
2
MAKING DECIS IONS

Most programs that we use on a daily ba-
sis behave differently depending on what

happens during their execution. For exam-
ple, when a word-processor program asks us

whether we want to save our work, it makes a decision
based on our response: saving our work if we answer
“yes” and not saving our work if we answer “no.” In
this chapter, we’ll learn about if statements, which let
our programs make decisions.

We’ll solve two problems: determining the result of a basketball game
and determining whether a phone number belongs to a telemarketer.

Problem #3: Winning Team
In this problem, we’ll need to output a message that depends on the out-
come of a basketball game. To do that, we’ll learn all about if statements.
We’ll also learn how we can store and manipulate true and false values in
our programs.

This is DMOJ problem ccc19j1.

The Challenge
In basketball, three plays score points: a three-point shot, a two-point shot,
and a one-point free throw.

You just watched a basketball game between the Apples and Bananas,
and recorded the number of successful three-point, two-point, and one-
point plays for each team. Indicate whether the game was won by the Ap-
ples, the game was won by the Bananas, or the game was a tie.

Input
There are six lines of input. The first three give the scoring for the Apples,
and the latter three give the scoring for the Bananas.

• The first line gives the number of successful three-point shots for
the Apples.

• The second line gives the number of successful two-point shots for
the Apples.

• The third line gives the number of successful one-point free throws
for the Apples.

• The fourth line gives the number of successful three-point shots for
the Bananas.

• The fifth line gives the number of successful two-point shots for the
Bananas.

• The sixth line gives the number of successful one-point free throws
for the Bananas.

Each number is an integer from 0 to 100.

Output
The output is a single character.

• If the Apples scored more points than the Bananas, output A (A for
Apples).

• If the Bananas scored more points than the Apples, output B (B for
Bananas).

• If the Apples and Bananas scored the same number of points, out-
put T (T for Tie).

Conditional Execution
We can make a lot of headway here by using what we learned in Chapter 1.
We can use input and int to read each of the six integers from the input. We
can use variables to hang on to those values. We can multiply the number
of successful three-point shots by 3 and the number of successful two-point
shots by 2. We can use print to output an A, B, or T.

26 Chapter 2

What we haven’t learned yet is how our programs can make a decision
about the outcome of the game. I can demonstrate why we need this through
two test cases.

First, consider this test case:

5

1

3

1

1

1

The Apples scored 5 ∗ 3 + 1 ∗ 2 + 3 = 20 points, and the Bananas scored
1 ∗ 3 + 1 ∗ 2 + 1 = 6 points. The Apples won the game, so the correct output is

A

Second, consider this test case, where the Apples’ and Bananas’ scores
have been swapped:

1

1

1

5

1

3

This time, the Bananas won the game, so the correct output is

B

Our program must be able to compare the total points scored by the
Apples and the total points scored by the Bananas and use the result of that
comparison to choose whether to output A, B, or T.

We can use Python’s if statement to make these kinds of decisions. A
condition is an expression that’s true or false, and an if statement uses condi-
tions to determine what to do. if statements lead to conditional execution, so
named because the execution of our program is influenced by conditions.

We’ll first learn about a new type that lets us represent true or false val-
ues, and how we can build expressions of this type. Then, we’ll use such ex-
pressions to write if statements.

The Boolean Type
Pass an expression to Python’s type function, and it’ll tell you the type of the
expression’s value:

>>> type(14)

<class 'int'>

>>> type(9.5)

Making Decisions 27

<class 'float'>

>>> type('hello')

<class 'str'>

>>> type(12 + 15)

<class 'int'>

One Python type we haven’t met yet is the Boolean (bool) type. Unlike
integers, strings, and floats, which have billions of possible values, there are
only two Boolean values: True and False.

>>> True

True

>>> False

False

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

What can we do with these values? With numbers, we had mathematical
operators like + and - that let us combine values into more complex expres-
sions. We’ll need a new set of operators that work with Boolean values.

Relational Operators
Is 5 greater than 2? Is 4 less than 1? We can make such comparisons using
Python’s relational operators. They produce True or False and are therefore
used to write Boolean expressions.

The > operator takes two operands and returns True if the first is greater
than the second, and False otherwise:

>>> 5 > 2

True

>>> 9 > 10

False

Similarly, we have the < operator for less-than:

>>> 4 < 1

False

>>> -2 < 0

True

There’s also >= for greater-than-or-equal-to, and <= for less-than-or-equal-
to:

>>> 4 >= 2

True

>>> 4 >= 4

True

28 Chapter 2

>>> 4 >= 5

False

>>> 8 <= 6

False

To determine equality, we use the == operator. That’s two equal signs,
not one. Remember that one equal sign, =, is used in an assignment state-
ment; it has nothing to do with checking equality.

>>> 5 == 5

True

>>> 15 == 10

False

For inequality, we use the != operator. It returns True if the operands are
not equal and False if they are equal:

>>> 5 != 5

False

>>> 15 != 10

True

Real programs wouldn’t evaluate expressions whose values we already
know. We don’t need Python to tell us that 15 doesn’t equal 10, for example.
More typically, we’d use variables in these kinds of expressions. For exam-
ple, number != 10 is an expression whose value depends on what number refers
to.

The relational operators also work on strings. When checking equality,
case matters:

>>> 'hello' == 'hello'

True

>>> 'Hello' == 'hello'

False

One string is less than another if it comes first in alphabetical order:

>>> 'brave' < 'cave'

True

>>> 'cave' < 'cavern'

True

>>> 'orange' < 'apple'

False

But things can be surprising when lowercase and uppercase characters
are both involved:

>>> 'apple' < 'Banana'

False

Making Decisions 29

Weird, right? It has to do with the way that characters are stored inter-
nally in a computer. Generally, uppercase characters come alphabetically
before lowercase characters. And check this out:

>>> '10' < '4'

True

If these were numbers, then the result would be False. But strings are
compared character by character from left to right. Python compares the '1'

and '4', and because '1' is smaller, it returns True. Be sure that your values
have the types you think they have!

One relational operator that works on strings but not numbers is in. It
returns True if the first string occurs at least once in the second, and False

otherwise:

>>> 'ppl' in 'apple'

True

>>> 'ale' in 'apple'

False

CONCEPT CHECK

What is the output of the following code?

a = 3
b = (a != 3)
print(b)

A. True

B. False

C. 3

D. This code produces a syntax error.

Answer: B. The expression a != 3 evaluates to False; b is then made to refer to
this False value.

The if Statement
We’ll now explore several variations of Python’s if statement.

30 Chapter 2

if by Itself
Suppose we have our final scores in two variables, apple_total and banana_total,
and we want to output A if apple_total is greater than banana_total. Here’s
how we can do that:

>>> apple_total = 20

>>> banana_total = 6

>>> if apple_total > banana_total:

... print('A')

...

A

Python outputs A, as we’d expect.
An if statement starts with the keyword if. A keyword is a word that has

special meaning to Python and cannot be used as a variable name. The key-
word if is followed by a Boolean expression, followed by a colon, followed
by one or more indented statements. The indented statements are often re-
ferred to as the block of the if statement. The block executes if the Boolean
expression is True and is skipped if the Boolean expression is False.

Notice that the prompt changes from >>> to That’s a reminder that
we’re inside the block of the if statement and must indent the code. I’ve
chosen to indent by four spaces, so to indent the code, press the spacebar
four times. Some Python programmers press the TAB key to indent, but
we’ll exclusively use spaces in this book.

Once you type print('A') and hit ENTER, you should see another ...

prompt. Since we don’t have anything else to put in this if statement, press
ENTER again to dismiss this prompt and return to the >>> prompt. This ex-
tra press of ENTER is a quirk of the Python shell; such blank lines are not
required when we write a Python program in a file.

Let’s see an example of putting two statements in the block of an if

statement:

>>> apple_total = 20

>>> banana_total = 6

>>> if apple_total > banana_total:

... print('A')

... print('Apples win!')

...

A

Apples win!

Both print calls execute, producing two lines of output.
Let’s try another if statement, this one with a Boolean expression that’s

False:

>>> apple_total = 6

>>> banana_total = 20

>>> if apple_total > banana_total:

... print('A')

Making Decisions 31

...

The print function is not called this time: apple_total > banana_total is
False, so the block of the if statement is skipped.

if with elif
Let’s use three successive if statements to print A if the Apples win, B if the
Bananas win, and T if it’s a tie:

>>> apple_total = 6

>>> banana_total = 6

>>> if apple_total > banana_total:

... print('A')

...

>>> if banana_total > apple_total:

... print('B')

...

>>> if apple_total == banana_total:

... print('T')

...

T

The blocks of the first two if statements are skipped, because their Boolean
expressions are False. But the block of the third if statement executes, pro-
ducing the T.

When you put one if statement after another, they’re independent.
Each Boolean expression is evaluated, regardless of whether the previous
Boolean expressions were True or False.

For any given values of apple_total and banana_total, only one of our if

statements can run. For example, if apple_total < banana_total is True, then
the first if statement will run, but the other two will not. It’s possible to
write the code to highlight that only one block of code is allowed to run.
Here’s how we can do that:

¶ >>> if apple_total > banana_total:

... print('A')

· ... elif banana_total > apple_total:

... print('B')

... elif apple_total == banana_total:

... print('T')

...

T

This is now a single if statement, not three separate if statements. For
this reason, don’t press ENTER at the ... prompt; instead, type the elif line.

To execute this if statement, Python begins by evaluating the first Boolean
expression ¶. If it’s True, then A is output, and the rest of the elifs are skipped.
If it’s False, then Python continues, evaluating the second Boolean expres-

32 Chapter 2

sion ·. If it’s True, then B is output, and the remaining elif is skipped. If it’s
False, then Python continues, evaluating the third Boolean expression ¸. If
it’s True, then T is output.

The keyword elif stands for “else-if.” Use this as a reminder that an elif

block is checked only if nothing “else” before it in the if statement was exe-
cuted.

This version of the code is equivalent to the previous code where we
used three separate if statements. Had we wanted to allow the possibility
of executing more than one block, we’d have to use three separate if state-
ments, not a single if statement with elif blocks.

if with else
We can use the else keyword to run code if all the Boolean expressions in
the if statement are False. Here’s an example:

>>> if apple_total > banana_total:

... print('A')

... elif banana_total > apple_total:

... print('B')

... else:

... print('T')

...

T

Python evaluates the Boolean expressions from top to bottom. If any
of them is True, Python runs the associated block and skips the rest of the if

statement. If all the Boolean expressions are False, Python executes the else

block.
Notice that there is no longer a test for apple_total == banana_total. The

only way to get to the else part of the if statement is if apple_total > banana_total

is False and banana_total > apple_total is False, that is, if the values are equal.
Should you use separate if statements? An if statement with elifs? An

if statement with an else? It often comes down to preference. Use a chain
of elifs if you want at most one block of code to execute. An else can help
make the code clearer and removes the need to write a catchall Boolean ex-
pression. What’s far more important than the precise styling of an if state-
ment is writing correct logic!

Making Decisions 33

CONCEPT CHECK

What is the value of x after the following code runs?

x = 5
if x > 2:

x = -3
if x > 1:

x = 1
else:

x = 3

A. -3

B. 1

C. 2

D. 3

E. 5

Answer: D. Because x > 2 is True, the block of the first if statement executes.
The assignment x = -3 makes x refer to -3. Now for the second if statement.
Here, x > 1 is False, so the else block runs, and x = 3 makes x refer to 3. I’d
suggest changing if x > 1 to elif x > 1 and observing how the behavior of the
program changes!

CONCEPT CHECK

Do the following two snippets of code do exactly the same thing? Assume that
temperature already refers to a number.

Snippet 1:

if temperature > 0:
print('warm')

elif temperature == 0:
print('zero')

else:
print('cold')

34 Chapter 2

Snippet 2:

if temperature > 0:
print('warm')

elif temperature == 0:
print('zero')

print('cold')

A. Yes
B. No

Answer: B. Snippet 2 always prints cold as its final line of output, because
print('cold') is not indented! It is not associated with any if statement.

Solving the Problem
It’s time to solve Winning Team. In this book, I’ll generally present the full
code and then discuss it. But as our solution here is longer than those in
Chapter 1, I’ve decided in this case to present the code in three pieces be-
fore presenting it as a whole.

First, we need to read the input. This requires six calls of input, because
we have two teams and three pieces of information for each team. We also
need to convert each piece of input to an integer. Here’s the code:

apple_three = int(input())

apple_two = int(input())

apple_one = int(input())

banana_three = int(input())

banana_two = int(input())

banana_one = int(input())

Second, we need to determine the number of points scored by the Ap-
ples and the Bananas. For each team, we add the points from three-point,
two-point, and one-point plays. We can do that as follows:

apple_total = apple_three * 3 + apple_two * 2 + apple_one

banana_total = banana_three * 3 + banana_two * 2 + banana_one

Third, we produce the output. If the Apples win, we output A; if the Ba-
nanas win, we output B; otherwise, we know that the game is a tie, so we out-
put T. We use an if statement to do this, as follows:

if apple_total > banana_total:

print('A')

Making Decisions 35

elif banana_total > apple_total:

print('B')

else:

print('T')

That’s all the code we need. See Listing 2-1 for the complete solution.

apple_three = int(input())

apple_two = int(input())

apple_one = int(input())

banana_three = int(input())

banana_two = int(input())

banana_one = int(input())

apple_total = apple_three * 3 + apple_two * 2 + apple_one

banana_total = banana_three * 3 + banana_two * 2 + banana_one

if apple_total > banana_total:

print('A')

elif banana_total > apple_total:

print('B')

else:

print('T')

Listing 2-1: Solving Winning Team

If you submit our code to the judge, you should see that all test cases
pass.

CONCEPT CHECK

Does the following version of the code correctly solve the problem?

apple_three = int(input())
apple_two = int(input())
apple_one = int(input())

banana_three = int(input())
banana_two = int(input())
banana_one = int(input())

apple_total = apple_three * 3 + apple_two * 2 + apple_one
banana_total = banana_three * 3 + banana_two * 2 + banana_one

if apple_total < banana_total:
print('B')

36 Chapter 2

elif apple_total > banana_total:
print('A')

else:
print('T')

A. Yes
B. No

Answer: A. The operators and order of the code are different, but the code is
still correct. If the Apples lose, we output B (because the Bananas win); if the
Apples win, we output A; otherwise, we know that the game is a tie, so we
output T.

Before continuing, you might like to try solving exercise 1 from “Chap-
ter Exercises” on page 45.

Problem #4: Telemarketers
Sometimes we need to encode more complex Boolean expressions than
those that we have seen so far. In this problem, we’ll learn about Boolean
operators that help us do this.

This is DMOJ problem ccc18j1.

The Challenge
In this problem, we’ll assume that phone numbers are four digits. A phone
number belongs to a telemarketer if its four digits satisfy all three of the fol-
lowing properties:

• The first digit is 8 or 9.

• The fourth digit is 8 or 9.

• The second and third digits are the same.

For example, a phone number whose four digits are 8119 belongs to a
telemarketer.

Determine whether a phone number belongs to a telemarketer, and in-
dicate whether we should answer the phone or ignore it.

Input
There are four lines of input. These lines give the first, second, third, and
fourth digits of the phone number, respectively. Each digit is an integer be-
tween 0 and 9.

Making Decisions 37

Output
If the phone number belongs to a telemarketer, output ignore; otherwise,
output answer.

Boolean Operators
What has to be true about a phone number that belongs to a telemarketer?
Its first digit has to be 8 or 9. And, its fourth digit has to be 8 or 9. And, the
second and third digits have to be the same. We can encode this “or” and
“and” logic using Python’s Boolean operators.

or Operator
The or operator takes two Boolean expressions as its operands. It returns
True if at least one operand is True, and False otherwise:

>>> True or True

True

>>> True or False

True

>>> False or True

True

>>> False or False

False

The only way to get False out of the or operator is if both of its operands
are False.

We can use or to tell us whether a digit is an 8 or a 9:

>>> digit = 8

>>> digit == 8 or digit == 9

True

>>> digit = 3

>>> digit == 8 or digit == 9

False

Remember from “Integer and Floating-Point Numbers” on page 9 that
Python uses operator precedence to determine the order that operators are
applied. The precedence of or is lower than the precedence of relational op-
erators, which means that we don’t often need parentheses around operands.
For example, in digit == 8 or digit == 9, the two operands to or are digit == 8

and digit == 9. It’s the same as if we’d written it as (digit == 8) or (digit == 9).
In English, it makes sense if someone says “if the digit is 8 or 9.” But

writing that won’t work in Python:

>>> digit = 3

>>> if digit == 8 or 9:

... print('yes!')

...

38 Chapter 2

yes!

Notice that I’ve (incorrectly!) written the second operand as 9 instead
of digit == 9. Python responds by outputting yes!, which is certainly not
what we’d want given that digit refers to 3. The reason is that Python con-
siders nonzero numbers to be True. Since 9 is considered True, this makes the
whole or expression True. Carefully double-check your Boolean expressions
to avoid these kinds of mistakes when translating from natural language to
Python.

and Operator
The and operator returns True if both of its operands are True, and False oth-
erwise:

>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

The only way to get True out of the And operator is if both of its operands
are True.

The precedence of and is higher than or. Here’s an example of why this
matters:

>>> True or True and False

True

Python interprets that expression like this, with the and happening first:

>>> True or (True and False)

True

The result is True because the first operand of or is True.
We can force the or to happen first by including parentheses:

>>> (True or True) and False

False

The result is False because the second operand of and is False.

not Operator
Another important Boolean operator is not. Unlike or and and, not takes only
one operand (not two). If its operand is True, not returns False, and vice
versa:

Making Decisions 39

>>> not True

False

>>> not False

True

The precedence of not is higher than or and and.

CONCEPT CHECK

Here’s an expression and versions of that expression with parentheses. Which
of them evaluates to True?

A. not True and False

B. (not True) and False

C. not (True and False)

D. None of the above

Answer: C. The expression (True and False) evaluates to False; the not therefore
makes the full expression True.

CONCEPT CHECK

Consider the expression not a or b.

Which of the following makes the expression False?

A. a False, b False

B. a False, b True

C. a True, b False

D. a True, b True

E. More than one of the above

Answer: C. If a is True, then not a is False. Since b is False, too, both operands
to or are False, so the whole expression evaluates to False.

Solving the Problem
With Boolean operators at the ready, we can tackle the Telemarketers prob-
lem. Our solution is in Listing 2-2.

40 Chapter 2

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

¶ if ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('ignore')

else:

print('answer')

Listing 2-2: Solving Telemarketers

As in Winning Team, we start by reading the input and converting it to
integers.

The high-level structure of our if statement ¶ is three expressions con-
nected by and operators; each of them must be True for the entire expression
to be True. We require that the first number be 8 or 9, that the fourth num-
ber be 8 or 9, and that the second and third numbers be equal. If all three
of these conditions hold, then we know that the phone number belongs to a
telemarketer, and we output ignore. Otherwise, the phone number does not
belong to a telemarketer, and we output answer.

I’ve split the Boolean expression over three lines. This requires wrap-
ping the entire expression in an additional pair of parentheses, as I have
done. (Without those parentheses, you’ll get a syntax error, because there’s
no indication to Python that the expression is continuing on the next line.)

Python style guides suggest that a line be no longer than 79 characters.
A line with the full Boolean expression would squeak in there at 76 charac-
ters. But I think the three-line version is clearer, highlighting each condition
that must be True on its own line.

We have a good solution here. To explore a little further, let’s discuss
some alternate approaches.

Our code uses a Boolean expression to detect when a phone number be-
longs to a telemarketer. We could have also chosen to write code that detects
when a phone number does not belong to a telemarketer. If the phone num-
ber doesn’t belong to a telemarketer, we should output answer; otherwise, we
should output ignore.

If the first digit isn’t 8 and isn’t 9, then the phone number doesn’t be-
long to a telemarketer. Or, if the fourth digit isn’t 8 and isn’t 9, then the
phone number doesn’t belong to a telemarketer. Or, if the second and third
digits aren’t equal, then the phone number doesn’t belong to a telemarketer.
If even one of these expressions is True, then the phone number doesn’t be-
long to a telemarketer.

See Listing 2-3 for a version of the code that captures this logic.

num1 = int(input())

num2 = int(input())

Making Decisions 41

num3 = int(input())

num4 = int(input())

if ((num1 != 8 and num1 != 9) or

(num4 != 8 and num4 != 9) or

(num2 != num3)):

print('answer')

else:

print('ignore')

Listing 2-3: Solving Telemarketers, alternate approach

It’s not easy getting all of those !=, or, and and operators correct! Notice,
for example, that we’ve had to change all == operators to !=, all or operators
to and, and all and operators to or.

An alternate approach is to use the not operator to negate the “is-a-telemarketer”
expression in one shot. See Listing 2-4 for that code.

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

if not ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('answer')

else:

print('ignore')

Listing 2-4: Solving Telemarketers, not operator

Which of these solutions do you find most intuitive? There’s often more
than one way to structure the logic of an if statement, and we should use the
one that’s easiest to get right. To me, Listing 2-2 is the most natural, but you
may feel otherwise!

Choose your favorite version and submit it to the judge. You should see
that all test cases pass.

Comments
We should always strive to make our programs as clear as possible. This
helps to avoid introducing errors when programming and makes it easier
to fix our code when errors do slip in. Meaningful variable names, spaces
around operators, blank lines to segment the program into its logical pieces,
simple if statement logic: all of these practices can improve the quality of
the code we write. Another good habit is adding comments to our code.

A comment is introduced by the # character and continues until the end
of the line. Python ignores comments, so they have no impact on what our
program does. We add comments to remind ourselves, or others, about de-

42 Chapter 2

sign decisions that we’ve made. Assume that the person reading the code
knows Python, so avoid comments that simply restate what the code is do-
ing. Here’s code with an unnecessary comment:

>>> x = 5

>>> x = x + 1 # Increase x by 1

That comment adds nothing beyond what we already know about assign-
ment statements.

See Listing 2-5 for a version of Listing 2-2 with comments.

¶ # ccc18j1, Telemarketers

num1 = int(input())

num2 = int(input())

num3 = int(input())

num4 = int(input())

· # Telemarketer number: first digit 8 or 9, fourth digit 8 or 9,

second digit and third digit are same

if ((num1 == 8 or num1 == 9) and

(num4 == 8 or num4 == 9) and

(num2 == num3)):

print('ignore')

else:

print('answer')

Listing 2-5: Solving Telemarketers, comments added

I’ve added three comment lines: the one at the top ¶ reminds us of the
problem code and name, and the two before the if statement · remind us
of the rules for detecting a telemarketer phone number.

Don’t go overboard with comments. Whenever possible, write code that
doesn’t require comments in the first place. But for tricky code or to docu-
ment why you chose to do something in a particular way, a well-placed com-
ment now can save time and frustration later.

Input and Output Redirection
When you submit Python code to the judge, it runs many test cases to deter-
mine whether your code is correct. Is someone there, dutifully waiting for
new code and then frantically hammering test cases at it from the keyboard?

No way! It’s all automated. There’s no one typing test cases at the key-
board. How does the judge test our code, then, if we satisfy a call to input by
typing something from the keyboard?

The truth is that input isn’t necessarily reading input from the keyboard.
It’s reading from a source of input called standard input, which, by default, is
the keyboard.

Making Decisions 43

It’s possible to change standard input so that it refers to a file rather
than the keyboard. The technique is called input redirection, and it’s what the
judge uses to provide input.

We can also try input redirection ourselves. For programs whose input
is small—just a line of text or a couple of integers—input redirection may not
save us much. But for programs whose test cases can be tens or hundreds of
lines long, input redirection makes it much easier to test our work. Rather
than typing the same test case over and over, we can store it in a file and
then run our program on it as many times as we want.

Let’s try input redirection on Telemarketers. Navigate to your program-
ming folder and create a new file called telemarketers_input.txt. In that file,
type the following:

8

1

1

9

The problem specifies that we should provide one integer per line, so
we’ve written them one per line here.

Save the file. Now enter python telemarketers.py < telemarketers_input.txt

to run your program using input redirection. Your program should output
ignore, just as it would if you’d typed the test case from the keyboard.

The < symbol instructs your operating system to use a file rather than
the keyboard to provide input. After the < symbol comes the name of the
file that contains the input.

To try your program on different test cases, just modify the telemar-
keters_input.txt file and run your program again.

We can also change where our output goes, though we won’t need to for
this book. The print function outputs to standard output, which, by default, is
the screen. We can change standard output so that it instead refers to a file.
We do so using output redirection, which is written as a > symbol followed by a
filename.

Enter python telemarketers.py > telemarketers_output.txt to run your
program using output redirection. Provide four integers of input, and you
should be back to your operating system prompt. But you shouldn’t see any
output from your Telemarketers program! That’s because we’ve redirected
the output to file telemarketers_output.txt. If you open telemarketers_output.txt

in your text editor, you should see the output there.
Be careful with output redirection. If you use a filename that already ex-

ists, your old file will be overwritten! Always double-check that you’re using
the filename you intended.

Summary
In this chapter, you learned how to use if statements to direct what your
programs do. The key ingredient of an if statement is a Boolean expression,
which is an expression with a True or False value. To build up Boolean ex-

44 Chapter 2

pressions, we use relational operators such as == and >=, and we use Boolean
operators such as and and or.

Deciding what to do based on what is True and False makes our pro-
grams more flexible, able to adapt to the situation at hand. But our pro-
grams are still limited to handling small amounts of input and output—whatever
we can read with individual calls to input and print. In the next chapter, we’ll
start learning about loops, which let us repeat code so that we can process as
much input and output as we like.

Want to work with 100 values? How about 1,000? And with just a small
amount of Python code? It is a little early for me to be provoking you, I
know, because you still have the following exercises to do. But when you’re
ready, read on!

Chapter Exercises
Here are some exercises for you to try:

1. DMOJ problem ccc06j1, Canadian Calorie Counting

2. DMOJ problem ccc15j1, Special Day

3. DMOJ problem ccc15j2, Happy or Sad

4. DMOJ problem dmopc16c1p0, C.C. and Cheese-Kun

5. DMOJ problem ccc07j1, Who is in the Middle

Notes
Winning Team is originally from the 2019 Canadian Computing Competi-
tion, Junior Level.

Telemarketers is originally from the 2018 Canadian Computing Compe-
tition, Junior Level.

Making Decisions 45

