
As your programs grow more complex,
your line counts will increase, and you’ll

begin repeating the same or similar code.
By using functions, you can divide your pro-

grams into named blocks of reusable code. This
makes your code more modular, allowing you to
reuse lines without needing to rewrite them.

You’ve already used many Processing functions, like size(), print(), and
rect(), and in this chapter, you’ll learn how to define your own functions.
As an example, Processing has no function for drawing diamonds, but you
can create one. You decide what to name this function and what arguments
it will accept. Perhaps your diamond() function accepts an x, y, width, height,
and optional rotation argument.

You’ll also create functions for generating elliptical and wave-type
motion, which will involve delving into some trigonometry. You’ll incor-
porate the mathematical functions sine and cosine by using Processing’s
built-in functions for performing these calculations. If the mention of

9
F U N C T I O N S A N D

P E R I O D I C M O T I O N

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

176 Chapter 9

trigonometry triggers disturbing flashbacks from math class, take a deep
breath and relax. This will be a practical and visual reintroduction to
these concepts, with Processing crunching all the numbers for you.

Defining Functions
Sensibly named functions make your code easier to understand and work
with. A 1,000-line program can be tricky to comprehend, especially for
somebody who didn’t write it.

Imagine programming a music player. You might create a function
named play() that executes 20 or so lines of code necessary to load and
play an MP3 file. When you need to play a track, you simply call your
play() function by using a file argument, like play('track_1.mp3'). You don’t
need to concern yourself with the details of how the play() function oper-
ates after you’ve defined it, and neither does anybody else working with
your code. Additionally, you could define functions for stop(), pause(),
skipBack(), and skipForward().

In this section, you’ll learn to define functions with the def keyword
and then how to handle arguments. You might call these user-defined func-
tions to distinguish them from those that come built-in with Python and
Processing.

Creating a Simple Speech Bubble Function
Let’s begin with a simple function that takes no arguments and draws speech
bubbles, like the ones you find in comic strips, in the console. You’ve already
used functions that work without arguments, like Processing’s noFill() that
relies on just a function name and parentheses. Conversely, a function like
fill() requires at least one argument, such as a hexadecimal color value.

Your speech bubble function will form an outline, using plaintext char-
acters, that surrounds a caption. Once you have this working, you’ll move
on to defining a more dynamic function that accepts a range of arguments
to draw speech bubbles in the display window.

Create a new sketch and save it as speech_bubbles. Add the following code
that prints a question in the console, followed by the answer in a speech
bubble five seconds later:

wait = 5000
1 print('1. What do you get if you multiply six by seven?')
2 delay(wait)

print(' ------------------- ')
print('| The answer is 42! |')
print('| ------------------ ')
print('|/')

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 177

When you run the sketch, you should see the question appear in your
console immediately 1. The Processing delay() function halts the pro-
gram for 5,000 milliseconds (five seconds) 2, then reveals the answer in
a speech bubble using the four print lines that follow it. Run the sketch to
confirm this:

1. What do you get if you multiply six by seven?

The answer is 42!
/

This might not look like the most convincing speech bubble, but it’ll do
for now.

Make the following changes to your code to define a function for print-
ing the answer:

wait = 5000

def printAnswer():
 print(' ------------------- ')
 print('| The answer is 42! |')
 print('| ------------------ ')
 print('|/')

print('What do you get if you multiply six by seven?')
delay(wait)
printAnswer()

The def keyword defines a new function. You can name this function
whatever you like, but make the name descriptive. Like variable names, func-
tion names should contain only alphanumeric and underscore characters,
and they must start with a letter or an underscore; in this case, I’ve chosen
printAnswer. Always include the parentheses and a colon at the end of the def
line. The four print() lines are in the body of the function definition, which
is the indented section of code beneath the def line. The function won’t exe-
cute the print lines until you call it. On the last line, where the program must
reveal the answer, is the printAnswer() function call.

N O T E Python will process your code line by line, beginning at the top of the file. If it attempts
to execute a function call before it has processed the corresponding definition, the pro-
gram will fail. In other words, you cannot call printAnswer() on the first few lines of
your sketch, because Python would not yet have encountered the def printAnswer() line.

When you run the sketch, the program should work as before, printing
the question followed by the answer in a speech bubble five seconds later.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

178 Chapter 9

S T Y L E GUIDE S

A style guide is a document that contains rules for writing code. This typically
includes guidelines on how to indent code, where to use blank lines, what
comments should look like, and how to name variables and functions.

If a team of programmers adheres to an agreed-upon style guide, their
collaborative project code should turn out looking clean, consistent, and well
formatted—as if one person wrote it. This kind of code is easier to modify and
maintain, in part, because it’s more readable. When you’re adding features to
an existing program, you’ll often spend more time reading and comprehending
code than writing it.

Some teams devise their own style guides, while others make use of or
expand upon an existing guide. PEP 8 is considered the de facto style guide for
Python; you can access it at https://www.python.org/dev/peps/pep-0008/. The
document covers many aspects of the Python language you’ve yet to encounter,
and it’s an excellent resource for any Python programmer.

The PEP 8 style guide recommends that “function names should be
lowercase, with words separated by underscores as necessary to improve
readability.” In other words, the printAnswer() function instead should be
named print_answer(). However, when an existing style is established, inter-
nal consistency is usually preferred.

I’ve opted for a camelCase function name to match the convention used
for Processing’s built-in functions, like noFill() or pushMatrix(). As noted in
Chapter 1, camelCase combines multiple words into one and uses a capital
letter to start the second and subsequent words. The style is also referred to as
mixedCase, or sometimes lowerCamelCase (to contrast it with UpperCamelCase).

Add a second question to the end of your sketch:

. . .
delay(wait/2)
print('2. How many US gallons are there in a barrel of oil?')
delay(wait)
printAnswer()

After displaying the answer to question 1, the program waits two and
a half seconds and prints question 2. The answer to question 2 is revealed
five seconds after this. Once again, the answer is 42, but there’s no need to
retype the four lines of code for displaying the speech bubble. Instead, you
can call the printAnswer() function a second time.

You can add as many questions as you like. If the answer to each ques-
tion is 42, you can call the printAnswer() function to display the answer.
If you want to restyle all of your speech bubbles—for example, using
different characters for the outline—edit the body of the printAnswer()
definition. You need to change the code in only one place to affect every
speech bubble.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

https://www.python.org/dev/peps/pep-0008/

Functions and Periodic Motion 179

For each answer, you have a neat, one-line function call with a name
that indicates what it does. Other programmers won’t need to understand
the inner workings of the printAnswer() function to use it, but if necessary,
they can read through the definition code to find out how it works.

Before proceeding to the next section, set the wait value (at the top of
your code) to 0:

wait = 0
. . .

This change cancels the effects of the delay() functions, because a delay
time of zero means there is no delay. As a result, your sketch doesn’t pause,
and the next section of code you add can run immediately.

The printAnswer() function is limited to drawing speech bubbles in the
console, and it always prints the same answer of 42, so next, you’ll define a
function that can accept arguments.

Drawing Compound Shapes Using a Function
To define a function that draws speech bubbles with shapes and text in the
display window, continue working in your speech_bubbles sketch. First, you’ll
need an image over which to place your speech bubbles.

I’ve chosen Jan van Eyck’s Arnolfini Portrait for this example because the
painting has three speech bubble candidates: a man, a woman, and a dog.
It’s also public domain. Figure 9-1 presents the original painting on the left,
and the result you’re working toward on the right.

Figure 9-1: The original Arnolfini Portrait, 1434 (left); a version with speech bubbles (right)

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

180 Chapter 9

You can download the Arnolfini Portrait image from Wikipedia (https://
en.wikipedia.org/wiki/File:Van_Eyck_-_Arnolfini_Portrait.jpg); the 561 × 768 pixel
resolution will suffice. If you want to use a different image, that’s fine too; just
choose one with at least three subjects.

Create a new data subfolder and add your image to this; then add the
following code to load and display it:

. . .
size(561, 768)
art = loadImage('561px-Van_Eyck_-_Arnolfini_Portrait.jpg')
image(art, 0, 0, width, height)

If you’re not using the Arnolfini Portrait, adjust the size() and loadImage()
arguments accordingly.

Run the sketch to confirm that the image spans your display window.
Define and then call a new speech bubble function by adding this code

to the end of your sketch:

. . .
def speechBubble():
 x = 190
 y = 150
 txt = 'Check out my hat!'
 noStroke()
 pushMatrix()
 translate(x, y)

 # tail
 fill('#FFFFFF')
 beginShape()
 vertex(0, 0) # tip
 vertex(15, -40)
 vertex(35, -40)
 endShape(CLOSE)

 # bubble
 textSize(15)
 by = -85
 bw = textWidth(txt)
 pad = 20
 rect(0, by, bw+pad*2, 45, 10)
 fill('#000000')
 textAlign(LEFT, CENTER)
 text(txt, pad, by+pad)

 popMatrix()

speechBubble()

If you’re using a different image, adjust the x, y, and txt variables. The x
and y variables control the position of the speech bubble—specifically, the
x-y coordinate for the tip of the “tail” that’s attached to the bubble. Before

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

https://en.wikipedia.org/wiki/File:Van_Eyck_-_Arnolfini_Portrait.jpg
https://en.wikipedia.org/wiki/File:Van_Eyck_-_Arnolfini_Portrait.jpg

Functions and Periodic Motion 181

drawing anything, a translate() function repositions the drawing space so
that the vertex coordinates for this tip are (0, 0); the other tail vertices and
the bubble are positioned relative to this point.

The txt variable defines the text that appears within the bubble. You
can use any txt string you like, but keep it short. The speech bubbles will
not accommodate multiline captions.

The code beneath the bubble comment draws a rounded rectangular
bubble above the tail. The rect() function includes a fifth argument (10)
that controls the corner radius. The larger you make this value, the rounder
the corners become. The result is a rounded rectangular speech bubble
with a tail at its bottom left (Figure 9-2).

Figure 9-2: The tip of the speech bubble tail has an x-y coordinate of (190, 150).

You can call the speechBubble() function 100 times, but the visual result
always appears the same because every speech bubble draws over the one
before it, at the same size, with the same text, in the same position. But, if
you modify the x, y, and txt variables each time you call the speechBubble()
function, you can customize the x-coordinate, y-coordinate, and caption.
You can accomplish this by adding parameters to your function definition
that allow you to pass values to the function using different arguments in
your function call.

Adding Arguments and Parameters
Now you’ll edit your speechBubble() definition so that the function can accept
three arguments, allowing you to pass your coordinate and caption values to
the function to manipulate the appearance of each speech bubble you draw.
Arguments are assigned to corresponding parameters, but more on those
shortly.

Currently, three variables control the speech bubble’s appearance: x, y,
and txt. To control those variable values via arguments, adapt your function
definition as follows:

. . .
1 def speechBubble(x, y, txt):

 #x = 190

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

182 Chapter 9

 #y = 150
 #txt = 'Check out my hat!'
 . . .

2 speechBubble(190, 150, 'Check out my hat!')

The definition parentheses now include three parameters: x, y, and
txt 1. A parameter is a placeholder for a value that’s provided by way of an
argument. These parameters are made available within the local scope of
the function; in other words, Python can access x, y, and txt only within the
speechBubble() function block. You need to comment out (or delete) the old
x, y, and txt lines to avoid overwriting the values that you pass in with the
function call 2.

Because you have three parameters, you must provide three argu-
ments when you call the speechBubble() function. The first argument of
190 is assigned to parameter x, the second argument of 150 is assigned
to parameter y, and so on, in the same order the parameters appear in
the def line. These are called positional arguments because the order of
the arguments determines which values are assigned to each parameter
(Figure 9-3).

def speechBubble(x, y, txt):

(190, 150, 'Check out my hat!')
Figure 9-3: Positional arguments

Run the sketch to confirm that the visual result is unchanged. Try test-
ing different arguments to change the appearance of the speech bubble.

N O T E It’s not unusual to hear the terms argument and parameter used interchangeably.
If you happen to mix them up, you aren’t likely to confuse anybody.

Call a second speechBubble() function:

. . .
speechBubble(315, 650, 'Woof')

The first and second (x and y) arguments position the speech bubble
above the dog. The third argument specifies that the caption must read,
“Woof” (Figure 9-4).

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 183

Figure 9-4: A second speech bubble

You now have a working speechBubble() function that accepts positional
arguments. However, you can also call this function by using arguments in
an arbitrary order if you use keyword arguments.

Using Keyword Arguments
When you call a function, you can state explicitly which value belongs to
which parameter by using keyword arguments. These arguments include
both a keyword and value. Each keyword takes its name from a parameter
in the function definition. Consider this example, where both lines pro-
duce the same result:

speechBubble(315, 650, 'Woof') # positional arguments
speechBubble(txt='Woof', x=315, y=650) # keyword arguments

The first speechBubble() call employs a positional argument approach.
The second call uses keyword arguments; notice that each value has a key-
word in front of it. Python uses the keywords in your function call to match
values and parameters (Figure 9-5).

def speechBubble(x, y, txt):

(txt='Woof', x=315, y=675)
Figure 9-5: Keyword arguments

This means you can order the arguments in your function call how-
ever you please. Just be sure to name your keywords exactly the same as
the parameters in the function definition.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

184 Chapter 9

Setting Default Values
When you define a function, you can specify a default value for each param-
eter, which is like a backup Python can use if you leave out an argument in
your function call. This behavior is useful for defining optional arguments.
For example, the rect() function can accept an optional fifth argument for
the corner radius. If you call the rect() function with four arguments, you
get a rectangle with 90-degree corners, which is what users seem to want
more often than not. But, if you provide the fifth argument (of something
other than zero), you get a rectangle with rounded corners.

Use an equal sign to assign a default value to a parameter. For example,
the following adds a default value of 'Hello' to your txt parameter:

. . .
def speechBubble(x, y, txt='Hello'):
 . . .

The default txt parameter is a string, but you can use any data type you
like, including numbers and lists.

You can now call the speechBubble() function using two positional argu-
ments, leaving txt (the third argument) to rely on its default value:

. . .
speechBubble(445, 125)

The 445 and 125 are positional arguments for x and y. As there’s no third
argument, txt defaults to 'Hello', as per the function definition. The result
(Figure 9-6) is a speech bubble positioned above the woman’s head that
reads, “Hello.”

Figure 9-6: Drawing a speech bubble using the default txt parameter, Hello

To replace Hello with Meh, call the speechBubble() function using three
arguments:

. . .
speechBubble(445, 125, 'Meh')

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 185

Because you provided the positional argument for the txt parameter,
the woman’s speech bubble will now read, “Meh.”

The lady clearly isn’t overly impressed with her partner’s hat, so she might
choose not to risk offending him. A thought bubble could be more appropriate
(Figure 9-7).

Figure 9-7: A speech bubble (left) and a thought bubble (right)

To draw a thought bubble, modify the speechBubble() function to draw
a chain of small circles instead of a triangular tail. However, you want the
speechBubble() function to depict speech bubbles by default, as they are
more common than thought bubbles.

Add an additional type parameter to the function definition:

. . .
def speechBubble(x, y, txt='Hello', type='speech'):
 . . .

Now you have two parameters with default values. Notice that these
come after the parameters with no default values. If you’re defining any
function with default values, place those parameters at the end of the list.

The next step is to modify the function body, specifically the section
beneath the tail comment. The type parameter must determine whether
Processing should draw a triangular tail or a chain of circles. Modify the
code as follows:

 . . .
 # tail
 if type == 'speech':
 fill('#FFFFFF')
 beginShape()
 vertex(0, 0) # tip
 vertex(15, -40)
 vertex(35, -40)
 endShape(CLOSE)

 elif type == 'thought':
 fill('#FFFFFF')
 circle(0, 0, 8)

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

186 Chapter 9

 circle(10, -20, 20)
 . . .

The if statement code will draw a triangular tail if the type parameter is
equal to 'speech', the default value assigned in the function definition. The
elif statement will draw a chain of two circles whenever the function call
includes a type argument of 'thought'. Edit your function call to see this in
action:

. . .
speechBubble(445, 125, 'Meh', 'thought')

The thought argument switches the speechBubble() function to “thought
bubble mode.” If you omit this argument, the function defaults to drawing
the speech bubble with the tail. Run the sketch to confirm that the result
matches Figure 9-7.

Mixing Positional and Keyword Arguments
You can use positional arguments for your x and y coordinates, leave out the
txt argument, and include a keyword argument for type. This way, Python
can utilize the default value for txt ('Hello'), but render it in a thought bub-
ble. As an example, you might want to replace the dog’s speech bubble with
a thought bubble that reads, “Hello.” One option is to include a third argu-
ment of 'Hello' explicitly in the function call—a fully positional approach.
For example:

speechBubble(315, 650, 'Hello', 'thought')

Each argument here corresponds to a parameter. This seems redun-
dant, though, given that 'Hello' is the default value for parameter 3. If you
just omit the 'Hello' argument in your function call, Processing will draw a
speech bubble with the word thought in it:

a speech bubble that says, thought
speechBubble(315, 640, 'thought')

Recall that the third positional argument is for the txt parameter and
that leaving out the fourth argument means Python has to adopt the default
value for the fourth type parameter (speech bubble mode). A simple solution
to this problem exists, however; use a keyword argument instead of relying
on a positional argument:

speechBubble(315, 650, type='thought')

In this case, you’ve explicitly stated that the value 'thought' belongs to
the type parameter. You might notice that you can arrange the arguments
in any order if you use keyword arguments for every value. This is true, so
decide what combination of positional and keyword arguments works best
in a particular situation.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 187

If you’re missing one or many required arguments in a function call,
Processing displays an error message (Figure 9-8). For example, if you call
the speechBubble() function with no arguments, the error message indicates
that you require at least two.

processing.app.SketchException: TypeError: SpeechBubble() takes at ...

TypeError: speechBubble() takes at least 2 arguments (0 given)

Console

speechBubble()

Figure 9-8: An error message for missing arguments

If you provide too many arguments, the error message indicates that
speechBubble() takes at most four arguments.

Returning Values
You can use a function to operate on data and then have it return the result
to the main program. This is different from the functions you’ve created so
far, which execute a predefined section of code before resuming the regu-
lar flow of the main program.

To help explain this difference, here’s some code to contrast a function
that returns a value with one that does not:

x = random(100)
square(x, 40, 20)

Two Processing functions are in use here: random() and square(). The
first one returns a value; the second does not. The random() function gener-
ates a floating-point value ranging from 0 up to but not including 100. The
random function returns the value, which is assigned to a variable named
x. The square() function draws a square in the display window; it does not
return a value.

To define your own function that returns a value, use the return keyword.
As an example, create a new function named shout(). This function accepts a
single string argument, and then converts this string to uppercase and adds
three exclamation marks to the end. Enter the following code above your
speechBubble() calls to ensure that the shout() definition precedes any shout()
function call:

. . .
def shout(txt):
 return txt.upper() + '!!!'
. . .

In the return line, the upper() method converts the string assigned to txt
to uppercase; the final result is a concatenation of this and three exclamation

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

188 Chapter 9

marks. Once Python processes the return statement, it exits the function
immediately. In other words, if you add any further code to the shout() defini-
tion below the return line, Python ignores it.

You could use this function to add emphasis to the text in any speech
bubble. Here’s an example:

speechBubble(190, 150, shout('Check out my hat'))

The shout() function converts the string to “CHECK OUT MY HAT!!!”
before it’s passed to the speechBubble() function. This wraps the argument
with shout() to avoid having to create an intermediate variable, which you
would then pass to the speechBubble() function.

This was a simple example to introduce how the return keyword works.
Many functions that return values perform more complex tasks, like
Processing’s sqrt() function that calculates the square root of any number.

Defining Functions for Periodic Motion
In this section, you’ll learn how to simulate periodic motion in Processing
by defining functions that employ trigonometry to draw circular patterns
and waves. In physics, periodic motion is motion that repeats itself at regular
intervals, such as a swinging pendulum, waves moving through water, or the
moon orbiting the Earth. A cycle is one complete repetition of the motion.
The period is the time it takes to complete a cycle. The period for the moon’s
orbit of the Earth is roughly 27.3 days; the second hand of a clock has a
period of 60 seconds.

Trigonometry, or trig, is a branch of mathematics that studies triangles
and uses various mathematical functions, such as sine and cosine, to cal-
culate angles and distances. It also has applications in many fields of pro-
gramming. For instance, games that incorporate physics must continuously
calculate the position and speed of objects in motion, and those calcula-
tions involve triangles.

Trig is also useful for controlling steering and aiming behavior. For
example, if you know the x-y coordinates of the player and enemy turret
in Figure 9-9, you can calculate how to rotate the enemy gun to aim it at
the player.

You’ll use right triangles to calculate points along the circumference of
a circle, using sine and cosine functions. The coordinates for those points
are what you use to simulate smooth, periodic motion.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 189

Player

Enemy turret
?

Figure 9-9: If only the enemy turret had listened in math class.

Create a new sketch and save it as periodic_motion. Add the following
code to set up the drawing space:

def setup():
 size(800, 600)

def draw():
 background('#004477')
 noFill()
 strokeWeight(3)
 stroke('#0099FF')
 line(width/2, height, width/2, 0)
 line(0, height/2, width, height/2)
 # flip the y-axis
 scale(1, -1)
 translate(0, -height)
 # reposition the origin
 translate(width/2, height/2)

The preceding code structures an animated sketch by using setup() and
draw() functions with two (pale blue) lines that intersect at the center of the
display window. The y-axis is flipped, so y-coordinates decrease as you move
downward; I’ll elaborate on why I did that soon. The final translate() func-
tion shifts the coordinate system so that the origin (0, 0) sits in the center
of the display window. This means that the x-coordinate for the left edge
of the display window is –400, and the x-coordinate for the right edge is
400. The y-coordinate for the top edge is 300; for the bottom edge, it’s –300
(Figure 9-10). The modified coordinate space, with its flipped y-axis, now
behaves like a regular Cartesian plane, with four quadrants that allow you to
plot any x-y coordinates ranging between (–400, –300) and (400, 300).

You’ve likely encountered this system in math classes before, which is
why I’ve set up the coordinate space this way. You’ll use it as a platform to
experiment with elliptical and wave motion, but first, you may require a
brief refresher on trigonometric functions.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

190 Chapter 9

(0, 0)

y

–300

–400

x

400

300

Figure 9-10: The Cartesian plane with four quadrants

An Introduction to Trigonometric Functions
Sine, cosine, and tangent are three common trigonometric functions. These are
mathematical (as opposed to programming) functions, but you can use
them in Python thanks to Processing’s built-in trig functions. Sin, cos, and
tan—as they are often abbreviated—are based on ratios obtained from a
right triangle (Figure 9-11). A right triangle (or right-angled triangle) has one
angle that measures exactly 90 degrees, usually denoted by a small square.
The θ symbol, theta, is commonly used to represent an unknown angle.

Adjacent

θ

Hypotenuse
Opposite

Figure 9-11: A right triangle

You can calculate the size of theta if you know the lengths of any two
sides of this triangle. Depending on the lengths you have, you’ll use either
sin, cos, or tan for the calculation. SOHCAHTOA, pronounced phonetically
as so-ka-toe-uh, is a handy mnemonic device to help you remember the fol-
lowing trigonometric ratios:

SOH sin(θ) = opposite / hypotenuse

CAH cos(θ) = adjacent / hypotenuse

TOA tan(θ) = opposite / adjacent

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 191

As an example, if you know the length of the opposite and hypotenuse in
Figure 9-11, you can find angle theta by using sin(θ). If you know the length
of the adjacent and hypotenuse, use cos(θ). You can also rearrange these
equations to find the length of an unknown side in cases when you know
theta and one length. I’ll return to this point shortly.

You’ll apply sin and cos to a simple example to determine an x-y coordi-
nate along the perimeter of a circle. To begin, draw a circle with its center
positioned at (0, 0) with a radius of 200. Add a line starting at (0, 0) that’s
the same length as the circle radius and rotated 1 radian:

. . .
radius = 200
theta = 1

def draw():
 --snip--
 circle(0, 0, radius*2)
 stroke('#FFFFFF')
 pushMatrix()
 rotate(theta) # approximately 57.3 degrees
 line(0, 0, radius, 0)
 popMatrix()

The code renders the circle in a pale blue outline. A white line the
length of the radius extends from the center of the circle to its perimeter;
this forms an angle of 1 radian (equal to roughly 57.3 degrees), as labeled
in Figure 9-12. Notice that the rotate() function applies counterclockwise
to the line because the y-axis is inverted. The task is to work out the x-y
coordinate for the point where the white line connects to the circle perim-
eter, labeled A. The other yellow markings reveal the right triangle upon
which you’ll base your calculations.

1 radian

A

Figure 9-12: You’ll find the x-y coordinate for the point labeled A.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

192 Chapter 9

Observe that the y-coordinate for point A is equal to the length
(or height) of the opposite side. You know the angle (theta variable) and
the length of the hypotenuse (radius), which you can use to calculate the
length of the opposite. Recall that the SOH in SOHCAHTOA stands for
sin(θ) = opposite / hypotenuse.

You have the values for θ and hypotenuse, so rearrange the equation to
isolate opposite: opposite = sin(θ) × hypotenuse.

If you substitute the placeholders with the variable names in your pro-
gram, this is y = sin(theta) * radius.

To calculate the x-coordinate for point A, you need to find the length
(or width) of the adjacent side. Recall that the CAH in SOHCAHTOA stands
for cos(θ) = adjacent / hypotenuse, which you can rearrange as x = cos(theta)
* radius.

Add the following code to the end of your draw() function:

 . . .
 # white dot
 noStroke()
 fill('#FFFFFF')
 x = cos(theta) * radius
 y = sin(theta) * radius
 circle(x, y, 15)

The cos() and sin() functions return floating-point values ranging
from –1 to 1 for various values of theta. Processing’s trig functions work
with radians, so there’s no need to convert the theta argument to degrees.
In this case, theta is equal to 1 radian, and the cos() and sin() functions
return values of 0.54 and 0.84, respectively (rounded to two decimal
places). When you multiply 0.54 and 0.84 by the radius value of 200, you
get an x-y coordinate of (108, 168). The circle(x, y, 15) function renders
a white dot by using this x-y coordinate pair. Run the sketch to confirm
the position of the white dot at point A, where the white line connects
to the circle boundary.

You can adjust the theta value to move the white dot to different points
along the perimeter of the pale blue circle. To position the dot at 90 degrees,
directly above the origin, use theta = HALF_PI; for 180 degrees, use theta = PI;
and so forth. A theta value of TAU brings you back around to the starting
point, visually indistinguishable from a dot at theta = 0. If theta is greater
than TAU, there’s a wraparound effect. In other words, cos(TAU+1) is equivalent
to cos(1).

The next task is to get the dot moving. You don’t need the white line
anymore; remove it by deleting the lines starting from pushMatrix() up to
and including popMatrix().

Circular and Elliptical Motion
You’ll begin by moving the dot along a circle perimeter (a circular motion),
and you’ll create a user-defined function for handling the necessary math.
You’ll then use this same function to create a spiral variant of the circular

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 193

motion. Once you have the circular and spiral motions working, you’ll
define a new function for elliptical motion. Figure 9-13 depicts examples of
each motion.

Figure 9-13: Circular (left), spiral (middle), and elliptical (right) motion

Circles

Recall that the size of angle theta, stored in a variable named theta, governs
the position of the white dot. To make the dot move along the perimeter
of the circle in a counterclockwise direction, add code to increment theta
each time the draw function executes. Include a period variable to control
the increment size:

. . .
period = 2.1

def draw():
 global theta

 1 theta += TAU / (frameRate * period)
 . . .

At the default frameRate of 60 fps, with a period of 2.1 seconds, the
theta increment is equal to approximately 0.05 1. This means your angle
extends 0.05 of a radian with each new frame. Run the sketch to test this
out. The white dot should take about 2.1 seconds to complete a lap of the
circle perimeter.

The larger the value you add to theta, the faster the dot will move.
Subtracting from theta moves the dot in the opposite direction (clockwise).

Define a new function named circlePoint() for calculating points along
the perimeter of a circle. In your draw() function, substitute the x and y lines
with a circlePoint() function call:

def circlePoint(t, r):
 x = cos(t) * r
 y = sin(t) * r
 return [x, y]1

. . .
def draw():
 . . .

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

194 Chapter 9

 #y = sin(theta) * radius
 #x = cos(theta) * radius
 x, y2 = circlePoint(theta, radius)
 circle(x, y, 15)

The circlePoint() definition includes two parameters: t for theta (the
angle) and r for the radius. Because the function must calculate the x- and
y-coordinates for some point along a circle perimeter, it needs to return two
values. Use a list to return more than one value 1; you could also use a dic-
tionary (or a tuple).

When you call the function, Python can unpack the list values and
assign them to multiple variables. To invoke this unpacking behavior, pro-
vide a corresponding variable for each list item, separating each variable
with a comma. In this case, the function returns a list of two values, which
are assigned to variables x and y 2. Alternatively, you could assign the list
to a single variable using something like a = circlePoint(theta, radius), but
then you’d have to refer to x and y by using a[0] and a[1], respectively, which
isn’t as neat or descriptive.

Spirals

For an outward spiral motion (the center image in Figure 9-13), you can use
a radius value that increases over time. Here’s an example:

 . . .
 x, y = circlePoint(theta, frameCount)
 circle(x, y, 15)

Recall that frameCount is a system variable containing the number
of frames displayed since starting the sketch. The radius argument (the
frameCount) begins at 0 and grows larger as the animation progresses, caus-
ing the dot to move outward in a spiral motion. The dot gains speed as it
moves away from the center of the display window because each full rota-
tion maintains the same period, regardless of the circlePoint() radius. In
other words, the dot must cover a larger distance in the same time, so it
moves faster.

Ellipses

For an elliptical motion, you need two radii: one for the horizontal axis
and one for the vertical axis. These radii control the width and height of
the ellipse shape that guides the white dot’s trajectory (see the right image
in Figure 9-13). Define a new ellipsePoint() function with parameters for
an angle, horizontal radius, and vertical radius:

def ellipsePoint(t, hr, vr):
 x = cos(t) * hr
 y = sin(t) * vr
 return [x, y]
. . .

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 195

The function body is similar to that of the circlePoint() function. The
difference is that you multiply the x and y values by the hr (horizontal-radius)
and vr (vertical-radius) parameters, respectively.

The following ellipsePoint() function call makes the dot move in an
elliptical motion:

 . . .
 x, y = ellipsePoint(theta, radius*1.5, radius)
 circle(x, y, 15)

The ellipsePoint() function’s second argument (horizontal radius) is
larger than the third argument (vertical radius), so the resulting ellipse
is wider than it is tall.

Sine Waves
A sine wave is a geometric waveform that repeats itself periodically, like a
continuous chain of S-shaped curves connected end to end. This waveform
features in many mathematical and physical applications. For example, you
can use sine waves to model musical tones, radio waves, tides, and electrical
currents.

The shape of a sine wave is formed using a sin() function. Figure 9-14
depicts a yellow sine wave.

Wavelength

Amplitude

Figure 9-14: A sine wave

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

196 Chapter 9

The wavelength is the length of one complete cycle, measured as the
distance from crest to crest (or trough to trough). Wavelength is related to
period, but period is a reference to time (taken to complete a cycle), and
wavelength is a reference to distance.

The amplitude is the distance from the resting position (y = 0) to the
crest. A wave with an amplitude of 0 would lie flat along the x-axis. You can
determine that the yellow wave in Figure 9-14 has an amplitude of 200 by
comparing it to the radius of the pale blue circle.

To simulate sine wave motion, add the following code to your
periodic_motion sketch. This is the same as drawing a circle, but using
a fixed x-coordinate:

. . .
def draw():
 . . .
 amplitude = radius
 y = sin(theta) * amplitude
 circle(0, y, 15)

The wave’s amplitude is equal to the radius of the pale blue circle,
although you can test any value you like. The y-coordinate for the white dot
is calculated using sin(theta) multiplied by the amplitude; the x-coordinate
is always 0. The result is a white dot that moves directly up and down from
the origin.

Run the sketch and pay careful attention to how the dot is accelerating
and decelerating, as if the wave shown in Figure 9-14 were passing through
water with the dot floating on its surface. As the dot approaches a crest or
trough, it begins to slow down, and then it accelerates after it makes a turn;
it’s moving fastest as it crosses the y-axis.

You can use this motion to draw a whole wave of moving dots or to
simulate a weight hanging from a spring (Figure 9-15).

Figure 9-15: A wave of dots (left) and a weight hanging from a spring (right)

The code for each of these examples follows. You’ll need to add it to
the end of the draw() block of your periodic_motion sketch. You can add both
code listings if you want to draw the spring and weight over the wave of
dots, or instead replace one listing with the other.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 197

Drawing a Sine Wave of Dots

Use a loop to draw a whole wave of dots. There are 51 dots in all, equally
spread along the x-axis. Each dot has a different y-coordinate based on a
theta value that’s incrementally larger than the dot preceding it:

 amplitude = radius

 for i in range(51):
 1 f = 0.125 * 2

 t = theta + i * f
 2 x = -400 + i * 16
 3 y = sin(t) * amplitude

 circle(x, y, 15)

The loop draws 51 dots, beginning at an x-coordinate of –400, at x inter-
vals of 16 pixels 2. The y value for each dot is calculated using a theta value
that’s 0.125 * 2 of a radian (or 0.25) 1 larger than the neighbor to its left.
You can change this multiplier to 1 for a single wave that spans the width of
the display window, leave it as 2 for two waves (as in Figure 9-15), make it 3 for
three waves, and so forth. I’ve named the variable f, for frequency, which refers
to the number of times an event repeats itself in a fixed time period.

Wavelength is inversely proportional to frequency, so as you increase
the frequency, you decrease the wavelength (and the waves begin to look
spikier). The wave motion travels from right to left, but the horizontal posi-
tions of the dots don’t change.

Simulating a Weight Hanging from a Spring

Use a loop to draw the spring, which is a shape composed of vertices. The
weight dangling on the end of the spring is a rectangle. Adjust the fill and
stroke to draw outlines instead of filled shapes:

 amplitude = radius
 y = sin(theta) * amplitude
 noFill()
 stroke('#FFFFFF')
 strokeJoin(ROUND)
 bends = 35

 beginShape()
 for i in range(bends):
 vx = 30 + 60 * (i % 2 - 1)
 vy = 300 - (300 - y) / (bends - 1) * i
 vertex(vx, vy)
 endShape()

 rect(-100, y-80, 200, 80)

The tight corners of the spring’s bends will produce sharp joints, which
result in elongated “elbows.” Processing clips these when they get too long
and sharp, but jumping between mitered (sharp) and beveled (clipped) joints

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

198 Chapter 9

makes the animation look bad. To prevent this, I’ve set the strokeJoin to
ROUND. A loop is nested within the beginShape() and endShape() functions for
plotting the zigzagging spring vertices.

Ordinarily, some energy is dissipated or lost in such a system, and the
amplitude should decay over time. You could simulate this by reducing
the (global) radius value every frame until it reaches 0, when the weight
will come to a rest.

Now that you’ve learned how to return values from functions and incor-
porate trigonometry for elliptical and wave animation, let’s look at a special
curve created by combining waves.

Lissajous Curves
In this section, you’ll create a function for drawing Lissajous curves con-
trolled by arguments. A Lissajous curve—named after French physicist
Jules Antoine Lissajous—is formed by combining x- and y-coordinates
from two waves.

You can create these curves mechanically by setting up a Y-shaped
pendulum with a sand-filled cup hanging at the end of it. As the cup
swings about, sand drains through a hole at the bottom, drawing a curve.
Figure 9-16 shows an example of this device (left) and an image of a curve
drawn with sand (right). The point labeled r indicates where the pendulum
merges into a single string. The ratio of the upper to lower section of the
pendulum, and the angle and power of your initial swing, determine the
shape of the resulting curve.

Figure 9-16: Blackburn’s Y-shaped pendulum, from Sound by John Tyndall, 1879 (left),
and a Lissajous curve drawn with sand (right)

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 199

To begin, suppose that you have two circles of different sizes
(Figure 9-17). Circle A has a radius labeled A that is 200 units, and
Circle B has a radius labeled B that is 100 units.

A

B
y

x

Circle A

Circle B

θ

θ

Result

Figure 9-17: Combining x and y values from different
circles to form an ellipse

The Result ellipse (lower left) is formed by using x-coordinates from
Circle A and y-coordinates from Circle B. The ellipse turns out as wide
as Circle A and as tall as Circle B. The math for this is relatively simple
and uses what you already know about drawing ellipses with trigonometric
functions.

To find the x-y coordinate for any point along the perimeter of the
Result ellipse, you use the following:

x = cos(θ) × A

y = sin(θ) × B

Create a new sketch, save it as lissajous_curves, and add the following
code to recreate the ellipse from Figure 9-17:

def lissajousPoint(t, A, B):
 x = cos(t) * A
 y = sin(t) * B
 return [x, y]

def setup():
 size(800, 600)
 frameRate(30)
 background('#004477')
 fill('#FFFFFF')

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

200 Chapter 9

 noStroke()

theta = 0
period = 10

def draw():
 global theta
 theta += TAU / (frameRate * period)
 # flip the y-axis and reposition the origin
 scale(1, -1)
 translate(width/2, height/2-height)

 x, y = lissajousPoint(theta, 200, 100)
 circle(x, y, 15)

The drawing space is set up like your preceding sketch. You have an
inverted y-axis, and the origin is shifted to the center of the display window.
The theta value increments by approximately 0.01 each frame, which serves
as the first argument in the lissajousPoint() function call. Right now, this
function performs exactly the same operation as the ellipsePoint() function
in your period_motion sketch—the only difference is the naming of the func-
tion and its variables.

Notice that there’s no background() call within the draw() section of the
code, so Processing won’t clear each frame. Because of this, the moving
white dot forms a continuous line. Run the sketch; it should draw a com-
plete ellipse in a counterclockwise motion (Figure 9-18).

Figure 9-18: Drawing an ellipse by
using the ellipsePoint() function

When theta reaches τ radians (~6.28), the oval is complete, and
Processing continues to draw over the existing line. Even though the ani-
mation might appear complete, the dot is still moving along the perimeter.

The next step is to modify the lissajousPoint() function so that it can
draw Lissajous curves (as opposed to ellipses). But first, consider what’s hap-
pening here in terms of waves. Study Figure 9-19, which represents each
circle as a wave, and take note of how the dots on each wave control the
position of the dot along the ellipse’s perimeter.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 201

Circle A

Circle B

A

B

Result

x

y

Figure 9-19: Circle A and Circle B represented in wave form

Figure 9-19 presents the x-coordinates of Circle A as a cosine wave that
oscillates between –1 and 1, which is scaled by the circle radius (the wave
amplitude) of A. Similarly, the y-coordinates of Circle B are presented as a
sine wave with an amplitude of B.

In Figure 9-20, you can see how dots move along the waves to form the
ellipse shape.

Figure 9-20: Theta = 2 (left), theta = 3 (middle), theta = 4 (right)

Currently, the frequencies of both waves match. In other words, it takes
the same amount of time for each wave to complete a single cycle. The result
is an ellipse.

Lissajous curves occur when the wave frequencies differ. In Figure 9-21,
the frequency of the Circle B wave is twice that of the Circle A wave. The dot
following the Circle B wave must complete two cycles in the same amount of
time that the Circle A dot will complete one. The a and b values (lowercase)
represent a frequency of 1 and 2, respectively.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

202 Chapter 9

a

b

Circle A

Circle BResult

Figure 9-21: The Circle B wave has a frequency
twice that of Circle A.

Frequencies a and b could be 3 and 6, 40 and 80, or 620 and 1,240. Any
pair of numbers with a ratio of 1:2 will produce a ∞ shape. This will be impor-
tant when you return to writing the code. You can think of this in another
way as well: in Figure 9-17, the Circle B dot must always complete two journeys
around the perimeter in the same amount of time that the Circle A dot com-
pletes one.

Figure 9-22 shows how the dots move along the waves to form the
Lissajous curve.

Adapt your lissajousPoint() definition, adding a parameter for frequency
a and frequency b. Use these two parameters as multipliers for theta (t) in
your x and y lines, respectively:

def lissajousPoint(t, A, B, a, b):
 x = cos(t * a) * A
 y = sin(t * b) * B
 return [x, y]
 . . .

Figure 9-22: From left to right: theta = 2; theta = 3; theta = 4

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 203

Now, add arguments for parameters a and b to your function call:

 x, y = lissajousPoint(theta, 200, 100, 1, 2)

Run the sketch and watch Processing draw a Lissajous curve
(Figure 9-23).

Figure 9-23: Drawing a Lissajous curve
by using the lissajousPoint() function

The a and b arguments determine the number of horizontal and vertical
“lobes” in the Lissajous curve. Recall that it’s the ratio that matters, so 1, 2 will
produce the same curve as 5, 10. However, the latter pair will complete draw-
ing the curve in less time, and even larger numbers will create discernible
spacing between the dots (that would otherwise form a solid line). Figure 9-24
shows the results of a few a, b arguments. Try experimenting with other
numbers.

a = 1, b = 3 a = 3, b = 1 a = 3, b = 2 a = 3, b = 5

Figure 9-24: Drawing Lissajous curves using different a, b arguments

You can create intriguing visual patterns by moving shapes, points,
and lines around with trigonometric functions. Simply experimenting, with
no predefined idea of what you want to accomplish, can lead to impressive
visual results. Think of this approach to coding like a musical jam session,
where instrumentalists improvise until they stumble upon something that
sounds good.

The next task uses Lissajous curves and a line() function for animated
patterns, which should provide some interesting ideas for you to riff off.

Creating Screensaver-Like Patterns with Lissajous Curves
In Chapter 6, you programmed a simple DVD screensaver; now let’s cre-
ate a more elaborate one using Lissajous curves. The original purpose

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

204 Chapter 9

of a screensaver was to “save” your screen. Older cathode-ray tube (CRT)
monitors were susceptible to burn-in: if you displayed the same graphic in
the same position for too long, it would leave a permanent “ghost” image.
Modern displays aren’t susceptible to burn-in, but many people still use
screensavers because they look cool.

You’ll use your lissajousPoint() function to create a pattern inspired by
popular screensaver designs. Figure 9-25 shows the final result with lines
and colors morphing smoothly as the pattern twists about the screen.

Figure 9-25: An animated pattern based on Lissajous curves

This movement relies on two Lissajous curves, using a line() function to
draw a straight line between the leading tip of each curve. Figure 9-26 illus-
trates how this works.

theta = 1 theta = 2

theta = 3 theta = 4

Figure 9-26: Drawing a straight line between two Lissajous curves

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

Functions and Periodic Motion 205

Of course, you don’t see the curves, just the straight line, but it’s two
lissajousPoint() calls that are calculating the x-y coordinate for your line()
function. When theta reaches τ radians, the Lissajous curves are complete
and the motion repeats itself.

Add the following code to the end of the draw() function in your
lissajous_curves sketch:

 . . .
 1 for i in range(10):

 # curves
 t = theta + i / 15.0
 x1, y1 = lissajousPoint(t, 300, 150, 3, 1)
 x2, y2 = lissajousPoint(t, 250, 220, 1, 3)
 # background color

 2 fill(0x55000000)
 noStroke()
 rect(-width/2, -height/2, width, height)
 # line
 colorMode(HSB, 360, 100, 100)

 3 h = (frameCount + i * 15) % 360
 strokeWeight(7)
 stroke(h, 100, 100)
 line(x1, y1, x2, y2)

The loop will draw 10 lines 1 in all—one solid line leading a trail of
nine lines that gradually fade behind it. You use two lissajousPoint() func-
tions, one for each curve (that together define the x-y coordinate for each
end of the line). With each iteration, Processing draws a semiopaque black
square that spans the entire display window, dimming the lines of previ-
ous iterations.

To define a semiopaque color, you use Processing’s 0x notation 2.
The hexadecimal value is expressed with a leading 0x, without quotes,
using eight hexadecimal digits. The first two digits define the alpha (trans-
parency) component; for example, 11 is highly transparent, and EE highly
opaque. This example uses 55, somewhere in between, but nearer the
transparent side. The remaining six characters are your standard RGB
hexadecimal mixture, in this case black (000000). For the stroke color, set
the colorMode() to HSB (see “Color Modes” on page 15). For the first 360
frames, you can use frameCount to shift the hue value a single degree per
frame. However, frameCount will soon exceed 360, so you use a modulo
operation to “wrap around” back to 0 3.

Run the sketch to observe the output.

N O T E Drawing so many semiopaque black rectangles over the display window each frame is
a demanding operation for Processing to perform. If your computer is struggling, try
setting a lower frame rate, or reducing the for loop iterations from 10 to a more man-
ageable value.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

206 Chapter 9

Try different lissajousPoint() arguments, or add new curves and lines;
maybe even try to connect three lines between three curves for morphing
triangles. Keep experimenting to see what you come up with.

Summary
In this chapter, you’ve learned how to define your own functions, which
reduce repetition and help you structure more modular programs.
Remember that well-named functions will make your code easier to read
and understand, for yourself and anybody else dealing with it.

You can add parameters to any function to make it more versatile, and
the function call will include different arguments that correspond to those
parameters to control how it works. You can call a function by using posi-
tional and/or keyword arguments. For optional arguments, you can define
parameters that include default values for Python to fall back on.

You can also define functions that return values, which means you can
use a function to process data and hand back a result to the function caller.
If a function returns a value, you can assign it to a variable. Additionally,
you can wrap a function around an argument to process and return a value
for another function.

This chapter also introduced trigonometry concepts and how to use
them to simulate periodic motion. You learned about built-in Processing
trig functions, like sin() and cos(), which you used to draw circles, spirals,
ellipses, sine waves, and Lissajous curves. Experiment with trigonometry
to generate compelling patterns and movements like those you see in
some screensavers.

In the next chapter, you’ll write classes, which you will use to create
objects. These techniques enable you to structure your code more efficiently,
especially for larger, more complex programs, by modeling your programs
around real-world objects. You’ll also learn about vectors for programming
motion.

Learn Python Visually (Sample Chapter) © 12/09/20 by Tristan Bunn

