happens, you can ask Small Basic to inform you when
an event occurs so you can write programs that react to certain events.

The Small Basic library has three objects that handle events (see
Figure 11-2): GraphicsWindow, Timer, and Controls. You’ll study the events of
GraphicsWindow and Timer objects in this chapter, and you’ll tackle the events
of the Controls object in the next chapter.

Ev
en

ts

Ev
en

ts

Ev
en

ts

Object

GraphicsWindow

KeyDown
KeyUp
MouseDown
MouseUp
MouseMove
TextInput

Controls Timer

ButtonClicked

TextTyped
Tick

Figure 11-2: The available events in Small Basic

Event-Driven Programming 151

graphicswindow events
Let’s start by exploring the events in GraphicsWindow. When a user interacts
with your application, GraphicsWindow knows when keys are pressed, which
keys are pressed, and if the user clicks or moves the mouse. Although
GraphicsWindow knows about these events, it doesn’t automatically do any-
thing when the events happen. You need to instruct GraphicsWindow to tell
you when these events happen so you can use them. Next, you’ll learn how
to use the information Small Basic knows about the user to create interest-
ing, interactive applications.

Create Patterns with the MouseDown Event
Let’s make a simple application that draws a randomly colored circle every
time the user clicks the graphics window. Enter the code in Listing 11-1.

1 ' Circles.sb
2 GraphicsWindow.MouseDown = OnMouseDown
3
4 Sub OnMouseDown
5 GraphicsWindow.PenColor = GraphicsWindow.GetRandomColor()
6 X0 = GraphicsWindow.MouseX - 10
7 Y0 = GraphicsWindow.MouseY - 10
8 GraphicsWindow.DrawEllipse(X0, Y0, 20, 20)
9 EndSub

Listing 11-1: Drawing circles with a click of the mouse

Run the program. A sample output is shown in Figure 11-3. When you
click inside the graphics window, you draw a circle with a random color.
Make a fun pattern, show it to someone else, and try to convince them that
Pablo Picasso painted it!

Figure 11-3: Sample output of Circles .sb

Let’s look at the code in Listing 11-1 to see how Small Basic handles
event-driven programming. Figure 11-4 shows an important line in this pro-
gram: line 2.

152 Chapter 11

Object Event Event handler

GraphicsWindow.MouseDown = OnMouseDown

Figure 11-4: The event-handler registration statement

The statement in line 2 tells the GraphicsWindow object that when the
MouseDown event happens, it should run the OnMouseDown() subroutine. This
subroutine is also known as an event handler, because its purpose is to
handle, or process, an event. Although you can name this subroutine any-
thing you want, it’s common to use the format OnEventName, which is why we
named the handler OnMouseDown. The statement on line 2 is known as regis-
tering an event handler. In this example, Small Basic calls the OnMouseDown()
subroutine every time the user clicks inside the graphics window.

When the user clicks inside the graphics window, the x and y mouse posi-
tions (relative to the window’s upper-left corner) are saved in the MouseX and
MouseY properties of GraphicsWindow. Because the program draws a circle with a
diameter of 20 centered around the mouse click, it subtracts 10 from MouseX
and MouseY (to mark the circle’s upper-left position) and saves the result in
the X0 and Y0 variables (lines 6–7). The subroutine then draws a circle with
a diameter of 20 that’s centered at the mouse-click position (line 8).

Fire Missiles with the KeyDown Event
Many computer games are played using the keyboard. For example, the
player might use the arrow keys to move the main character, the spacebar
to shoot a missile, F1 to get help, P to pick the character’s nose, and esc to
exit the game. If you want to make a game that uses the keyboard for input,
you need to add the KeyDown event to your program to let you know which
key the user presses and when.

To understand the KeyDown event, let’s write a simple application
that displays the name of each key a user presses. Enter the program in
Listing 11-2.

1 ' KeyDown.sb
2 yPos = 10
3 GraphicsWindow.KeyDown = OnKeyDown

t rY i t ou t 11-1

Change the code in Listing 11-1 to draw triangles and squares instead of a circle .
If you need help, refer back to Chapter 3 to review GraphicsWindow’s drawing
methods .

Event-Driven Programming 153

4
5 Sub OnKeyDown
6 GraphicsWindow.DrawText(10, yPos, GraphicsWindow.LastKey)
7 yPos = yPos + 15
8 EndSub

Listing 11-2: Displaying each key a user presses

A sample run, with some comments, is shown in Figure 11-5.

A, B, and C keys

ENTER key

Numbers 1, 2, and 3

Arrow keys

Spacebar

Figure 11-5: A sample run of KeyDown .sb

The yPos variable sets the vertical position where you’ll display the
name of the key the user presses. It starts at 10 and increases by 15 after it
shows the name of the last pressed key (line 7).

You register the KeyDown event handler on line 3. Whenever a user
presses a key, the program runs the OnKeyDown() subroutine. The subroutine
displays the name of the pressed key (line 6) and increases yPos by 15
(line 7) to get ready to display the name of the next key on the next line.
The GraphicsWindow.LastKey property on line 6 provides the name of the
pressed key (as a string). This read-only property tells you the last key a
user pressed.

The importance of this example is that it shows you the names that
Small Basic assigns to the different keyboard keys. If you want to create an
application that responds to these keys, you need to know what Small Basic
calls them. Here are some other details you should know:

1. The names of the letter keys (A–Z) are always uppercase. For example,
if you type the letter "a", LastKey will register it as an uppercase "A"
regardless of whether caps lock is on or if you’re holding down the
shiFt key.

2. The name of a number key (0–9) uses the form "Ddigit". For example,
the name of the 5 key is "D5".

3. The four arrow keys are named "Up", "Down", "Right", and "Left".

4. The eNter (or returN) key is named "Return", and the spacebar is
named "Space".

154 Chapter 11

5. The KeyDown event is raised continuously (about every 35 milliseconds)
as long as a key is pressed. This is different from the MouseDown event,
which is raised only once (when the left mouse button is clicked).

Knowing the names of the keys is important if you want to test for cer-
tain keypresses in your programs.

Make a Typewriter Using the TextInput Event
The TextInput event is very similar to the KeyDown event, but it’s raised only
when the user presses a text-related key on the keyboard. This includes
letters (A–Z), digits (0–9), special characters (such as !@#$%^&), and other
keys, like eNter, the spacebar, tAb, and bAckspAce. When the TextInput
event is raised, the last character pressed on the keyboard is saved in the
GraphicsWindow.LastText property.

Let’s see how this event works. Enter the code in Listing 11-3 to simulate
a typewriter. We know that typewriters are old school, but hey, it could be
worse; we could be simulating an abacus!

1 ' Typewriter.sb
2 x = 0 ' x position for displaying the last character
3 y = 0 ' y position for displaying the last character
4 GraphicsWindow.Title = "Typewriter"
5 GraphicsWindow.FontName = "Courier New"
6 GraphicsWindow.TextInput = OnTextInput
7
8 Sub OnTextInput
9 Sound.PlayClick() ' Plays a typewriter sound effect
10 If (GraphicsWindow.LastKey = "Return") Then
11 x = 0 ' Moves to next line
12 y = y + 15

t rY i t ou t 11-2

Enter and run the following code . Press some keys on the keyboard and watch for
their names in the text window . Press and hold a key for a while to see what hap-
pens . (Make sure the graphics window is the active window when you type .)

TextWindow.Show()
GraphicsWindow.Show()
GraphicsWindow.KeyDown = OnKeyDown

Sub OnKeyDown
 TextWindow.WriteLine(GraphicsWindow.LastKey)
EndSub

What did you notice when you tried this example?

Event-Driven Programming 155

13 Else
14 GraphicsWindow.DrawText(x, y, GraphicsWindow.LastText)
15 x = x + 8 ' Advances x position for the next character
16 If (x > GraphicsWindow.Width) Then ' If more than right margin
17 x = 0 ' Moves to the next line
18 y = y + 15
19 EndIf
20 EndIf
21 EndSub

Listing 11-3: Making a typewriter sound with each keypress

Look at the sample output in Figure 11-6.

Figure 11-6: Sample output of Typewriter .sb

Lines 2 and 3 set the cursor at the corner of the graphics window.
Line 4 gives the window a title, line 5 sets the font style, and line 6 registers
the event handler. Line 9 plays the click sound, and lines 10–12 advance the
line if the user presses eNter. Line 14 writes the character entered by the
user, line 15 moves the cursor to the next spot, and lines 16–18 move the
cursor to the next line when the cursor gets to the right edge.

n o t e When you experiment with this application, you’ll notice that the TextInput event
looks at the states of the different keyboard keys before setting the value of the
LastText property. For example, if you press the A key while holding down shiFt,
the LastText property reports an uppercase "A"; if you don’t hold down shiFt, it
reports a lowercase "a".

Draw Pictures with the MouseMove Event
To understand how to use the MouseMove event, you’ll write an application
that lets a user draw with the mouse. The user clicks the left mouse button
in the graphics window and then drags the mouse to draw. The complete
program is shown in Listing 11-4.

t rY i t ou t 11-3

Update Listing 11-3 to display each character in a random color . See Listing 11-1
for ideas on how to randomly change the color .

156 Chapter 11

1 ' Scribble.sb
2 GraphicsWindow.MouseMove = OnMouseMove
3
4 Sub OnMouseMove
5 x = GraphicsWindow.MouseX ' Current x position of mouse
6 y = GraphicsWindow.MouseY ' Current y position of mouse
7
8 If (Mouse.IsLeftButtonDown) Then
9 GraphicsWindow.DrawLine(prevX, prevY, x, y)
10 EndIf
11
12 prevX = x ' Updates the last (previous) position
13 prevY = y
14 EndSub

Listing 11-4: Drawing a line as the user moves the mouse

A sample output of Scribble.sb is in Figure 11-7.

Figure 11-7: Sample output of Scribble .sb

The OnMouseMove() subroutine draws a line from the last mouse position,
which you save in the variables prevX and prevY in lines 12 and 13, to the new
mouse position, which you get from GraphicsWindow’s MouseX and MouseY prop-
erties. Because you want the user to draw only when the left mouse button
is down, the OnMouseMove() subroutine checks the state of the left mouse
button using the Mouse.IsLeftButtonDown property (line 8). This property
indicates whether the left mouse button is being held down. If this value is
true, the subroutine draws a line segment (line 9); if the value isn’t true, it
doesn’t draw the line.

t rY i t ou t 11- 4

Change Listing 11-4 to use the TextInput event to set the pen’s color (R for red, G
for green, B for black, and so on) .

Event-Driven Programming 157

useful tips
Before moving on, we’ll give you some tips for dealing with events and event
handlers. You can handle multiple events using the same subroutine. For
example, look at these statements:

GraphicsWindow.MouseDown = OnMouseEvent
GraphicsWindow.MouseMove = OnMouseEvent

These statements cause the MouseDown and MouseMove events to call the
OnMouseEvent() subroutine. This feature can come in handy for complex games
that use many events, so keep this feature in mind.

You can change the event-handler subroutine after you register it. For
example, let’s say you registered the OnMouseDown() subroutine to handle the
MouseDown event using this statement:

GraphicsWindow.MouseDown = OnMouseDown

If you later decide to stop responding to the MouseDown event (for example,
because the game is over), you can write this statement:

GraphicsWindow.MouseDown = DoNothing

Now DoNothing is the new handler for the MouseDown event. If you don’t
write any statements in your DoNothing() subroutine, your programs won’t do
anything in response to the MouseDown event.

A MouseDown event is usually followed by a MouseUp event, but don’t always
count on that MouseUp event happening. If you click the left mouse button in
the graphics window and then move the cursor outside the graphics win-
dow before you release the button, your application receives only a MouseDown
event notification. This is important to remember if you write an applica-
tion that needs to pair the two events (such as if you click to grab a ball and
release to throw it).

In the next section, you’ll put into practice what you’ve learned so far
by creating a complete game. You’ll also learn about the Timer object and its
Tick event. Get ready for an exciting adventure in computer gaming!

create a gold rush game
Let’s create a simple game in which a player uses the arrow keys to move a
turtle to collect as many bags of gold as possible (see Figure 11-8). The bag
of gold appears at random locations on the grid. If the player doesn’t grab
the bag in 2 seconds, it moves elsewhere. Let’s see how fast you can get the
turtle to move!

158 Chapter 11

Every time you pick up a bag your score
increases by 1.

Bags of gold will appear at random
locations on the grid.

Use the arrow keys to move the turtle to
pick up as much gold as possible. Hurry!
You have only 2 seconds to get to the bag.

The background image shows squares
that the player can move to.

60

120

180

240

300

360
60 12

0

18
0

24
0

30
0

36
0

42
0

48
0

Figure 11-8: Help the turtle grab as many bags of gold as possible .

n o t e The grid is part of the background image, but we added the x- and y-coordinates in
Figure 11-8 to help you understand the numbers used in the code. Refer to this figure
to picture how the turtle and the bag of gold move.

Step 1: Open the Startup File
Open the file GoldRush_Incomplete.sb from this chapter’s folder. The folder
also has the three images you’ll need for this game. Follow the next four
steps to walk through the application’s code. The startup file contains the
program’s main code, as shown in Listing 11-5. It prepares the game’s user
interface, registers the event handlers, and initializes the game’s variables.
The file also contains empty placeholders (not shown in Listing 11-5) for all
the subroutines you’ll add.

1 ' GoldRush_Incomplete.sb
2 GraphicsWindow.Title = "GOLD RUSH"
3 GraphicsWindow.CanResize = "False"
4 GraphicsWindow.Width = 480
5 GraphicsWindow.Height = 360
6
7 path = Program.Directory
8 grid = Shapes.AddImage(path + "\Grid.png")
9 player = Shapes.AddImage(path + "\Turtle.png")
10 gold = Shapes.AddImage(path + "\Gold.png")
11
12 ' Places the player (turtle) near the middle
13 XP = 4 ' x position (from 0 to 7)
14 YP = 3 ' y position (from 0 to 5)
15 Shapes.Move(player, XP * 60, YP * 60)
16
17 ' Creates the score text shape (over a black rectangle)
18 GraphicsWindow.BrushColor = "Black"
19 Shapes.AddRectangle(90, 20)
20 GraphicsWindow.FontSize = 14

Event-Driven Programming 159

21 GraphicsWindow.BrushColor = "Red"
22 scoreID = Shapes.AddText("Score: 0") ' For now
23
24 ' Registers two event handlers
25 GraphicsWindow.KeyDown = OnKeyDown
26 Timer.Tick = OnTick
27
28 ' Initializes variables
29 Timer.Interval = 2000 ' Ticks every 2 sec
30 score = 0 ' Keeps track of player's score
31 bagCount = 0 ' Counts how many bags so far

Listing 11-5: Setting up the Gold Rush game

Lines 3–5 set the size of the graphics window to match the size of the
background image (grid.png). Lines 8–10 use the Shapes object to load the
three images (the background grid, the turtle, and the bag of gold) and
save the returned identifiers. You’ll need the identifiers to move the turtle
and the bag of gold later. Lines 13–15 place the turtle near the middle of
the grid. Note that each square on the grid is 60×60 pixels.

Lines 18–22 create the text shape you’ll use to display the player’s score.
The score is displayed in red on a black background in the upper-left corner
of the screen (see Figure 11-8). Lines 25–26 register two event handlers.
The OnKeyDown handler checks the arrow keys and then moves the turtle as
the player controls it. The OnTick handler handles the Timer object’s Tick
event to limit the player’s time to reach each bag. Line 29 sets the timer
interval to 2 seconds (2,000 milliseconds), telling the Timer object to raise a
Tick event every 2 seconds. Then the code initializes the two variables score
and bagCount to 0: score keeps track of the player’s score (line 30), and bagCount
keeps track of how many bags have appeared so far (line 31).

Run the code; you should see the turtle in the middle of the grid, the
bag of gold in the upper-left square of the grid, and the score text showing 0.

Step 2: Move the Turtle
To move the turtle when the player presses the arrow keys, add the code in
Listing 11-6 to the bottom of your file.

1 Sub OnKeyDown
2 key = GraphicsWindow.LastKey
3 If ((key = "Up") And (YP > 0)) Then
4 YP = YP - 1
5 ElseIf ((key = "Down") And (YP < 5)) Then
6 YP = YP + 1
7 ElseIf ((key = "Left") And (XP > 0)) Then
8 XP = XP - 1
9 ElseIf ((key = "Right") And (XP < 7)) Then
10 XP = XP + 1
11 EndIf

160 Chapter 11

12 Shapes.Move(player, XP * 60, YP * 60)
13 CheckTouch() ' Checks if the player touched the bag
14 EndSub

Listing 11-6: Moving the turtle as the player presses the arrow keys

The grid has eight horizontal and six vertical squares. Squares in
the horizontal direction are numbered 0 to 7, and squares in the vertical
direction are numbered 0 to 5. That means the XP variable (the player’s
x position) takes any value between 0 and 7, and the YP variable (the player’s
y position) takes any value between 0 and 5. The OnKeyDown() subroutine uses
an If/ElseIf ladder to check whether the pressed key is one of the four arrow
keys. If one of the arrow keys is pressed while the turtle is in the graphics
window, the subroutine adjusts XP or YP according to the pressed arrow key.

For example, lines 3 and 4 check if the player pressed the up arrow,
and if the turtle hasn’t reached the top edge yet, the turtle moves up one
square. You can find the exact location on the grid (in pixels) by multiplying
the square’s number by 60 (because each square is 60 pixels), which is what
line 12 does. The code then calls the CheckTouch() subroutine to check if the
player touched the bag of gold.

Run the application again to check the code you just added. You should
be able to move the turtle over the square grid using the arrow keys on the
keyboard. It’s alive!

Step 3: Move the Bag of Gold
Now you’ll add the OnTick handler to create a time limit and the code for
moving the bag of gold to a new spot. Add the subroutine in Listing 11-7 to
the bottom of your program.

1 Sub OnTick ' Timer expires
2 NewRound()
3 EndSub

Listing 11-7: The OnTick() subroutine

As mentioned earlier, the bag of gold appears at a random location and
gives the player 2 seconds to grab it. If the timer expires, the player loses
because they didn’t grab the bag in time. In this case, the OnTick handler
calls the NewRound() subroutine (line 2) to start another round of the game.

The NewRound() subroutine is shown in Listing 11-8. Add it to the bot-
tom of your program.

1 Sub NewRound
2 bagCount = bagCount + 1
3 If (bagCount <= 20) Then

Event-Driven Programming 161

4 XG = Math.GetRandomNumber(8) - 1 ' From 0 to 7
5 YG = Math.GetRandomNumber(6) - 1 ' From 0 to 5
6 Shapes.Move(gold, XG * 60, YG * 60)
7 CheckTouch()
8 Else
9 Shapes.Remove(gold) ' Deletes the gold bag shape
10 GraphicsWindow.KeyDown = OnGameOver ' Do nothing
11 Timer.Tick = OnGameOver ' Do nothing
12 EndIf
13 EndSub

Listing 11-8: Starting a new round when the timer expires

The NewRound() subroutine starts by increasing bagCount by 1 (line 2);
bagCount just counts how many bags have appeared so far. The plan is to
show a total of 20 bags to the player. If 20 total bags have not been shown
(line 3), the subroutine selects a random position for the bag (lines 4–5)
and then moves the bag to that location in the graphics window (line 6).
We use the variables XG and YG (for the x- and y-positions of the bag of
gold) in the CheckTouch() subroutine. After moving the bag, the code
calls CheckTouch() to see if the bag was placed right on top of the player
(line 7)—how lucky!

If bagCount is more than 20 (line 8), we delete the gold bag shape (line 9)
and register the OnGameOver handler, which is a subroutine with no state-
ments, for both the KeyDown and the Tick events to end the game. Then when
the player presses the arrow keys or when the timer expires after bag 20 has
appeared, nothing happens. Of course, this might surprise the user. There
are other ways to end the game, but we’ll leave this to your imagination if
you want to change it later.

The next subroutine you need to add is the OnGameOver() subroutine
shown in Listing 11-9.

1 Sub OnGameOver
2 EndSub

Listing 11-9: The OnGameOver() subroutine

If you run the game at this point, the bag of gold should move to random
positions on the grid every 2 seconds. You can still move the turtle with the
arrows. After 20 bags have appeared, the bag of gold disappears, and the
arrow keys will no longer move the turtle.

As you test this game, you might decide to give the user more time to
pick up the bags or to remove the lucky feature where a bag could appear
right on top of the player. Play around with this code until you think your
game is fun to play.

162 Chapter 11

Step 4: Update the User’s Score
To complete the game, add the CheckTouch() subroutine in Listing 11-10 to
check whether the player successfully picked up a bag of gold and, if so,
increase their score.

1 Sub CheckTouch
2 If ((XP = XG) And (YP = YG)) Then
3 score = score + 1 ' Gives the player one point
4 Shapes.SetText(scoreID, "Score: " + score)
5 Sound.PlayClick() ' Adds sound effect
6 Timer.Pause() ' Resets the timer
7 Timer.Resume() ' Starts the timer
8 NewRound() ' Starts a new round
9 EndIf
10 EndSub

Listing 11-10: Checking whether the turtle gets to the money

If the player’s x- and y-positions are the same as the bag, the turtle
grabs the bag (line 2). Happy turtle! If the lucky turtle gets the bag of gold,
we increase the score (line 3), show it (line 4), and use the Sound object to
play a short click (line 5) for a nice audio effect.

We also need to reset the timer to 2 seconds for the new round. We do
this by pausing the timer (line 6) and then resuming it (line 7). Then we call
NewRound() to set another bag in a random spot after this historic triumph.
Can your turtle do it again?

This completes the game, and you should be able to enjoy your creation
after all this hard work. What’s your top score? (Tip: hold down the arrow
key to move across squares faster.) Share it with your friends (just click
Publish in the Toolbar) to see if they can beat your score. Have fun!

t rY i t ou t 11-5

Think of some ways to enhance the game, and try out your ideas . Here are some
ideas you could try:

•	 End the game with a bigger bang! Display a message or show some interest-
ing graphics .

•	 Add a second bag of gold .

•	 Make the time limit shorter each time the user grabs the bag .

Head to http://tiny .cc/turtlegame/ to share your turtle game updates .

Event-Driven Programming 163

Programming challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1. He-Man is hanging out with his friends playing Twilight trivia and needs
a buzzer for when his friends get a question wrong. Make a program that
draws a big X in the graphics window and plays a sound when He-Man
clicks the left mouse button. The next click should erase the X. Make
sure He-Man can repeat this as often as he wants (it’s a long trivia game).

2. Make a program that stamps a turtle-face image where the mouse was
clicked each time the user clicks the mouse. Get turtleface.jpg from this
chapter’s folder. (Hint: start with the code in Listing 11-1, and use the
GraphicsWindow.DrawImage() method to draw your image.)

3. Open the Maze_Incomplete.sb file from this chapter’s folder. The goal is
to exit the maze in the shortest possible time, but this maze has no exit
yet. Figure out how to add a maze exit condition. When the player exits
the maze, display the time it took to solve the maze.

http://nostarch.com/smallbasic/

