
7
DanCe PaRTies anD fLoWeR
PaRaDes WiTh WhiLe LooPs

Loops make it easy to repeat code again and
again. Instead of copying and pasting the

same code, you can use a loop to repeat the
code as many times as you want. You’ll use loops

in this chapter to make your programs repeat with-
out having to rerun them. We’ll focus on one type of
Python loop known as the while loop.

a simple while Loop
You use while loops to repeat blocks of code. Similar to if statements, a while
loop will execute the code inside it as long as a condition is True. That is,
a condition must be met in order for the body of the statement to run.

The difference between a while loop and an if statement is that the
code in the if statement executes only once at the most, whereas the code
in the while loop can repeat many times. Programmers call the repeating of
code iteration. When a loop repeats, you say it iterates.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

124 Chapter 7

For example, this code uses a while loop to print the numbers 1 to 5:

count = 1
while count <= 5:
 print(count)
 count += 1
print("Loop finished")

The count variable records the number of times that the loop has
repeated. It starts with the value of 1. The condition in the while loop
checks whether the count is less than or equal to 5.

No t e In Chapter 3 you learned that += is a shorthand operator. You could use the standard
addition operator count = count + 1 to do the same thing.

The first time the loop runs, the value of count is 1, which is less than 5.
The condition of the loop is True, and the body of the loop runs. Next, the
program prints the value of count to the Python shell, and then it adds 1 to
the value of count. The while loop now starts again and checks the condition
again, going through each step until the count variable is greater than 5.

Outside the loop is one final line, which prints "Loop finished".
Save this program and run it; you should see the following output:

1
2
3
4
5
Loop finished

Try experimenting a bit with the code. Change the conditions so you
list more than 5 numbers or change the amount by which the count variable
increases. Here’s a refresher on how the code works. The while statement
follows these steps:

1. Check whether the condition is True.

2. If the condition is True:

a. Execute the body of code.

b. Repeat step 1.

3. If the condition is False:

a. Ignore the body of code.

4. Continue to the line after the while loop block.

Let’s try using a while loop in Minecraft to teleport to lots of new places!

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 125

Mission #33: a Random Teleportation Tour
In Mission #3 (page 40), you teleported the player to different positions
in the game. Let’s rewrite that program using a while loop so you can repeat
the teleportation again and again.

By looping some code that will teleport the player to a random loca-
tion, you can make the program more powerful and a lot easier to read.
Cool, huh?

The following code will teleport the player to a random location once
by picking random values in the game world for the variables x, y, and z.
Then it will set the player’s position using those variables.

import random
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u # Add the count variable here
v # Start the while loop here
w x = random.randint(-127, 127) # Indent the code from this line

y = random.randint(0, 64)
z = random.randint(-127, 127)

mc.player.setTilePos(x, y, z)
x # Add 1 to the value of the count variable here

Right now, however, the code will only teleport the player once.
Although that’s pretty cool, you can make it totally awesome. Let’s write a
loop so the code repeats five times, making this quite a whirlwind tour.

To change the code to use a loop, follow these four steps:

1. Create a count variable to control the loop u.

2. Add a while loop with a condition based on count v.

3. Indent the body of the while statement w.

4. Increment the value of count with each loop x.

The purpose of the count variable and the count increment is to keep
track of the number of times the loop has repeated. I’ll talk more about
them in the next section. For now, all you need to know is that count lets us
control how many times this code repeats.

Listing 7-1 shows the code with the changes added.

import random
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

count = 0
while count < 5:
 x = random.randint(-127, 127)
 y = random.randint(0, 64)
 z = random.randint(-127, 127)

random
Teleport.py

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

126 Chapter 7

 mc.player.setTilePos(x, y, z)
 count += 1

Listing 7-1: Code to randomly teleport the player around the game world

Copy Listing 7-1 into a new file, save it as randomTeleport.py in a new
folder called whileLoops, and run the code. You should see the player zip
around the Minecraft world. But the code runs far too quickly! The entire
journey is over in less than a second. Let’s fix that together.

You’ll use the time module to slow down the code. Follow these steps:

1. On the first line of the program, add the statement import time. This
imports Python’s time module, which contains a set of handy functions
related to timing and more.

2. Add the line time.sleep(10) at the end of the body of your while loop to
add a delay of 10 seconds to your program. Make sure you indent this
new final line of your program so it’s within the while loop!

Save the program and run it. Now the player should teleport to a new
random location every 10 seconds. Figure 7-1 shows my program running.

Figure 7-1: Every 10 seconds, the program teleports me to a new location.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 127

BonUs oBJeCTiVe: sLeeP TighT

At the moment, the program will wait for 10 seconds at the end of every loop .
What happens if you move the time.sleep(10) statement to the start of the loop?

Controlling Loops with a Count
Variable

Count variables are a common way of storing the number of times a pro-
gram has repeated. You’ve seen these variables in action a few times now.
Let’s look at another example:

count = 0
while count < 5:
 print(count)
 count += 1

The while loop’s condition tests that the value of the count variable is
less than 5. In the body of the loop, I’ve changed the value of the count vari-
able to record the number of times the count has repeated. Adding to the
value of a count variable is called incrementing.

The last line of this code increases the value of the count variable by 1.
Each time the code repeats, it will check the new value of the count variable
to see whether it is less than 5. When it is equal to or greater than 5, the loop
will stop.

If you forget to increment the count variable, you’ll end up with an
infinite loop, which will repeat the loop forever, as shown in the following
example:

count = 0
while count < 5:
 print(count)

The value of count is always 0 because it’s never incremented. So, the
condition of the loop will always be True, and the loop will repeat forever. If
you don’t believe me, try running the code!

0
0
0
0
0
--snip--

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

128 Chapter 7

To break the execution of this infinite program, press ctrl-C. To cor-
rect the code, just add the line count += 1 to the loop’s body. Now you won’t
get trapped in an infinite loop. Phew!

Counts don’t always have to be incremented by 1. In some situations
you may want to increment the count by a different value. In the following
example, the count is incremented by 2 every time; the result is that the
code prints all the even numbers between 0 and 100:

count = 0
while count < 100:
 print(count)
 count += 2

You can also count backward using a negative number to decrement the
value of the count. The following code counts down from 100 to 1:

count = 100
while count > 0:
 print(count)
 count -= 1

The only difference between this example and the previous examples is
the condition. Here I’ve used a greater than comparator (>). As long as the
count is greater than 0, the loop continues; when the count reaches 0, the
loop stops.

No t e The variable used to control a loop isn’t always called count. You could call it repeats
or anything else you want. If you look at other people’s code, you will see a huge range
of different names.

Mission #34: The Watery Curse
Let’s try something a bit nasty and write a curse for the player that lasts for
just a short time. Curses in video games might debuff the character in some
way, such as slowing them down or making them weaker, often for just a
little while.

We’ll create a curse program that places a flowing water block at the
player’s position once a second for 30 seconds. This will make it difficult for
the player to move without being pushed around by flowing water.

The following code places a flowing water block at the player’s position:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getPos()
mc.setBlock(pos.x, pos.y, pos.z, 8)

waterCurse.py

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 129

This code will place a water block at the player’s current position only
once. It is your task to make it repeat. The final code should repeat 30
times, and each iteration of the loop should last 1 second.

Save this code as waterCurse.py in the whileLoops folder and run it once
to make sure it works. You should see a single water block appear at the
player’s position before the program stops.

Let’s talk through what to add next to make this curse last. Use what
you learned about while loops and count variables to do the following:

1. Add a count variable to the program.

2. Add a loop to the program to repeat the last two lines of code. The
loop should repeat 30 times.

3. Increment the count variable at the end of the loop.

4. Import the time module (on the first line of your program) and then
add a 1 second sleep on the last line of the while loop.

Save the program and test it. As you walk around the game world, the
program should create one block of water every second for 30 seconds. If
you get stuck, go back to the steps in Mission #33 (page 125) for help.

Figure 7-2 shows the curse in action.

Figure 7-2: Oh no! I’m being followed by a small flood.

BonUs oBJeCTiVe: a fasTeR fLooD

How would you make the loop repeat twice as fast (every half a second) while still
lasting for 30 seconds?

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

130 Chapter 7

infinite while Loops
In most cases, it is very important that the Boolean condition in your while
loop eventually become False; otherwise, the loop will iterate forever, and
your computer might crash.

But there are times when you may want to program an infinite loop.
For example, video games often use an infinite loop to check for user input
and manage player movement. Of course, these video games include a Quit
button so you can pause or stop the infinite loops when you need to take a
break!

A simple way to create an infinite loop is to use a True condition when
you define a while loop, as shown here:

while True:
 print("Hello")

This code will repeat forever, printing the string "Hello" over and over
again. Whether or not you meant to create an infinite loop, pressing ctrl-C
in the Python shell is a common way to stop it. In IDLE you can select
Shell4Restart Shell to stop the loop as well.

Note that any code that is placed after an infinite while loop will never
run. In the following example, the last line of code is unreachable due to
the infinite while loop that comes before it:

while True:
 print("Hello")
print("This line is never reached")

Although infinite loops can sometimes be tricky, you can also create
them to do lots of cool things. Let’s try this next!

Mission #35: flower Trail
The program you’ll write in this mission is like the one in Mission #34,
but instead of placing water blocks, you’ll create a trail of flowers behind
the player. Flowers are much nicer than floods!

Open the file waterCurse.py in the whileLoops folder and then save it as
flowerTrail.py.

To make an infinite trail of flowers appear as the player walks around
the game, make the following changes to the program:

1. Change the condition of the while loop to True.

2. Delete the count variable and the increment.

3. Change the block type argument in the setBlock() function from 8 to 38.

4. Reduce the value of the argument in the sleep() function to 0.2 to make
five flowers appear every second.

5. Save the program and run it. Figure 7-3 shows what you should see.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 131

Figure 7-3: Look at all the beautiful flowers!

BonUs oBJeCTiVe: a TRaiL of DesTRUCTion

The flowerTrail.py program is very flexible . Try changing the block type that is
placed by the program . A fun block type to try is explosive TNT (setBlock(x, y,
z, 46, 1)) . Notice the extra argument 1 after 46, which is the TNT block type . The
1 sets the state of the TNT to make it detonate just by hitting it, without needing
flint and steel . Just click the left mouse button a few times when pointing at the TNT
to make it explode!

fancy Conditions
Because while loops expect a Boolean value for their condition, you can use
any of the comparators and Boolean operators that you’ve learned about
so far. For instance, you’ve already seen that the greater than and less than
operators work just like they did in earlier chapters.

But you can control while loops with comparators and Boolean opera-
tors in other ways as well. Let’s take a look!

We’ll start by writing a more interactive condition. The following code
creates the continueAnswer variable before the loop starts and checks that the
value is equal to "Y". Note that we can’t use the word continue as a variable
name because it is a reserved word in Python.

continueAnswer = "Y"
coins = 0
while continueAnswer == "Y":
 coins = coins + 1
 continueAnswer = input("Continue? Y/N")
print("You have " + str(coins) + " coins")

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

132 Chapter 7

In the last line of the while loop, the program asks for input from the
user. If the user presses anything besides "Y" in response, the loop will exit.
The user can repeatedly press Y and Y and Y, and each time the value of the
coins variable will increase by 1.

Notice that the variable being checked, continueAnswer, is created
before the loop starts. If it wasn’t, the program would display an error.
That’s why the variable we use to test the condition must exist before we try
to use it, and it must be True when the program reaches the while loop the
first time; otherwise, the condition won’t be met, and the while loop’s body
statement will never execute.

Mission #36: Diving Contest
Let’s have some fun with while loops and the equal to (==) comparator. In
this mission, you’ll create a mini-game in which the player dives underwater
for as long as they can. The program will record how many seconds they
stay underwater and display their score at the end of the program. To con-
gratulate the player, the program will shower them with flowers if they stay
underwater longer than 6 seconds.

Here is some code to get you started:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import time

score = 0
pos = mc.player.getPos()

u blockAbove = mc.getBlock(pos.x, pos.y + 2, pos.z)

v # Add a while loop here
time.sleep(1)
pos = mc.player.getPos()

w blockAbove = mc.getBlock(pos.x, pos.y + 2, pos.z)
x score = score + 1

mc.postToChat("Current score: " + str(score))

mc.postToChat("Final score: " + str(score))

y if score > 6:
 finalPos = mc.player.getTilePos()
 mc.setBlocks(finalPos.x - 5, finalPos.y + 10, finalPos.z - 5,
 finalPos.x + 5, finalPos.y + 10, finalPos.z + 5, 38)

Save the program as divingContest.py in your whileLoops folder. The score
variable keeps track of how many seconds the player is underwater.

Run the code to see what happens. At the moment, the program isn’t
complete: it only checks whether the player is underwater once and then
finishes.

diving Contest
.py

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 133

Before you fix this, let’s look at what the rest of the code does. The
blockAbove variable stores the type of the block located at the player’s head u.
For example, if the player’s head is underwater, this variable will store a
value of 8 (which means the block is water). Later in the code, you’ll set
blockAbove to store the value of the block above the player’s head again w
so when you create your while loop, it will update blockAbove to the current
block above the player’s head. At x, the program adds 1 point to the total
for every second the player is underwater, and at y, it uses an if statement
to create a shower of flowers above the player if the score is greater than 6.

It’s up to you to add a loop to the program that uses the blockAbove
variable as a condition at v. Make the while loop check whether blockAbove
is equal to water (block type 8) or equal to flowing water (block type 9).
You can use the following condition in the while loop to check this: while
blockAbove == 8 or blockAbove == 9. This checks whether the player is cur-
rently underwater and will continue to check whether the player is under-
water every time the loop repeats.

To test your program, find some water that’s at least three blocks deep
and dive into it. The program will run only if you’re already underwater.
When you run the program, it should start displaying how many seconds
you’ve been underwater. After a while, swim to the surface. The program
should display your score and shower you with flowers if you were under-
water for 6 seconds or more. Figure 7-4 shows the player underwater and
the score being displayed. Figure 7-5 shows the flowers that appear when
you win.

Figure 7-4: I’m holding my breath underwater, and the number of seconds I’ve been
underwater is displayed.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

134 Chapter 7

Figure 7-5: I won my very own flowery celebration!

BonUs oBJeCTiVe: a WinneR is YoU

Try adding extra prizes by writing more code in the if statement at the end of the
program . If the player gets a high score, you could give them a gold block . Try
adding several levels of difficulty with different prizes for each one .

Boolean operators and while Loops
You can use Boolean operators like and, or, and not with a while loop when
you want the loop to use more than one condition. For example, the follow-
ing loop will iterate while the user has not input the correct password and
has made three attempts or fewer:

password = "cats"
passwordInput = input("Please enter the password: ")
attempts = 0

u while password != passwordInput and attempts < 3:
v attempts += 1
w passwordInput = input("Incorrect. Please enter the password: ")

x if password == passwordInput:
 print("Password accepted.")

The while loop condition u does two tasks: it checks whether the
password is different from the user’s input (password != passwordInput) and
checks whether the user has tried to enter the password three times or less
(attempts < 3). The and operator allows the while loop to check both condi-
tions at the same time. If the condition is False, the loop increments the

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 135

attempts variable v and asks the user to reenter the password w. The loop
will finish if the user enters the correct password or the attempts variable
is greater than 3. After the loop finishes, the program will output Password
accepted only if the user entered the correct password x.

Checking a Range of Values in while Loops
You can also check for values in a certain range using a while loop. For
example, the following code checks whether the value the user has entered
is between 0 and 10. If it is not, the loop will exit.

position = 0
u while 0 <= position <= 10:

 position = int(input("Enter your position 0-10: "))
 print(position)

If the position variable is greater than 10, the loop won’t repeat u. The
same will happen if the value is less than 0. This is useful in Minecraft when
you’re checking whether the player’s position is in a certain area in the
game, as you’ll see in the next mission.

Mission #37: Make a Dance floor
It’s time to dance! But before you can bust out some sweet moves, you’ll
need a dance floor. The program in this mission will generate a dance
floor that flashes different colors every half second as long as the player
stays on the floor.

The following is the start of the code. It creates a dance floor at the
player’s current position and uses an if statement to change colors. But the
code is not complete.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import time

pos = mc.player.getTilePos()
floorX = pos.x – 2
floorY = pos.y - 1
floorZ = pos.z – 2
width = 5
length = 5
block = 41

u mc.setBlocks(floorX, floorY, floorZ,
 floorX + width, floorY, floorZ + length, block)

v while floorX <= pos.x <= floorX + width and # Check z is within the floor
w if block == 41:

 block = 57
 else:
 block = 41

danceFloor.py

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

136 Chapter 7

 mc.setBlocks(floorX, floorY, floorZ,
 floorX + width, floorY, floorZ + length, block)
 pos = mc.player.getTilePos()
 time.sleep(0.5)

Open IDLE, create a new file, and save the program as danceFloor.py in
the whileLoops folder. The code builds the dance floor based on the player’s
current position u and stores the dance floor’s location and size in the
floorX, floorY, floorZ, width, and length variables. Inside the while loop, the
code uses an if statement to alternate the blocks that the dance floor is
made of w, making the dance floor look like it’s flashing.

To get the program to work properly, you need to change the while loop’s
condition to check whether the player’s z-coordinate is on the dance floor v.
In other words, check whether pos.z is greater than or equal to floorZ and
less than or equal to floorZ plus length. For guidance, look at how I checked
whether pos.x is on the dance floor by using (floorX <= pos.x <= floorX +
width). Figure 7-6 shows the dance floor in action!

Figure 7-6: I’m showing off my moves on the dance floor.

When you’ve completed the program, save it and run it. A dance floor
should appear below the player and change every half second. Dance

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 137

around a bit—have some fun! When you’re done, leave the dance floor
and make sure it stops flashing. It won’t switch on again unless you run
the program again to create a new dance floor.

BonUs oBJeCTiVe: PaRTY’s oVeR

When the player is finished dancing on the dance floor, make the floor disappear .
To do this, change the dance floor to air when the loop finishes .

nested if statements and while Loops
You can write more powerful programs by using if statements and nested if
statements inside while loops. You may have noticed a nested if statement in
the code in Mission #37 (page 135).

In the following example, the nested if statement checks the last word
that was printed and decides whether to print the words "mine" and "craft".
The loop repeats 50 times.

word = "mine"
count = 0
while count < 50:
 print(word)
 if word == "mine":
 word = "craft"
 else:
 word = "mine"

The word variable stores the first word that will be printed. The if
statement in the loop checks whether the current word is "mine" and, if it
is, changes the word to "craft" and prints it on the next iteration of the
loop. If the word isn’t "mine", it will be changed to "mine". This is an infi-
nite loop, so be sure to use ctrl-C to escape!

You can also nest elif statements and other while loops inside while
loops.

The following program asks the user if they want to print all the num-
bers between one and a million:

userAnswer = input("Print the numbers between 1 and 1000000? (yes/no): ")

u if userAnswer = "yes":
 count = 1

v while count <= 1000000:
 print(count)
 count += 1

The if statement checks whether the user’s input is yes u. If it is, the
program runs the loop that is nested in the if statement v. If the input is
anything else, the program won’t run the loop and will finish.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

138 Chapter 7

Mission #38: The Midas Touch
Midas is a king of legend. Everything he touched turned to gold. Your
mission is to write a program that changes every block below the player to
gold—except for air and water, of course, or you’d be in real trouble! Recall
that the gold block has a value of 41, still water is 9, and air is 0.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

air = 0
water = 9

u # Add an infinite while loop here
 pos = mc.player.getTilePos()
 blockBelow = mc.getBlock(pos.x, pos.y - 1, pos.z)

v # Add if statement here
 mc.setBlock(pos.x, pos.y - 1, pos.z, 41)

Open IDLE and create a new file. Save the file as midas.py in the
whileLoops folder. You need to add a bit more to the program so it can do
what you need it to do. First, you’ll add an infinite while loop u. Remember
that an infinite while loop has a condition that is always True. You also need
to add an if statement that checks whether the block below the player is not
equal to air and not equal to still water v. The value of the block below the
player is stored in the blockBelow variable, and the values for air and water
are stored in the air and water variables.

When you’ve completed the program, save it and run it. The player
should leave a trail of gold behind them. When you jump in water or fly in
the air, the blocks below you should not change. Figure 7-7 shows the pro-
gram in action.

Figure 7-7: Every block I walk on turns to gold.

midas.py

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 139

To exit the infinite loop, go to Shell4Restart Shell in your IDLE shell
or click in the shell and press ctrl-C.

BonUs oBJeCTiVe: i ’M a PLoWMan

You can change midas.py to serve a variety of purposes . How would you change
it so it automatically changes dirt blocks to hoed farmland? How about changing
dirt blocks to grass blocks?

ending a while Loop with break
With while loops, you have complete control over how and when the loop
ends. So far you’ve only used conditions to end loops, but you can also use a
break statement. The break statement lets your code immediately exit a while
loop. Let’s look at this concept!

One way to use break statements is to put them in an if statement nested
in the loop. Doing so immediately stops the loop when the if statement’s
condition is True. The following code continually asks for user input until
they type "exit":

u while True:
v userInput = input("Enter a command: ")
w if userInput == "exit":
x break

 print(userInput)
y print("Loop exited")

This is an infinite loop because it uses while True u. Each time the loop
repeats, it asks for the user to enter a command v. The program checks
whether the input is "exit" w using an if statement. If the input meets the
condition, the break statement stops the loop from repeating x, and the
program continues on the line immediately after the body of the loop,
printing "Loop exited" to the Python shell y.

Mission #39: Create a Persistent Chat
with a Loop
In Mission #13 (page 72), you created a program that posts the user’s
message to chat using strings, input, and output. Although this program
was useful, it was quite limited because you had to rerun the program
every time you wanted to post a new message.

In this mission, you’ll improve your chat program using a while loop
so users can post as many messages as they want without restarting the
program.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

140 Chapter 7

Open the userChat.py file in the strings folder and then save it as
chatLoop.py in the whileLoops folder.

To post a new message every time you want to without rerunning the
program, add the following to your code:

1. Add an infinite while loop to the program.

2. Add an if statement to the loop to check whether the user’s input is
"exit". If the input is "exit", the loop should break.

3. Make sure the userName variable is defined before the start of the loop.

When you’ve added the changes, save your program and run it.
A prompt in the Python shell will ask you to type in a username. Do this
and press enter. The program will then ask you to enter a message. Type
a message and then press enter. The program will keep asking you to
enter a message until you type exit. Figure 7-8 shows my chat program
running.

Figure 7-8: I’m chatting with myself.

BonUs oBJeCTiVe: BLoCk ChaT

Expand the chat feature so users can create blocks . For example, if the user enters
"wool", the program creates a wool block . You can do this by adding elif state-
ments to your if statement to check user input .

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 141

while-else statements
Like an if statement, while loops can have secondary conditions triggered
by else statements.

The else statement executes when the condition of a while statement is
False. Unlike the body of a while statement, the else statement will execute
only once, as shown here:

message = input("Please enter a message.")

while message != "exit":
 print(message)
 message = input("Please enter a message.")
else:
 print("User has left the chat.")

This loop repeats as long as the message entered is not equal to "exit". If
the message is "exit", the loop will stop repeating, and the body of the else
statement will print "User has left the chat."

If you use a break statement in the while statement, the else isn’t exe-
cuted. The following code is similar to the preceding example but includes
a nested if statement and a break statement. When the user types abort
instead of exit, the chat loop will exit without printing the "User has left
the chat." message to the chat.

message = input("Please enter a message.")

while message != "exit":
 print(message)
 message = input("Please enter a message.")
 if message == "abort":
 break
else:
 print("User has left the chat.")

The if statement checks whether the message entered is "abort". If this
is True, the break statement runs and the loop will exit. Because the break
statement was used, the body of the else statement will not run, and "User
has left the chat." will not be printed.

Mission #40: hot and Cold
In this mission, we’ll create a Hot and Cold game in Minecraft. If you’ve
never played, the idea is that your friend hides an object and you have to
find it. Your friend gives you hints based on how far away from the object
you are. If you’re close, your friend says “Hot,” and if you’re far away, they’ll
say “Cold.” When you’re right next to the object, they’ll say “You’re on fire!”
and if you’re very far away, they’ll say “Freezing!”

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

142 Chapter 7

The object of the game is to find and stand on the diamond block that
has been placed randomly in the game world. In this version of the game,
you’ll play by yourself, and the Python program will tell you how far away
from the hidden block you are. The game ends when you stand on the dia-
mond block.

Listing 7-2 places a block in a random location.

from mcpi.minecraft import Minecraft
import math
import time
import random
mc = Minecraft.create()

destX = random.randint(-127, 127)
destZ = random.randint(-127, 127)

u destY = mc.getHeight(destX, destZ)

block = 57
v mc.setBlock(destX, destY, destZ, block)

mc.postToChat("Block set")

while True:
 pos = mc.player.getPos()

w distance = math.sqrt((pos.x - destX) ** 2 + (pos.z - destZ) ** 2)

x if distance > 100:
 mc.postToChat("Freezing")
 elif distance > 50:
 mc.postToChat("Cold")
 elif distance > 25:
 mc.postToChat("Warm")
 elif distance > 12:
 mc.postToChat("Boiling")
 elif distance > 6:
 mc.postToChat("On fire!")
 elif distance == 0:

y mc.postToChat("Found it")

Listing 7-2: The start of the Hot and Cold program

Before randomly placing a block, the program makes sure that the
block won’t be placed underground. To do so, it uses the getHeight() func-
tion u, which finds the block that is the highest y-coordinate (that is, on the
surface) for any position in the game. Then it places a diamond block at a
random position v.

The code at w calculates the distance to the diamond block. It uses
the sqrt() function, which is in the math module—this is why import math is
needed at the beginning of the program. The sqrt() function calculates the
square root of a number.

blockHunter.py

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

Dance Parties and flower Parades with while Loops 143

No t e Listing 7-2 uses a formula called the Pythagorean theorem. The formula uses two
sides of a triangle to calculate the length of the third. In this case, I use the distance
from the player to the hidden block on the x-axis and the z-axis to calculate the dis-
tance to the hidden block in a straight line.

The message that the program displays depends on how far away you
are from the block, which you can find out using an if statement and the
distance variable x. The program displays "Freezing" if you’re very far away
and "On fire!" if you’re very close.

Copy Listing 7-2 into a new file in IDLE and save the program as
blockHunter.py in the whileLoops folder.

At the moment the program works, but it doesn’t end when you find
the block. To finish the code, you need to add a break statement when the
player’s distance from the block is 0 y.

When you’ve completed the program, save it and run it. A random
block will be generated, and you’ll need to find it. The program should
stop when you find the block and stand on it. Figure 7-9 shows that I’ve just
found the block.

Figure 7-9: I’ve found the block, and now I just need to stand on it.

BonUs oBJeCTiVe: TiMe foR TiMe

The blockHunter.py program gives you as long as you need to find the block . Can
you think of a way to display how long it takes the player to find the block or even
limit the amount of time they have to play the game?

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

144 Chapter 7

What You Learned
Well done! You’ve learned a lot about while loops. You can create while
loops and infinite while loops, and you can use loops with conditions
and Boolean operators. Using loops, you can now write programs that
repeat code, which will save you lots of time so you can focus on mastering
Minecraft. In Chapter 8, you’ll learn another way to make reusable code
using functions.

Learn to Program with Minecraft: Transform Your World with the Power of Python
© 2015 Craig Richardson

