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HIGHER-ORDER FUNCTIONS

Haskell functions can take functions as parameters and
return functions as return values. A function that does
either of these things is called a higher-order function.
Higher-order functions are a really powerful way of
solving problems and thinking about programs, and
they’re indispensable when using a functional program-
ming language like Haskell.

Curried Functions

Every function in Haskell officially takes
only one parameter. But we have de-
fined and used several functions that
take more than one parameter so far—
how is that possible?

Well, it’s a clever trick! All the func-
tions we’ve used so far that accepted
multiple parameters have been curried
functions. A curried function is a function
that, instead of taking several parame-
ters, always takes exactly one parameter.
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Then when it’s called with that parameter, it returns a function that takes
the next parameter, and so on.

This is best explained with an example. Let’s take our good friend, the
max function. It looks as if it takes two parameters and returns the one that’s
bigger. For instance, consider the expression max 4 5. We call the function
max with two parameters: 4 and 5. First, max is applied to the value 4. When
we apply max to 4, the value that is returned is actually another function,
which is then applied to the value 5. The act of applying this function to 5

finally returns a number value. As a consequence, the following two calls
are equivalent:

ghci> max 4 5

5

ghci> (max 4) 5

5

To understand how this works, let’s examine the type of the max function:

ghci> :t max

max :: (Ord a) => a -> a -> a

This can also be written as follows:

max :: (Ord a) => a -> (a -> a)

Whenever we have a type signature that fea-
tures the arrow ->, that means it’s a function that
takes whatever is on the left side of the arrow and
returns a value whose type is indicated on the right
side of the arrow. When we have something like
a -> (a -> a), we’re dealing with a function that
takes a value of type a, and it returns a function
that also takes a value of type a and returns a value
of type a.

So how is that beneficial to us? Simply speaking, if we call a function
with too few parameters, we get back a partially applied function, which is a
function that takes as many parameters as we left out. For example, when
we did max 4, we got back a function that takes one parameter. Using partial
application (calling functions with too few parameters, if you will) is a neat
way to create functions on the fly, so we can pass them to other functions.

Take a look at this simple little function:

multThree :: Int -> Int -> Int -> Int

multThree x y z = x * y * z
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What really happens when we call multThree 3 5 9, or ((multThree 3) 5) 9?
First, multThree is applied to 3, because they’re separated by a space. That cre-
ates a function that takes one parameter and returns a function. Then that
function is applied to 5, which creates a function that will take one param-
eter, multiply 3 and 5 together, and then multiply that by the parameter.
That function is applied to 9, and the result is 135.

You can think of functions as tiny factories that take some materials
and produce something. Using that analogy, we feed our multThree factory
the number 3, but instead of producing a number, it churns out a slightly
smaller factory. That factory receives the number 5 and also spits out a fac-
tory. The third factory receives the number 9, and then produces our result-
ing number, 135.

Remember that this function’s type can also be written as follows:

multThree :: Int -> (Int -> (Int -> Int))

The type (or type variable) before the -> is the type of the values that
a function takes, and the type after it is the type of the values it returns.
So our function takes a value of type Int and returns a function of type
(Int -> (Int -> Int). Similarly, this function takes a value of type Int and
returns a function of type Int -> Int. And finally, this function just takes a
value of type Int and returns another value of type Int.

Let’s look at an example of how we can create a new function by calling
a function with too few parameters:

ghci> let multTwoWithNine = multThree 9

ghci> multTwoWithNine 2 3

54

In this example, the expression multThree 9 results in a function that
takes two parameters. We name that function multTwoWithNine, because
multThree 9 is a function that takes two parameters. If both parameters
are supplied, it will multiply the two parameters between them, and then
multiply that by 9, because we got the multTwoWithNine function by applying
multThree to 9.

What if we wanted to create a function that takes an Int and compares it
to 100? We could do something like this:

compareWithHundred :: Int -> Ordering

compareWithHundred x = compare 100 x

As an example, let’s try calling the function with 99:

ghci> compareWithHundred 99

GT
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100 is greater than 99, so the function returns GT, or greater than.
Now let’s think about what compare 100 would return: a function that

takes a number and compares it with 100, which is exactly what we were
trying to get in our example. In other words, the following definition and
the previous one are equivalent:

compareWithHundred :: Int -> Ordering

compareWithHundred = compare 100

The type declaration stays the same, because compare 100 returns a func-
tion. compare has a type of (Ord a) => a -> (a -> Ordering). When we apply it
to 100, we get a function that takes a number and returns an Ordering.

Sections
Infix functions can also be partially applied by using sections. To section an
infix function, simply surround it with parentheses and supply a parameter
on only one side. That creates a function that takes one parameter and then
applies it to the side that’s missing an operand. Here’s an insultingly trivial
example:

divideByTen :: (Floating a) => a -> a

divideByTen = (/10)

As you can see in the following code, calling divideByTen 200 is equivalent
to calling 200 / 10 or (/10) 200:

ghci> divideByTen 200

20.0

ghci> 200 / 10

20.0

ghci> (/10) 200

20.0

Let’s look at another example. This function checks if a character sup-
plied to it is an uppercase letter:

isUpperAlphanum :: Char -> Bool

isUpperAlphanum = (`elem` ['A'..'Z'])

The only thing to watch out for with sections is when you’re using the
- (negative or minus) operator. From the definition of sections, (-4) would
result in a function that takes a number and subtracts 4 from it. However,
for convenience, (-4) means negative four. So if you want to make a function
that subtracts 4 from the number it gets as a parameter, you can partially
apply the subtract function like so: (subtract 4).
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Printing Functions
So far, we’ve bound our partially applied functions to names and then sup-
plied the remaining parameters to view the results. However, we never tried
to print the functions themselves to the terminal. Let’s give that a go then,
shall we? What happens if we try entering multThree 3 4 into GHCi, instead of
binding it to a name with a let or passing it to another function?

ghci> multThree 3 4

<interactive>:1:0:

No instance for (Show (a -> a))

arising from a use of `print' at <interactive>:1:0-12

Possible fix: add an instance declaration for (Show (a -> a))

In the expression: print it

In a 'do' expression: print it

GHCi is telling us that the expression produced a function of type a -> a,
but it doesn’t know how to print it to the screen. Functions aren’t instances
of the Show type class, so we can’t get a neat string representation of a func-
tion. This is different, for example, than when we enter 1 + 1 at the GHCi
prompt. In that case, GHCi calculates 2 as the result, and then calls show on 2

to get a textual representation of that number. The textual representation of
2 is just the string "2", which is then printed to the screen.

NOTE Make sure you thoroughly understand how curried functions and partial application
work, because they’re really important!

Some Higher-Orderism Is in Order
In Haskell, functions can take other functions as parameters, and as you’ve
seen, they can also return functions as return values. To demonstrate this
concept, let’s write a function that takes a function, and then applies it twice
to some value:

applyTwice :: (a -> a) -> a -> a

applyTwice f x = f (f x)

Notice the type declaration. For our ear-
lier examples, we didn’t need parentheses when
declaring function types, because -> is naturally
right-associative. However, here parentheses
are mandatory. They indicate that the first pa-
rameter is a function that takes one parameter
and returns a value of the same type (a -> a).
The second parameter is something of type a,
and the return value’s type is also a. Notice that
it doesn’t matter what type a is—it can be Int,
String, or whatever—but all the values must be
the same type.
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NOTE You now know that under the hood, functions that seem to take multiple parameters
are actually taking a single parameter and returning a partially applied function.
However, to keep things simple, I’ll continue to say that a given function takes multi-
ple parameters.

The body of the applyTwice function is very simple. We just use the pa-
rameter f as a function, applying x to it by separating the f and x with a space.
We then apply the result to f again. Here are some examples of the function
in action:

ghci> applyTwice (+3) 10

16

ghci> applyTwice (++ " HAHA") "HEY"

"HEY HAHA HAHA"

ghci> applyTwice ("HAHA " ++) "HEY"

"HAHA HAHA HEY"

ghci> applyTwice (multThree 2 2) 9

144

ghci> applyTwice (3:) [1]

[3,3,1]

The awesomeness and usefulness of partial application is evident. If our
function requires us to pass it a function that takes only one parameter, we
can just partially apply a function to the point where it takes only one param-
eter and then pass it. For instance, the + function takes two parameters, and
in this example, we partially applied it so that it takes only one parameter by
using sections.

Implementing zipWith
Now we’re going to use higher-order programming to implement a really
useful function in the standard library called zipWith. It takes a function and
two lists as parameters, and then joins the two lists by applying the function
between corresponding elements. Here’s how we’ll implement it:

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith' _ [] _ = []

zipWith' _ _ [] = []

zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys

First let’s look at the type declaration. The first parameter is a function
that takes two arguments and returns one value. They don’t have to be of
the same type, but they can be. The second and third parameters are lists,
and the final return value is also a list.

The first list must be a list of type a values, because the joining function
takes a types as its first argument. The second must be a list of b types, be-
cause the second parameter of the joining function is of type b. The result is
a list of type c elements.
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NOTE Remember that if you’re writing a function (especially a higher-order function), and
you’re unsure of the type, you can try omitting the type declaration and checking what
Haskell infers it to be by using :t.

This function is similar to the normal zip function. The base cases are
the same, although there’s an extra argument (the joining function). How-
ever, that argument doesn’t matter in the base cases, so we can just use the
_ character for it. The function body in the last pattern is also similar to zip,
though instead of doing (x, y), it does f x y.

Here’s a little demonstration of all the different things our zipWith' func-
tion can do:

ghci> zipWith' (+) [4,2,5,6] [2,6,2,3]

[6,8,7,9]

ghci> zipWith' max [6,3,2,1] [7,3,1,5]

[7,3,2,5]

ghci> zipWith' (++) ["foo ", "bar ", "baz "] ["fighters", "hoppers", "aldrin"]

["foo fighters","bar hoppers","baz aldrin"]

ghci> zipWith' (*) (replicate 5 2) [1..]

[2,4,6,8,10]

ghci> zipWith' (zipWith' (*)) [[1,2,3],[3,5,6],[2,3,4]] [[3,2,2],[3,4,5],[5,4,3]]

[[3,4,6],[9,20,30],[10,12,12]]

As you can see, a single higher-order function can be used in very versa-
tile ways.

Implementing flip
Now we’ll implement another function in the standard library, called flip.
The flip function takes a function and returns a function that is like our
original function, but with the first two arguments flipped. We can imple-
ment it like this:

flip' :: (a -> b -> c) -> (b -> a -> c)

flip' f = g

where g x y = f y x

You can see from the type declaration that flip' takes a function that
takes a and b types, and returns a function that takes b and a types. But
because functions are curried by default, the second pair of parentheses
actually is not necessary. The arrow -> is right-associative by default, so
(a -> b -> c) -> (b -> a -> c) is the same as (a -> b -> c) -> (b -> (a -> c)),
which is the same as (a -> b -> c) -> b -> a -> c. We wrote that g x y = f y x.
If that’s true, then f y x = g x y must also hold, right? Keeping that in mind,
we can define this function in an even simpler manner:

flip' :: (a -> b -> c) -> b -> a -> c

flip' f y x = f x y
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In this new version of flip', we take advantage of the fact that functions
are curried. When we call flip' f without the parameters y and x, it will re-
turn an f that takes those two parameters but calls them flipped.

Even though flipped functions are usually passed to other functions,
we can take advantage of currying when making higher-order functions by
thinking ahead and writing what their end result would be if they were fully
applied.

ghci> zip [1,2,3,4,5] "hello"

[(1,'h'),(2,'e'),(3,'l'),(4,'l'),(5,'o')]

ghci> flip' zip [1,2,3,4,5] "hello"

[('h',1),('e',2),('l',3),('l',4),('o',5)]

ghci> zipWith div [2,2..] [10,8,6,4,2]

[0,0,0,0,1]

ghci> zipWith (flip' div) [2,2..] [10,8,6,4,2]

[5,4,3,2,1]

If we flip' the zip function, we get a function that is like zip, except that
the items from the first list are placed into the second components of the
tuples and vice versa. The flip' div function takes its second parameter and
divides that by its first, so when the numbers 2 and 10 are passed to flip' div,
the result is the same as using div 10 2.

The Functional Programmer’s Toolbox
As functional programmers, we seldom want to operate on just one value.
We usually want to take a bunch of numbers, letters, or some other type of
data, and transform the set to produce our results. In this section, we’ll look
at some useful functions that can help us work with multiple values.

The map Function
The map function takes a function and a list, and applies that function to ev-
ery element in the list, producing a new list. Here is its definition:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

The type signature says that map takes a function from a to b and a list of a
values, and returns a list of b values.

map is a versatile higher-order function that can be used in many differ-
ent ways. Here it is in action:

ghci> map (+3) [1,5,3,1,6]

[4,8,6,4,9]

ghci> map (++ "!") ["BIFF", "BANG", "POW"]

["BIFF!","BANG!","POW!"]
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ghci> map (replicate 3) [3..6]

[[3,3,3],[4,4,4],[5,5,5],[6,6,6]]

ghci> map (map (^2)) [[1,2],[3,4,5,6],[7,8]]

[[1,4],[9,16,25,36],[49,64]]

ghci> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)]

[1,3,6,2,2]

You’ve probably noticed that each of these examples could also be
achieved with a list comprehension. For instance, map (+3) [1,5,3,1,6] is
technically the same as [x+3 | x <- [1,5,3,1,6]]. However, using the map

function tends to make your code much more readable, especially once
you start dealing with maps of maps.

The filter Function
The filter function takes a predicate and a list, and returns the list of ele-
ments that satisfy that predicate. (Remember that a predicate is a function
that tells whether something is true or false; that is, a function that returns
a Boolean value.) The type signature and implementation look like this:

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

If p x evaluates to True, the element is included in the new list. If it doesn’t
evaluate to True, it isn’t included in the new list.

Here are some filter examples:

ghci> filter (>3) [1,5,3,2,1,6,4,3,2,1]

[5,6,4]

ghci> filter (==3) [1,2,3,4,5]

[3]

ghci> filter even [1..10]

[2,4,6,8,10]

ghci> let notNull x = not (null x) in filter notNull [[1,2,3],[],[3,4,5],[2,2],[],[],[]]

[[1,2,3],[3,4,5],[2,2]]

ghci> filter (`elem` ['a'..'z']) "u LaUgH aT mE BeCaUsE I aM diFfeRent"

"uagameasadifeent"

ghci> filter (`elem` ['A'..'Z']) "i LAuGh at you bEcause u R all the same"

"LAGER"

As with the map function, all of these examples could also be achieved
by using comprehensions and predicates. There’s no set rule for when to
use map and filter versus using list comprehensions. You just need to decide
what’s more readable depending on the code and the context.
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The filter equivalent of applying several predicates in a list comprehen-
sion is either filtering something several times or joining the predicates with
the logical && function. Here’s an example:

ghci> filter (<15) (filter even [1..20])

[2,4,6,8,10,12,14]

In this example, we take the list [1..20] and filter it so that only even
numbers remain. Then we pass that list to filter (<15) to get rid of numbers
15 and up. Here’s the list comprehension version:

ghci> [x | x <- [1..20], x < 15, even x]

[2,4,6,8,10,12,14]

We use a list comprehension where we draw from the list [1..20], and
then say what conditions need to hold for a number to be in the resulting list.

Remember our quicksort function from Chapter 4? We used list com-
prehensions to filter out the list elements that were less than (or equal to)
or greater than the pivot. We can achieve the same functionality in a more
readable way by using filter:

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerOrEqual = filter (<= x) xs

larger = filter (> x) xs

in quicksort smallerOrEqual ++ [x] ++ quicksort larger

More Examples of map and filter
As another example, let’s find the largest num-
ber under 100,000 that’s divisible by 3,829. To do
that, we’ll just filter a set of possibilities in which
we know the solution lies:

largestDivisible :: Integer

largestDivisible = head (filter p [100000,99999..])

where p x = x `mod` 3829 == 0

First, we make a descending list of all numbers less than 100,000. Then
we filter it by our predicate. Because the numbers are sorted in a descending
manner, the largest number that satisfies our predicate will be the first ele-
ment of the filtered list. And because we end up using only the head of the
filtered list, it doesn’t matter if the filtered list is finite or infinite. Haskell’s
laziness causes the evaluation to stop when the first adequate solution is
found.
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As our next example, we’ll find the sum of all odd squares that are smaller
than 10,000. In our solution, we’ll use the takeWhile function. This function
takes a predicate and a list. Starting at the beginning of the list, it returns
the list’s elements as long as the predicate holds true. Once an element is
found for which the predicate doesn’t hold true, the function stops and re-
turns the resulting list. For example, to get the first word of a string, we can
do the following:

ghci> takeWhile (/=' ') "elephants know how to party"

"elephants"

To find the sum of all odd squares that are less than 10,000, we begin
by mapping the (^2) function over the infinite list [1..]. Then we filter this
list so we get only the odd elements. Next, using takeWhile, we take elements
from that list only while they are smaller than 10,000. Finally, we get the sum
of that list (using the sum function). We don’t even need to define a function
for this example, because we can do it all in one line in GHCi:

ghci> sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

166650

Awesome! We start with some initial data (the infinite list of all natu-
ral numbers), and then we map over it, filter it, and cut it until it suits our
needs. Finally, we just sum it up!

We could have also written this example using list comprehensions,
like this:

ghci> sum (takeWhile (<10000) [m | m <- [n^2 | n <- [1..]], odd m])

166650

For our next problem, we’ll be dealing with Collatz sequences. A Collatz
sequence (also known as a Collatz chain) is defined as follows:

• Start with any natural number.

• If the number is 1, stop.

• If the number is even, divide it by 2.

• If the number is odd, multiply it by 3 and add 1.

• Repeat the algorithm with the resulting number.

In essence, this gives us a chain of numbers. Mathematicians theorize
that for all starting numbers, the chain will finish at the number 1. For ex-
ample, if we start with the number 13, we get this sequence: 13, 40, 20, 10,
5, 16, 8, 4, 2, 1. (13 × 3 + 1 equals 40. 40 divided by 2 equals 20, and so on.)
We can see that the chain that starts with 13 has 10 terms.
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Here is the problem we want to solve: For all starting numbers between
1 and 100, how many Collatz chains have a length greater than 15?

Our first step will be to write a function that produces a chain:

chain :: Integer -> [Integer]

chain 1 = [1]

chain n

| even n = n:chain (n `div` 2)

| odd n = n:chain (n*3 + 1)

This is a pretty standard recursive function. The base case is one, be-
cause all our chains will end at one. We can test the function to see if it’s
working correctly:

ghci> chain 10

[10,5,16,8,4,2,1]

ghci> chain 1

[1]

ghci> chain 30

[30,15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1]

Now we can write the numLongChains function, which actually answers our
question:

numLongChains :: Int

numLongChains = length (filter isLong (map chain [1..100]))

where isLong xs = length xs > 15

We map the chain function to [1..100] to get a list of chains, which are
themselves represented as lists. Then we filter them by a predicate that checks
whether a list’s length is longer than 15. Once we’ve done the filtering, we
see how many chains are left in the resulting list.

NOTE This function has a type of numLongChains :: Int because length returns an Int in-
stead of a Num a. If we wanted to return a more general Num a, we could have used
fromIntegral on the resulting length.

Mapping Functions with Multiple Parameters
So far, we’ve mapped functions that take only one parameter (like map (*2)

[0..]). However, we can also map functions that take multiple parameters.
For example, we could do something like map (*) [0..]. In this case, the
function *, which has a type of (Num a) => a -> a -> a, is applied to each
number in the list.

As you’ve seen, giving only one parameter to a function that takes two
parameters will cause it to return a function that takes one parameter. So if
we map * to the list [0..], we will get back a list of functions that take only
one parameter.
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Here’s an example:

ghci> let listOfFuns = map (*) [0..]

ghci> (listOfFuns !! 4) 5

20

Getting the element with the index 4 from our list returns a function
that’s equivalent to (4*). Then we just apply 5 to that function, which is the
same as (4*) 5, or just 4 * 5.

Lambdas
Lambdas are anonymous functions
that we use when we need a function
only once.

Normally, we make a lambda with
the sole purpose of passing it to a
higher-order function. To declare a
lambda, we write a \ (because it kind of
looks like the Greek letter lambda (λ)
if you squint hard enough), and then
we write the function’s parameters, sep-
arated by spaces. After that comes a ->,
and then the function body. We usually
surround lambdas with parentheses.

In the previous section, we used
a where binding in our numLongChains

function to make the isLong function for the sole purpose of passing it to
filter. Instead of doing that, we can also use a lambda, like this:

numLongChains :: Int

numLongChains = length (filter (\xs -> length xs > 15) (map chain [1..100]))

Lambdas are expressions, which is why we can
just pass them to functions like this. The expres-
sion (\xs -> length xs > 15) returns a function that
tells us whether the length of the list passed to it is
greater than 15.

People who don’t understand how currying and
partial application work often use lambdas where they are not necessary. For
instance, the following expressions are equivalent:

ghci> map (+3) [1,6,3,2]

[4,9,6,5]

ghci> map (\x -> x + 3) [1,6,3,2]

[4,9,6,5]
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Both (+3) and (\x -> x + 3) are functions that take a number and add 3
to it, so these expressions yield the same results. However, we don’t want to
make a lambda in this case, because using partial application is much more
readable.

Like normal functions, lambdas can take any number of parameters:

ghci> zipWith (\a b -> (a * 30 + 3) / b) [5,4,3,2,1] [1,2,3,4,5]

[153.0,61.5,31.0,15.75,6.6]

And like normal functions, you can pattern match in lambdas. The only
difference is that you can’t define several patterns for one parameter (like
making a [] and a (x:xs) pattern for the same parameter and then having
values fall through).

ghci> map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)]

[3,8,9,8,7]

NOTE If a pattern match fails in a lambda, a runtime error occurs, so be careful!

Let’s look at another interesting example:

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

addThree :: Int -> Int -> Int -> Int

addThree' = \x -> \y -> \z -> x + y + z

Due to the way functions are curried by default, these two functions are
equivalent. Yet the first addThree function is far more readable. The second
one is little more than a gimmick to illustrate currying.

NOTE Notice that in the second example, the lambdas are not surrounded with parentheses.
When you write a lambda without parentheses, it assumes that everything to the right
of the arrow -> belongs to it. So in this case, omitting the parentheses saves some typ-
ing. Of course, you can include the parentheses if you prefer them.

However, there are times when using the currying notation instead is
useful. I think that the flip function is the most readable when it’s defined
like this:

flip' :: (a -> b -> c) -> b -> a -> c

flip' f = \x y -> f y x

Even though this is the same as writing flip' f x y = f y x, our new no-
tation makes it obvious that this will often be used for producing a new func-
tion.The most common use case with flip is calling it with just the function
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parameter, or the function parameter and one extra parameter, and then
passing the resulting function on to a map or a zipWith:

ghci> zipWith (flip (++)) ["love you", "love me"] ["i ", "you "]

["i love you","you love me"]

ghci> map (flip subtract 20) [1,2,3,4]

[19,18,17,16]

You can use lambdas this way in your own functions when you want to
make it explicit that your functions are meant to be partially applied and
then passed on to other functions as a parameter.

I Fold You So
Back when we were dealing with
recursion in Chapter 4, many of
the recursive functions that op-
erated on lists followed the same
pattern. We had a base case for
the empty list, we introduced the
x:xs pattern, and then we per-
formed some action involving a
single element and the rest of the
list. It turns out this is a very com-
mon pattern, so the creators of
Haskell introduced some useful
functions, called folds, to encapsu-
late it. Folds allow you to reduce
a data structure (like a list) to a
single value.

Folds can be used to implement any function where you traverse a list
once, element by element, and then return something based on that. When-
ever you want to traverse a list to return something, chances are you want
a fold.

A fold takes a binary function (one that takes two parameters, such as + or
div), a starting value (often called the accumulator), and a list to fold up.

Lists can be folded up from the left or from the right. The fold function
calls the given binary function, using the accumulator and the first (or last)
element of the list as parameters. The resulting value is the new accumula-
tor. Then the fold function calls the binary function again with the new ac-
cumulator and the new first (or last) element of the list, resulting in another
new accumulator. This repeats until the function has traversed the entire list
and reduced it down to a single accumulator value.
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Left Folds with foldl
First, let’s look at the foldl function. This is called a left fold, since it folds the
list up from the left side. In this case, the binary function is applied between
the starting accumulator and the head of the list. That produces a new accu-
mulator value, and the binary function is called with that value and the next
element, and so on.

Let’s implement the sum function again, this time using a fold instead of
explicit recursion:

sum' :: (Num a) => [a] -> a

sum' xs = foldl (\acc x -> acc + x) 0 xs

Now we can test it:

ghci> sum' [3,5,2,1]

11

Let’s take an in-depth look at how this fold
happens. \acc x -> acc + x is the binary function.
0 is the starting value, and xs is the list to be folded
up. First, 0 and 3 are passed to the binary function
as the acc and x parameters, respectively. In this
case, the binary function is simply an addition, so
the two values are added, which produces 3 as the
new accumulator value. Next, 3 and the next list
value (5) are passed to the binary function, and
they are added together to produce 8 as the new
accumulator value. In the same way, 8 and 2 are
added together to produce 10, and then 10 and 1

are added together to produce the final value of
11. Congratulations, you’ve folded your first list!

The diagram on the left illustrates how a fold
happens, step by step. The number that’s on the
left side of the + is the accumulator value. You
can see how the list is consumed up from the left
side by the accumulator. (Om nom nom nom!)
If we take into account that functions are curried,
we can write this implementation even more suc-
cinctly, like so:

sum' :: (Num a) => [a] -> a

sum' = foldl (+) 0

The lambda function (\acc x -> acc + x) is the same as (+). We can omit
the xs as the parameter because calling foldl (+) 0 will return a function that
takes a list. Generally, if you have a function like foo a = bar b a, you can
rewrite it as foo = bar b because of currying.
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Right Folds with foldr
The right fold function, foldr, is similar to the left fold, except the accumu-
lator eats up the values from the right. Also, the order of the parameters in
the right fold’s binary function is reversed: The current list value is the first
parameter, and the accumulator is the second. (It makes sense that the right
fold has the accumulator on the right, since it folds from the right side.)

The accumulator value (and hence, the result) of a fold can be of any
type. It can be a number, a Boolean, or even a new list. As an example, let’s
implement the map function with a right fold. The accumulator will be a list,
and we’ll be accumulating the mapped list element by element. Of course,
our starting element will need to be an empty list:

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldr (\x acc -> f x : acc) [] xs

If we’re mapping (+3) to [1,2,3], we approach the list from the right
side. We take the last element, which is 3, and apply the function to it, which
gives 6. Then we prepend it to the accumulator, which was []. 6:[] is [6], so
that’s now the accumulator. We then apply (+3) to 2, yielding 5, and prepend
(:) that to the accumulator. Our new accumulator value is now [5,6]. We
then apply (+3) to 1 and prepend the result to the accumulator again, giving
a final result of [4,5,6].

Of course, we could have implemented this function with a left fold in-
stead, like this:

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldl (\acc x -> acc ++ [f x]) [] xs

However, the ++ function is much slower than :, so we usually use right
folds when we’re building up new lists from a list.

One big difference between the two types of folds is that right folds work
on infinite lists, whereas left ones don’t!

Let’s implement one more function with a right fold. As you know, the
elem function checks whether a value is part of a list. Here’s how we can use
foldr to implement it:

elem' :: (Eq a) => a -> [a] -> Bool

elem' y ys = foldr (\x acc -> if x == y then True else acc) False ys

Here, the accumulator is a Boolean value. (Remember that the type of
the accumulator value and the type of the end result are always the same
when dealing with folds.) We start with a value of False, since we’re assuming
the value isn’t in the list to begin with. This also gives us the correct value if
we call it on the empty list, since calling a fold on an empty list just returns
the starting value.
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Next, we check if the current element
is the element we want. If it is, we set the
accumulator to True. If it’s not, we just
leave the accumulator unchanged. If it
was False before, it stays that way because
this current element is not the one we’re
seeking. If it was True, it stays that way as
the rest of the list is folded up.

The foldl and foldr1 Functions
The foldl1 and foldr1 functions work much like foldl and foldr, except that
you don’t need to provide them with an explicit starting accumulator. They
assume the first (or last) element of the list to be the starting accumulator,
and then start the fold with the element next to it. With that in mind, the
maximum function can be implemented like so:

maximum' :: (Ord a) => [a] -> a

maximum' = foldl1 max

We implemented maximum by using a foldl1. Instead of providing a starting
accumulator, foldl1 just assumes the first element as the starting accumula-
tor and moves on to the second one. So all foldl1 needs is a binary function
and a list to fold up! We start at the beginning of the list and then compare
each element with the accumulator. If it’s greater than our accumulator, we
keep it as the new accumulator; otherwise, we keep the old one. We passed
max to foldl1 as the binary function because it does exactly that: takes two val-
ues and returns the one that’s larger. By the time we’ve finished folding our
list, only the largest element remains.

Because they depend on the lists they’re called with having at least one
element, these functions cause runtime errors if called with empty lists. foldl
and foldr, on the other hand, work fine with empty lists.

NOTE When making a fold, think about how it acts on an empty list. If the function doesn’t
make sense when given an empty list, you can probably use a foldl1 or foldr1 to im-
plement it.

Some Fold Examples
To demonstrate how powerful folds are, let’s implement some standard li-
brary functions using folds. First, we’ll write our own version of reverse:

reverse' :: [a] -> [a]

reverse' = foldl (\acc x -> x : acc) []

Here, we reverse a list by using the empty list as a starting accumulator
and then approaching our original list from the left and placing the current
element at the start of the accumulator.
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The function \acc x -> x : acc is just like the : function, except that
the parameters are flipped. That’s why we could have also written reverse'

like so:

reverse' :: [a] -> [a]

reverse' = foldl (flip (:)) []

Next, we’ll implement product:

product' :: (Num a) => [a] -> a

product' = foldl (*) 1

To calculate the product of all the numbers in the list, we start with 1

as the accumulator. Then we fold left with the * function, multiplying each
element with the accumulator.

Now we’ll implement filter:

filter' :: (a -> Bool) -> [a] -> [a]

filter' p = foldr (\x acc -> if p x then x : acc else acc) []

Here, we use an empty list as the starting accumulator. Then we fold
from the right and inspect each element. p is our predicate. If p x is True—
meaning that if the predicate holds for the current element—we put it at the
beginning of the accumulator. Otherwise, we just reuse our old accumulator.

Finally, we’ll implement last:

last' :: [a] -> a

last' = foldl1 (\_ x -> x)

To get the last element of a list, we use a foldl1. We start at the first el-
ement of the list, and then use a binary function that disregards the accu-
mulator and always sets the current element as the new accumulator. Once
we’ve reached the end, the accumulator—that is, the last element—will be
returned.

Another Way to Look at Folds
Another way to picture right and left folds is as successive applications of
some function to elements in a list. Say we have a right fold, with a binary
function f and a starting accumulator z. When we right fold over the list
[3,4,5,6], we’re essentially doing this:

f 3 (f 4 (f 5 (f 6 z)))

f is called with the last element in the list and the accumulator, then
that value is given as the accumulator to the next-to-last value, and so on.
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If we take f to be + and the starting accumulator value to be 0, we’re do-
ing this:

3 + (4 + (5 + (6 + 0)))

Or if we write + as a prefix function, we’re doing this:

(+) 3 ((+) 4 ((+) 5 ((+) 6 0)))

Similarly, doing a left fold over that list with g as the binary function and
z as the accumulator is the equivalent of this:

g (g (g (g z 3) 4) 5) 6

If we use flip (:) as the binary function and [] as the accumulator (so
we’re reversing the list), that’s the equivalent of the following:

flip (:) (flip (:) (flip (:) (flip (:) [] 3) 4) 5) 6

And sure enough, if you evaluate that expression, you get [6,5,4,3].

Folding Infinite Lists
Viewing folds as successive function applications on values of a list can give
you insight as to why foldr sometimes works perfectly fine on infinite lists.
Let’s implement the and function with a foldr, and then write it out as a se-
ries of successive function applications, as we did with our previous exam-
ples. You’ll see how foldr works with Haskell’s laziness to operate on lists
that have infinite length.

The and function takes a list of Bool values and returns False if one or
more elements are False; otherwise, it returns True. We’ll approach the list
from the right and use True as the starting accumulator. We’ll use && as the
binary function, because we want to end up with True only if all the elements
are True. The && function returns False if either of its parameters is False, so
if we come across an element in the list that is False, the accumulator will be
set as False and the final result will also be False, even if all the remaining
elements are True:

and' :: [Bool] -> Bool

and' xs = foldr (&&) True xs

Knowing how foldr works, we see that the expression and' [True,False,True]

will be evaluated like this:

True && (False && (True && True))
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The last True represents our starting accumulator, whereas the first three
Bool values are from the list [True,False,True]. If we try to evaluate the previ-
ous expression, we will get False.

Now what if we try this with an infinite list, say repeat False, which has an
infinite number of elements, all of which are False? If we write that out, we
get something like this:

False && (False && (False && (False ...

Haskell is lazy, so it will compute only what it really must. And the &&

function works in such a way that if its first parameter is False, it disregards
its second parameter, because the && function returns True only if both of its
parameters are True:

(&&) :: Bool -> Bool -> Bool

True && x = x

False && _ = False

In the case of the endless list of False values, the second pattern matches,
and False is returned without Haskell needing to evaluate the rest of the infi-
nite list:

ghci> and' (repeat False)

False

foldr will work on infinite lists when the binary function that we’re pass-
ing to it doesn’t always need to evaluate its second parameter to give us some
sort of answer. For instance, && doesn’t care what its second parameter is if
its first parameter is False.

Scans
The scanl and scanr functions are like foldl and foldr, except they report
all the intermediate accumulator states in the form of a list. The scanl1 and
scanr1 functions are analogous to foldl1 and foldr1. Here are some examples
of these functions in action:

ghci> scanl (+) 0 [3,5,2,1]

[0,3,8,10,11]

ghci> scanr (+) 0 [3,5,2,1]

[11,8,3,1,0]

ghci> scanl1 (\acc x -> if x > acc then x else acc) [3,4,5,3,7,9,2,1]

[3,4,5,5,7,9,9,9]

ghci> scanl (flip (:)) [] [3,2,1]

[[],[3],[2,3],[1,2,3]]

When using a scanl, the final result will be in the last element of the re-
sulting list. scanr will place the result in the head of the list.
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Scans are used to monitor the progress of a function that can be imple-
mented as a fold. As an exercise in using scans, let’s try answering this ques-
tion: How many elements does it take for the sum of the square roots of all
natural numbers to exceed 1,000?

To get the square roots of all natural numbers, we just call map sqrt [1..].
To get the sum, we could use a fold. However, because we’re interested in
how the sum progresses, we’ll use a scan instead. Once we’ve done the scan,
we can check how many sums are under 1,000.

sqrtSums :: Int

sqrtSums = length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..]))) + 1

We use takeWhile here instead of filter because filter wouldn’t cut off
the resulting list once a number that’s equal to or over 1,000 is found; it
would keep searching. Even though we know the list is ascending, filter
doesn’t, so we use takeWhile to cut off the scan list at the first occurrence of
a sum greater than 1,000.

The first sum in the scan list will be 1. The second will be 1 plus the
square root of 2. The third will be that plus the square root of 3. If there are
x sums under 1,000, then it takes x+1 elements for the sum to exceed 1,000:

ghci> sqrtSums

131

ghci> sum (map sqrt [1..131])

1005.0942035344083

ghci> sum (map sqrt [1..130])

993.6486803921487

And behold, our answer is correct! If we sum the first 130 square roots,
the result is just below 1,000, but if we add another one to that, we go over
our threshold.

Function Application with $
Now we’ll look at the $ function, also called the function application operator.
First, let’s see how it’s defined:

($) :: (a -> b) -> a -> b

f $ x = f x

What the heck? What is this useless function? It’s
just function application! Well, that’s almost true,
but not quite. Whereas normal function application
(putting a space between two things) has a really high
precedence, the $ function has the lowest precedence.
Function application with a space is left-associative (so
f a b c is the same as ((f a) b) c), while function ap-
plication with $ is right-associative.
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So how does this help us? Most of the time, it’s a convenience function
that lets us write fewer parentheses. For example, consider the expression
sum (map sqrt [1..130]). Because $ has such a low precedence, we can rewrite
that expression as sum $ map sqrt [1..130]. When a $ is encountered, the ex-
pression on its right is applied as the parameter to the function on its left.

How about sqrt 3 + 4 + 9? This adds together 9, 4, and the square root
of 3. However, if we wanted the square root of 3 + 4 + 9, we would need to
write sqrt (3 + 4 + 9). With $, we can also write this as sqrt $ 3 + 4 + 9. You
can imagine $ as almost being the equivalent of writing an opening paren-
thesis and then writing a closing parenthesis on the far right side of the
expression.

Let’s look at another example:

ghci> sum (filter (> 10) (map (*2) [2..10]))

80

Whoa, that’s a lot of parentheses! It looks kind of ugly. Here, (*2) is
mapped onto [2..10], then we filter the resulting list to keep only those
numbers that are larger than 10, and finally those numbers are added
together.

We can use the $ function to rewrite our previous example and make it
a little easier on the eyes:

ghci> sum $ filter (> 10) (map (*2) [2..10])

80

The $ function is right-associative, meaning that something like f $ g $ x

is equivalent to f $ (g $ x). With that in mind, the preceding example can
once again be rewritten as follows:

ghci> sum $ filter (> 10) $ map (*2) [2..10]

80

Apart from getting rid of parentheses, $ lets us treat function applica-
tion like just another function. This allows us to, for instance, map function
application over a list of functions, like this:

ghci> map ($ 3) [(4+), (10*), (^2), sqrt]

[7.0,30.0,9.0,1.7320508075688772]

Here, the function ($ 3) gets mapped over the list. If you think about
what the ($ 3) function does, you’ll see that it takes a function and then ap-
plies that function to 3. So every function in the list gets applied to 3, which
is evident in the result.
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Function Composition
In mathematics, function composition is defined like this: (f ◦ g)(x) = f(g(x)).
This means that composing two functions is the equivalent of calling one
function with some value and then calling another function with the result
of the first function.

In Haskell, function composition is pretty much the same thing. We do
function composition with the . function, which is defined like this:

(.) :: (b -> c) -> (a -> b) -> a -> c

f . g = \x -> f (g x)

Notice the type declaration. f must
take as its parameter a value that has the
same type as g’s return value. So the result-
ing function takes a parameter of the same
type that g takes and returns a value of the
same type that f returns. For example, the
expression negate . (* 3) returns a function
that takes a number, multiplies it by 3, and
then negates it.

One use for function composition is
making functions on the fly to pass to other
functions. Sure, we can use lambdas for

that, but many times, function composition is clearer and more concise.
For example, say we have a list of numbers and we want to turn them all

into negative numbers. One way to do that would be to get each number’s
absolute value and then negate it, like so:

ghci> map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]

[-5,-3,-6,-7,-3,-2,-19,-24]

Notice the lambda and how it looks like the result of function composi-
tion. Using function composition, we can rewrite that as follows:

ghci> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]

[-5,-3,-6,-7,-3,-2,-19,-24]

Fabulous! Function composition is right-associative, so we can com-
pose many functions at a time. The expression f (g (z x)) is equivalent to
(f . g . z) x. With that in mind, we can turn something messy, like this:

ghci> map (\xs -> negate (sum (tail xs))) [[1..5],[3..6],[1..7]]

[-14,-15,-27]

82 Chapter 5 Learn You a Haskell for Great Good! 
© 2011 by Miran Lipovača



into something much cleaner, like this:

ghci> map (negate . sum . tail) [[1..5],[3..6],[1..7]]

[-14,-15,-27]

negate . sum . tail is a function that takes a list, applies the tail function
to it, then applies the sum function to the result of that, and finally applies
negate to the previous result. So it’s equivalent to the preceding lambda.

Function Composition with Multiple Parameters
But what about functions that take several parameters? Well, if we want to
use them in function composition, we usually must partially apply them so
that each function takes just one parameter. Consider this expression:

sum (replicate 5 (max 6.7 8.9))

This expression can be rewritten as follows:

(sum . replicate 5) max 6.7 8.9

which is equivalent to this:

sum . replicate 5 $ max 6.7 8.9

The function replicate 5 is applied to the result of max 6.7 8.9, and then
sum is applied to that result. Notice that we partially applied the replicate

function to the point where it takes only one parameter, so that when the
result of max 6.7 8.9 gets passed to replicate 5, the result is a list of numbers,
which is then passed to sum.

If we want to rewrite an expression with a lot of parentheses using func-
tion composition, we can start by first writing out the innermost function
and its parameters. Then we put a $ before it and compose all the functions
that came before by writing them without their last parameter and putting
dots between them. Say we have this expression:

replicate 2 (product (map (*3) (zipWith max [1,2] [4,5])))

We can write this as follows:

replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

How did we turn the first example into the second one? Well, first we
look at the function on the far right and its parameters, just before the bunch
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of closing parentheses. That function is zipWith max [1,2] [4,5]. We’re going
to keep that as it is, so now we have this:

zipWith max [1,2] [4,5]

Then we look at which function was applied to zipWith max [1,2] [4,5]

and see that it was map (*3). So we put a $ between it and what we had before:

map (*3) $ zipWith max [1,2] [4,5]

Now we start the compositions. We check which function was applied to
all this, and we see that it was product, so we compose it with map (*3):

product . map (*3) $ zipWith max [1,2] [4,5]

And finally, we see that the function replicate 2 was applied to all this,
and we can write the expression as follows:

replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

If the expression ends with three parentheses, chances are that if you
translate it into function composition by following this procedure, it will
have two composition operators.

Point-Free Style
Another common use of function composition is defining functions in the
point-free style. For example, consider a function we wrote earlier:

sum' :: (Num a) => [a] -> a

sum' xs = foldl (+) 0 xs

The xs is on the far right on both sides of the equal sign. Because of cur-
rying, we can omit the xs on both sides, since calling foldl (+) 0 creates a
function that takes a list. In this way, we are writing the function in point-
free style:

sum' :: (Num a) => [a] -> a

sum' = foldl (+) 0

As another example, let’s try writing the following function in point-free
style:

fn x = ceiling (negate (tan (cos (max 50 x))))

We can’t just get rid of the x on both right sides, since the x in the func-
tion body is surrounded by parentheses. cos (max 50) wouldn’t make sense—
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you can’t get the cosine of a function. What we can do is express fn as a com-
position of functions, like this:

fn = ceiling . negate . tan . cos . max 50

Excellent! Many times, a point-free style is more readable and concise,
because it makes you think about functions and what kinds of functions
composing them results in, instead of thinking about data and how it’s shuf-
fled around. You can take simple functions and use composition as glue to
form more complex functions.

However, if a function is too complex, writing it in point-free style can
actually be less readable. For this reason, making long chains of function
composition is discouraged. The preferred style is to use let bindings to give
labels to intermediary results or to split the problem into subproblems that
are easier for someone reading the code to understand.

Earlier in the chapter, we solved the problem of finding the sum of all
odd squares that are smaller than 10,000. Here’s what the solution looks like
when put into a function:

oddSquareSum :: Integer

oddSquareSum = sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

With our knowledge of function composition, we can also write the func-
tion like this:

oddSquareSum :: Integer

oddSquareSum = sum . takeWhile (<10000) . filter odd $ map (^2) [1..]

It may seem a bit weird at first, but you will get used to this style quickly.
There’s less visual noise because we removed the parentheses. When reading
this, you can just say that filter odd is applied to the result of map (^2) [1..],
then takeWhile (<10000) is applied to the result of that, and finally sum is ap-
plied to that result.
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