
2
CANNIBAL CODE

I f technology advances in cycles, you might assume the best legacy

modernization strategy is to wait a decade or two for paradigms to

shift back and leapfrog over. If only! For all that mainframes and clouds

might have in common in general, they have a number of significant dif-

ferences in the implementation that block easy transitions. While the

architectural philosophy of time-sharing has come back in vogue, other

components of technology have been advancing at a different pace. You

can divide any single product into an infinite number of elements: hard-

ware, software, interfaces, protocols, and so on. Then you can add specific

techniques within those categories. Not all cycles are in sync. The odds of

a modern piece of technology perfectly reflecting an older piece of tech-

nology are as likely as finding two days where every star in the sky had

the exact same position.

So, the takeaway from understanding that technology advances

in cycles isn’t that upgrades are easier the longer you wait, it’s that

you should avoid upgrading to new technology simply because

it’s new.

KIll it with Fire © 2021 by Marianne Bellotti

18 Kill It with Fire

Alignable Differences and User Interfaces

Without alignable differences, consumers can’t determine the value

of the technology in which they are being asked to invest. Completely

innovative technology is not a viable solution, because it has no refer-

ence point to help it find its market. We often think of technology as

being streamlined and efficient with no unnecessary bits without a clear

purpose, but in fact, many forms of technology you depend on have ves-

tigial features either inherited from other older forms of technology or

imported later to create the illusion of feature parity.

For example, most software engineering teams maintain 80-column

widths for lines of code. It is easier to read short lines of code than long

lines of code; that much is true. But why specifically 80 columns? Why not

100 columns?

Amazingly, an 80-column width is the size of the old mainframe

punch cards that were used to input both data and programs into the

room-sized computers built during the 1950s and 1960s. So right now, sol-

idly in the 21st century, programmers are enforcing a standard developed

for machines most of them have never even seen, let alone programmed.

But, why are mainframe punch cards 80 columns wide? Punch cards

used by the forebears of the earliest computer companies—back when

they were mechanical “tabulating machines” used primarily for things like

the census—were ad hoc and incredibly inefficient. They were designed

to tally, not calculate, so they were modeled after what a railroad conduc-

tor might use for tickets, rather than for storing data.1 The cards needed

to be fed into machines in batches and then sorted and stored. To avoid

having to re-invent everything, the cards themselves were designed to be

approximately the same size as the paper currency of the United States at

the time: 3¼ by 7 3⁄8 inches. This meant companies could repurpose exist-

ing drawers, bins, and boxes to acquire necessary accessories.

1. Geoffrey D. Austrian, Herman Hollerith: Forgotten Giant of Information Processing (New
York: Columbia University Press, 1982), 124.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 19

By the 1920s, customers were leaning on IBM to get more data storage

out of a single card. IBM’s innovation was to change the shape of the holes

themselves, making them more rectangular so that they could be placed

closer together on the card.2 That meant 80 columns of possible holes.

Now, let’s go even deeper. What about the punch card itself? Why

were the first computers designed to take input from stiff cards with

holes punched into them? Keyboards have existed as long as typewriters,

and the first modern typewriter was patented by Christopher Latham

Sholes, Carlos Glidden, and Samuel W. Soule in 1868, nearly a century

before some of these mainframes were developed. Telegraphs were

experimenting with different types of keyboards even earlier than that.

Why would people prefer to punch holes in a thick piece of stock paper

when they could just type their information on a keyboard?

The problem with keyboards, or similar input devices, is that it’s easy

for human operators to mistype things, especially if those human oper-

ators get no visual confirmation that what they think they typed is actu-

ally what the machine received. Think about typing a password into a

field on a website that hides what you type. One disadvantage to such

password-masking fields is if you hit the wrong key, you might not notice

until the system rejects your input. How many times have you mistyped

a password like this? Now imagine inputting an entire message without

being able to see what you typed. Operator error was a big concern for

telegraphs, especially when they started to play a larger role in ferrying

critical messages around the globe.

The solution was to have a keyboard, but instead of interfacing

directly with the telegraph, the keyboard would produce a record that

could be checked for errors before the machine tried to send the message.

Many different variations on this concept were developed, and the one

that eventually stuck was punching holes in paper tape.

2. US Patent 1,772,492, Record Sheet for Tabulating Machines, C. D. Lake, filed June 20,
1928, http://ibm-1401.info/Patent1772492.pdf.

KIll it with Fire © 2021 by Marianne Bellotti

20 Kill It with Fire

What’s curious about the era of tabulating machines in the late 19th

century and the era of early computers in the 20th is that they arrived

at the same solution in different ways. The punch cards of tabulating

machines were developed from railroad tickets, but the punch cards of

telegraphs were developed from the textile industry.

More than a century earlier, French weavers had been automating

the pattern designs of elaborate rugs by printing out a design in the form

of a series of punched holes on cards and feeding those cards into their

looms. This allowed weavers to produce high-quality products much

faster, with more artistry and greater accuracy.

The telegraph further refined the system by introducing the con-

cept of encoding. When the goal is to manipulate the threads in a giant

loom to create a complex pattern row by row, there’s no point in over-

complicating things. One hole per raised thread is perfectly effective.

However, when the goal is to send messages long distances, that kind

of literalism is inefficient. Telegraph operators were already accustomed

to using code to represent different letters, but those codes were opti-

mized to reduce operator error. In Morse code, for example, the most

common letters have shorter codes. This keeps transmission fast and

minimizes the strain on the operator. Once telegraphs started producing

a physical record that the operator could double- or triple-check before

sending the message, the most significant gains in performance were to

be had by optimizing the encoding for the machines themselves. Letters

that were expressed in code length anywhere between one to five units

were not easy for machines to deal with. Machines do far better when

every letter is equal in length. The best codes now were ones that were

a bit more complex, had a fixed length, and ultimately stored more data.

A few different systems were developed. The first one to stick was

developed by Emile Baudot in 1870. The so-called Baudot code, aka Inter-

national Telegraph Alphabet No. 1, was a 5-bit binary system.

Fast-forward to the early computer age when people were develop-

ing massive room-sized machines that also were using binary systems.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 21

They needed a way to input data and instructions, but they had no visual

interface. Computers wouldn’t be developed to work with monitors until

1964 when Bell Labs incorporated the first primitive visual interface into

the Multics time-sharing system. We had no way of seeing the input the

computer was receiving, so we borrowed an interface from the telegraph,

which, in turn, was borrowing one from 18th-century French weavers.

Technology is like that. It progresses in cycles, but those cycles occa-

sionally collide, intersect, or conflate. We are constantly borrowing ideas

we’ve seen elsewhere either to improve our systems or to give our users

a reference point that will make adopting the new technology quicker

and easier for them. Truly new systems often cannibalize the interfaces

of older systems to create alignable differences.

This is why maintaining technology long term is so difficult. Although

blindly jumping onto new things for the sake of their newness is danger-

ous, not keeping up to date is also dangerous. As technology advances,

it collects more and more interfaces and patterns. It absorbs them from

other fields, and it holds on to historic elements that no longer make

sense. It builds assumptions around the most deeply buried characteris-

tics. Keep your systems the way they are for too long, and you get caught

trying to migrate decades of assumptions.

Unix Eats the World

A common piece of advice for building successful software is to keep

what you are trying to do simple. But what exactly makes one design

feel simple and another design feel complicated? Why is a line of code

80 characters long simpler and easier to read? It is short, but what if I

told you that user experience research actually puts the ideal number at

50 to 60 characters wide? This means 80 characters is a good 50 percent

longer than what we know works best from actual testing.

The human machine is strongly biased toward the familiar. We per-

ceive concepts and constructs we know as simpler, easier, and more

KIll it with Fire © 2021 by Marianne Bellotti

22 Kill It with Fire

efficient just because they are known and comfortable to us. We don’t

need to be experts in a construct or even necessarily like it in order for

familiarity to change our perception of it. In the 1960s, psychologist

Robert Zajonc conducted a series of experiments documenting how even

a single exposure to something increased positive feelings about it in

later encounters. He found this effect with languages, individual words,

and images. Later researchers have observed similar preferences in how

financial professionals invest,3 how academic researchers evaluate jour-

nals,4 and what flavors we enjoy when we eat.5 In psychology, the term for

this is the mere-exposure effect. Simply being exposed to a concept makes

it easier for the brain to process that concept and, therefore, feels easier

to understand for the user.

Developing new technology or revitalizing an old system is, therefore,

most likely to be effective when building on familiar concepts. Reference

points create alignable differences that help us assess the value of some-

thing new, but those same reference points make the new technology feel

simple and easy, lowering the barrier to entry and increasing the odds it

will be adopted as well as the speed of adoption.

Consider the Linux operating system. It’s easily one of the most

popular operating systems for web servers if not computers in general.

Hundreds of variants currently exist that are available to install freely,

and there are any number of professional versions. Linux was the uncon-

tested victor to emerge from a mad race to develop an operating system

that was both portable to many different types of computers and free of

restrictive licenses.

3. Gur Huberman, “Familiarity Breeds Investment,” The Review of Financial Studies 14,
no. 3 (June 2001): 659–680, https://doi.org/10.1093/rfs/14.3.659.

4. A. Serenko and N. Bontis, “What's Familiar Is Excellent: The Impact of Exposure Effect
on Perceived Journal Quality,” J. Informetrics 5, no. 1 (January 2011): 219–223.

5. Patricia Pliner, “The Effects of Mere Exposure on Liking for Edible Substances,” Appetite
3, no. 3 (September 1982): 283–290.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 23

Linux is often described as the most popular version of the Unix

operating system, except the two OSes share very little when it comes to

implementation.

The story of Linux kicks off with the breakup of Bell Systems in 1982,

nearly a decade before its creation. A 1956 consent decree against AT&T

had forbidden the telecom giant from “any business other than the fur-

nishing of common carrier communications services.” This meant that

when Bell Labs computer scientists Dennis Ritchie, Ken Thompson, and

Rudd Canaday began developing Unix in the 1970s, no one was sure

whether AT&T was allowed to sell it. The lawyers at AT&T decided to play

it safe and allow it to be sold to academic and research institutions with

a copy of its source code along with the software.6

Having the source code made it easy to port Unix to different machines

as well as modify and debug it. People printed it out and annotated it

with their own commentary. Unix became an easy option for teaching

students how operating systems worked. It spread like wildfire across a

wide variety of different institutions, including universities, museums,

governmental organizations, and at least one all-girls private school in

the early days.

Users began putting their modified versions of Unix on magnetic

tape and making copies to distribute among each other. These essen-

tially were forks and pull requests long before the infrastructure for such

things existed. The principal motivation for sharing was to distribute

bug fixes and patches.

Meanwhile, AT&T’s lawyers were trying to figure out what to do with

Unix, and they were waffling between their original determination and

a more traditional restrictive approach to intellectual property. Unix his-

torian Peter Salus tells the story of how AT&T’s developers actively par-

ticipated in the piracy of their own intellectual property:

6. Peter H. Salus, The Daemon, the Gnu, and the Penguin, Reed Media Services,
September 2008.

KIll it with Fire © 2021 by Marianne Bellotti

24 Kill It with Fire

A large number of bug fixes was collected, and rather than issue them
one at a time, a collection tape was put together by Ken [Thompson].
Some of the fixes were quite important. . . . I suspect that a significant
number of the fixes w ere actually done by non-Bell people. Ken tried to
send it out, but the lawyers kept stalling and stalling and stalling.

Finally, in complete disgust, someone “found” a tape on Mountain
Avenue [the address of Bell Laboratories was 600 Mountain Avenue,
Murray Hill, NJ] which had the fixes.

When the lawyers found out about it, they called every licensee and
threatened them with dire consequences if they didn’t destroy the tape . . .
after trying to find out how they got the tape. I would guess that no one
would actually tell them how they came by the tape (I didn’t). It was the
first of many attempts by the AT&T lawyers to justify their existence and
to kill UNIX.7

 When the university students who studied Unix as part of their com-

puter science degrees graduated and got jobs, they brought Unix with

them. AT&T’s licensing became more restrictive with every new version,

as the company tried to figure out what it legally could do to leverage this

thriving community it had accidentally created.

Then in 1982, the US Department of Justice settled its second anti-

trust case against the telecom and broke up “Ma Bell.” AT&T was sud-

denly free from the consent decree that kept it from treating Unix fully as

a product, and it wasted no time in cracking down hard on the commu-

nity that had grown over the course of a decade.

If you lived through similar attempts to stop sharing other forms of

intellectual property, like music and movies, you can understand how

once people became accustomed to having Unix as a free and modifiable

operating system, they didn’t want to give it up and go back to the way

things were before. Taking away access to Unix’s source code sent the

7. Ibid.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 25

community on the hunt for a replacement that was open sourced and

ideally free.

An early contender was a variant of Unix developed at Berkeley called

Berkeley Software Distribution (BSD). BSD had a growing community,

but it had used part of Unix’s source code as its base, so it was quickly

bogged down in litigation. The heir to Unix needed to present itself as

Unix-like while not including any intellectual property from AT&T.

Enter Linux, which was developed as a pet project by computer sci-

ence student Linus Torvalds. There was never any intention to create

a full operating system from Linux; it was intended to be only a kernel

for the specific chip architecture to which the creator happened to have

access. The Linux operating system, therefore, was pieced together from

a variety of software from other groups. Most of its Unix-like interfaces

came from Richard Stallman’s GNU project, and GNU itself contained no

Unix code by design.

So in a way, Linux is a descendant of Unix that involves no code

directly from Unix. But, why hold on to the Unix look and feel at all? Once

the decision to start writing something completely new was made, what

was the value of wrapping things up to look like Unix? For Stallman, the

situation was clear: free software was a moral mission. The goal was not

to build a free alternative to Unix, but to build a free replacement for Unix

that would completely overtake and drive Unix out of business. He did

not hesitate to describe the strategy of the GNU project in extremes:

As the GNU Project’s reputation grew, people began offering to donate
machines running Unix to the project. These were very useful, because the
easiest way to develop components of GNU was to do it on a Unix system,
and replace the components of that system one by one. But they raised
an ethical issue: whether it was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU Project’s philos-
ophy said that we should not use proprietary software. But, applying
the same reasoning that leads to the conclusion that violence in self

KIll it with Fire © 2021 by Marianne Bellotti

26 Kill It with Fire

defense is justified, I concluded that it was legitimate to use a propri-
etary package when that was crucial for developing a free replacement
that would help others stop using the proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no
longer have any copies of Unix, because we have replaced them with
free operating systems. If we could not replace a machine’s operating
system with a free one, we replaced the machine instead.8

 Stallman used Unix’s interfaces because he understood that if GNU’s

interfaces matched those of established pieces of software, the users

of the proprietary pieces of software would have a bigger incentive to

switch.9

Let’s go down one more level: why did Unix have the interface it had

in the first place? Most Unix commands are two-letter abbreviations for

words that don’t seem to need abbreviating. The authors of The UNIX-
HATERS Handbook attribute this interface to the hardware available to

Unix’s creators:

The novice Unix user is always surprised by Unix’s choice of command
names. No amount of training on DOS or the Mac prepares one for the
majestic beauty of cryptic two-letter command names such as cp, rm,
and ls.

Those of us who used early 70s I/O devices suspect the degeneracy stems
from the speed, reliability, and, most importantly, the keyboard of the
ASR-33 Teletype, the common input/output device in those days. Unlike
today’s keyboards, where the distance keys travel is based on feedback
principles, and the only force necessary is that needed to close a micro-
switch, keys on the Teletype (at least in memory) needed to travel over

8. Chris DiBona, Sam Ockman, and Mark Stone, ed., Open Sources: Voices from the Open
Source Revolution (Champaign: O’Reilly Media, 1999).

9. Ibid.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 27

half an inch, and take the force necessary to run a small electric gen-
erator such as those found on bicycles. You could break your knuckles
touch typing on those beasts.

If Dennis and Ken had a Selectric instead of a Teletype, we’d probably
be typing “copy” and “remove” instead of “cp” and “rm.” Proof again that
technology limits our choices as often as it expands them.

After more than two decades, what is the excuse for continuing this tra-
dition? The implacable force of history, AKA existing code and books. If
a vendor replaced rm by, say, remove, then every book describing Unix
would no longer apply to its system, and every shell script that calls
rm would also no longer apply. Such a vendor might as well stop imple-
menting the POSIX standard while it was at it.

A century ago, fast typists were jamming their keyboards, so engineers
designed the QWERTY keyboard to slow them down. Computer key-
boards don’t jam, but we’re still living with QWERTY today. A century
from now, the world will still be living with rm.10

Just as programmers are now writing lines of code that would fit on

a punch card, they also use operating systems whose interfaces were

designed to best fit teletype keyboards. Leveraging familiar constructs to

boost adoption can create strange traditions.

Inheritance Paths

If people will more quickly adopt technology that follows an already

 familiar pattern, even one they hate, it’s worth exploring how people

become exposed to certain patterns in the first place. From the very

beginning, computing has been a cross-functional industry. Networks

of people are formed around the development of computers and the

10. S. Garfinkel, D. Weise, and S. Strassmann, The UNIX-HATERS Handbook (San Mateo: IDG
Books, 1994), 18–19.

KIll it with Fire © 2021 by Marianne Bellotti

28 Kill It with Fire

professions most likely to use computers to do other work. In the early

days of computers, this meant computer users were both the computer

scientists who built applications, developed languages, and designed

architectures and the professionals such as scientists, mathematicians,

and bankers. Even today, these groups have a tendency to silo themselves,

limiting their exposure to interfaces created for other use cases.

Consider the following: one of the most successful early program-

ming languages is COBOL, and yet modern programming languages

have inherited very little of COBOL’s design patterns. For example, we

do not section code off into divisions, nor do we use periods to end lines

of code. Few programmers would guess that PIC is a variable character

string. Some of COBOL’s features have reappeared in other languages,

but very little of its syntax and interface was retained. Instead, COBOL

itself has adopted many constructs from later languages in an effort to

clean up its act.

On the other hand, ALGOL60 has profoundly shaped the structure

and syntax of virtually every modern language, but you’d struggle to find

a programmer today who has ever even heard of it.11

When we examine the accomplishments of various programming

languages, COBOL is the obvious winner. COBOL programs still shuffle

millions of transactions and trillions of dollars from point A to point

B. It’s hard to name a single thing of significance that was ever imple-

mented in ALGOL60. The language BCPL, a similarly influential and

obscure descendent of ALGOL60, survived just long enough to become

the grandfather of C. So how on Earth did the patterns of failed lan-

guages become more familiar to early computer scientists than the

patterns of the first truly successful, cross-platform high-level program-

ming language?

The answer is that COBOL was a language built for people who did

not want to understand how the computer worked; they just wanted

11. History buffs and recovering anthropologists do not count.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 29

to get the job done. When the Committee on Data Systems Languages

(CODASYL) was developing COBOL, the attitude among those devoted

to the study and development of computers was that you should learn

the flavor of Assembly relevant for your particular machine. Making

programming more accessible and code human-readable was consid-

ered an anti-pattern, dumbing down the beauty of programming for an

unworthy audience.

This audience, however, was made up of people who actually used

computers for practical purposes, and many of them were largely

unamused by the idea that they should rewrite their programs every

single time they upgraded their machines. This group of people didn’t

care about being “real programmers.” They cared about getting stuff done,

better and faster than the competition if possible. Technical correctness

didn’t matter. Elegance didn’t matter. Execution mattered, and anything

that lowered the barrier to using computers to execute their goals was

preferable to more powerful tools that were harder to learn.

Computer scientists during this period had opposite incentives.

While COBOL users were judged and rewarded based on their ability

to get nontechnical things done faster with computers, ALGOL60 users

were judged and rewarded based on their ability to expand the function-

ality of what was even possible to do with the machines in the first place.

Typically, there were two types of accomplishments in this space: get

the machine to do something new or get the machine to do something

more efficiently than before. For computer scientists, the programming

language was the output. After it was developed, the next step was not to

write programs, but to write papers about the language and share them

with other academics for feedback and study.

Roughly three networks of people were programming computers

between the 1950s and 1970s: scientists and mathematicians, data pro-

cessors, and academics or computer researchers.

Scientists and mathematicians used computers for calculations,

and they preferred languages that reflected scientific and mathematical

KIll it with Fire © 2021 by Marianne Bellotti

30 Kill It with Fire

notation as much as possible. This community popularized FORTRAN.12

When two math professors at Dartmouth wanted to create a language

to make programming more accessible to students, they borrowed

heavily from the syntax of FORTRAN II to develop BASIC. BASIC

went on to spawn hundreds of variants, many of which are still in use

today.

Data processors used computers to read data from one source and

either run calculations or transform that data in some way before saving

it to another source. These were the COBOL users, and that language

proved so effective, it is still being used today.

If you want proof that adoption is influenced by shared knowledge

among networks of people and not strictly merit, consider this: the orga-

nizations that are trying to replace their old COBOL applications today

are not migrating them to what would be the first choice for data pro-

cessing among modern programming languages, which is Python, but to

the language that has inherited COBOL’s market of a common language

for businesses, which is Java.

The design of the language is never what’s important; it’s the people.

The type of people who would have become COBOL programmers before

are now becoming Java programmers, making Java the natural choice,

despite that it was not designed to handle the use case for which COBOL

was optimized.

Perhaps that’s why so much COBOL remains in place, having resisted

all attempts to eliminate it.

Academics and computer researchers focused on the develop-

ment of computers. When they finally moved off Assembly, it was onto

languages specifically for documenting and implementing algorithms.

ALGOL60 may not have been used to build many applications, but it was

what the Association for Computing Machinery (ACM) used to describe

12. FORTRAN is itself an abbreviation of Formula Translation.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 31

algorithms in textbooks and academic sources for more than 30 years.

This made it a powerful influence on the languages researchers later

developed.

The University of Cambridge developed the Cambridge Programming

Language (CPL) based on ALGOL60. CPL led to BCPL, which was stripped

down to create B, which was further modified to create C. Next, C became

the programming language of choice for this group of users, and it led to

the development of a huge number of languages used by all kinds of pro-

grammers: Java, Go, PHP (via Perl), Ruby, Python, and Swift.

Also popular with this group were the Lisps. Because the original

LISP was only a theoretical design document, to this day, waves of dif-

ferent implementations spring up quickly followed by futile attempts to

standardize. During the 1960s and 1970s, Lisp was strongly associated

with AI research and largely was relegated to that niche. Ironically, our

own era of computing has seen much more progress in AI, but Lisp hardly

plays a critical role. Instead, today’s Lisps are seen as a family of general

programming languages that occasionally inject ideas and structures

into more mainstream languages.

So this pivotal moment of computer science history had two groups

of people who programmed in order to achieve some practical purpose

not related to the computers themselves and one group that worked with

computers to push the boundaries of what the computers themselves

could do. The bulk of languages that exist retain the constructs that were

familiar to this third group of programmers, even though COBOL, FOR-

TRAN, and BASIC had a much wider community of users.

Overall, interfaces and ideas spread through networks of people,

not based on merit or success. Exposure to a given configuration cre-

ates the perception that it’s easier and more intuitive, causing it to be

passed down to more generations of technology. The lesson to learn

here is the systems that feel familiar to people always provide more

value than the systems that have structural elegances but run contrary

to expectations.

KIll it with Fire © 2021 by Marianne Bellotti

32 Kill It with Fire

Leveraging Interfaces When Approaching
Legacy Systems

When I’m working on a legacy system, I always start off by evaluating the

prospective users. Who will be maintaining this system long term? What

technologies are they comfortable with? Who will be using this system

the most? How do they expect the system to work?

That doesn’t mean things can’t be changed or new concepts can’t be

introduced. Particularly if the system is a couple decades old, the inter-

faces are probably tied to processes and associations that don’t make

sense anymore, just like the way 80-character lines come from punch

cards, two-character Linux commands come from teletype machines,

and the save icon on desktop applications is a floppy disk. Sometimes

changing interfaces to get rid of requirements that are no longer relevant

is a good thing. Defining what the requirements of a minimum viable

product (MVP) would be today if the system were brand new is a great

thought experiment to run when formalizing a plan of attack.

However, even when the result of change is net positive, changing

interfaces is not free. Making people think adds friction and increases

the odds of failure, even if the new interface is better and more consistent

with the overall vision of the product.

Engineers tend to overestimate the value of order and neatness. The

only thing that really matters with a computer system is its effectiveness

at performing its practical application. Linux did not come to dominate

the operating system world because it had been artfully designed from

scratch; it scraped together ideas and implementations from a number

of different systems and focused on adding value in one key place, the

kernel.

The incentives that reward individual software engineers for their

uniqueness, their ability to do new things, or to do old things in inno-

vative ways are still present, even if the desire to publish papers in aca-

demic journals has been supplanted by the desire to write popular blog

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 33

posts. Yet technology is more likely to be successful when it builds on

common things. These two forces are always in tension with any soft-

ware project, but legacy systems are particularly vulnerable.

We know, for example, that iterating on existing solutions is more

likely to improve software than a full rewrite. The dangers of full rewrites

have been documented. Joel Spolsky of Fog Creek Software and Stack

Overflow described them as “the single worst strategic mistake that any

software company can make.”13 Chad Fowler, general manager of startups

at Microsoft, describes it this way:

. . . almost all production software is in such bad shape that it would
be nearly useless as a guide to re-implementing itself. Now take this
already bad picture, and extract only those products that are big, com-
plex, and fragile enough to need a major rewrite, and the odds of success
with this approach are significantly worse.14

Fred Brooks coined the term second system syndrome in 1975 to explain

the tendency of such full rewrites to produce bloated, inefficient, and

often nonfunctioning software. But he attributed such problems not to

the rewrites themselves, but to the experience of the architects oversee-

ing the rewrite. The second system in second system syndrome was not

the second version of an existing system, it was the second system the

architect had produced. Brooks’ feeling was that architects are stricter

with their first systems because they have never built software before,

but for their second systems, they become overconfident and tack on all

kinds of flourishes and features that ultimately overcomplicate things.

By their third systems, they have learned their lesson.

13. Joel Spolsky, “Things You Should Never Do, Part I,” Joel on Software, April 6, 2000,
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

14. Chad Fowler, “Software as Spec,” December 28, 2006, http://chadfowler.com/2006/12/28/
software-as-spec.html.

KIll it with Fire © 2021 by Marianne Bellotti

34 Kill It with Fire

Unfortunately, when confronted with the troubles of existing sys-

tems, engineering teams tend to build the most momentum around

starting from scratch. Initiatives to repair and restore operational excel-

lence gradually, much the way one would fix up an old house, tend to

have few volunteers among engineering teams. That’s because Zajonc’s

mere-exposure effect has an upper bound. There’s a point where famil-

iarity breeds contempt.

From an economic perspective, there’s a difference between risk

and ambiguity.15 Risks are known and estimable threats; ambiguities

are places where outcomes both positive and negative are unknown.

The traditional school of thought tells us that human beings are averse

to ambiguity and will avoid it as much as possible. However, ambigu-

ity aversion is one of those decision-making models that test well in

laboratories but break down when brought into the real world where

decisions are more complex and probabilities less clearly defined. Spe-

cifically when the decision involves multiple attributes, a positive fram-

ing of the problem can flip people’s behavior from ambiguity-avoiding

to ambiguity-seeking.16

The incentives of individual praise aside, engineering teams tend to

gravitate toward full rewrites because they incorrectly think of old sys-

tems as specs. They assume that since an old system works, all techni-

cal challenges and possible problems have been settled. The risks have

been eliminated! They can add more features to the new system or make

changes to the underlying architecture without worry. They either do not

perceive the ambiguity these changes introduce or they see such ambi-

guity positively, imagining only gains in performance and the potential

for greater innovation.

15. Frank H. Knight, Risk, Uncertainty, and Profit, Boston: Houghton Mifflin Company, 1921.

16. Vicki M. Bier and Brad L. Connell, “Ambiguity Seeking in Multi-attribute Decisions:
Effects of Optimism and Message Framing,” Journal of Behavioral Decision Making 7, no.
3 (September 1994): 169–182, https://doi.org/10.1002/bdm.3960070303.

KIll it with Fire © 2021 by Marianne Bellotti

Cannibal Code 35

Meanwhile, the existing system has little ambiguity left. It is what it

is, hypothetical potential exhausted. We know that past the upper bound

of mere exposure, once people find a characteristic they do not like, they

tend to judge every characteristic discovered after that more negatively.17

So programmers prefer full rewrites over iterating legacy systems because

rewrites maintain an attractive level of ambiguity while the existing sys-

tems are well known and, therefore, boring. It’s no accident that proposals

for full rewrites tend to include introducing some language, design pat-

tern, or technology that is new to the engineering team. Very few rewrite

plans take the form of redesigning the system using the same language

or merely fixing a well-defined structural issue. The goal of full rewrites

is to restore ambiguity and, therefore, enthusiasm. They fail because the

assumption that the old system can be used as a spec and be trusted to

have diagnosed accurately and eliminated every risk is wrong.

Beware Artificial Consistency

In the next chapter, I’ll go into detail about how to balance these tensions

to develop a strategy around when to reinvent and rewrite and when to

leverage existing and familiar interfaces. But for now, the takeaway from

this exploration of how traits are passed down should be that perception of

simplicity is influenced by what your use case for technology exposes you

to. Things seem easier when they are familiar. Familiarity is determined by

what you are doing with technology and who you are doing it with.

But familiarity has downsides as well. While working with legacy sys-

tems, you’ll find yourself fielding many proposals that claim to improve

the system largely by establishing artificial consistency. Artificial consis-
tency means restricting design patterns and solutions to a small pool

17. Michael Norton and Jean Frost, “Less is More: The Lure of Ambiguity, or Why Famil-
iarity Breeds Contempt,” Journal of Personality and Social Psychology 92, (January 2007):
97–105, https://doi.org/10.1037/0022-3514.92.1.97.

KIll it with Fire © 2021 by Marianne Bellotti

36 Kill It with Fire

that can be standardized and repeated throughout the entire architec-

ture in a way that does not provide technical value. What’s important to

understand about artificial consistency is that it focuses on consistency

of form and classification over functionality. As an example, Node.js and

React.js are both forms of JavaScript. These two technologies look con-

sistent, but they do different things and are built upon different abstrac-

tions. The fact that they are both forms of JavaScript doesn’t give Node.js

an edge when interacting with React.js over any other backend language

that an engineering team might choose instead. An engineer’s skill in

one does not necessarily translate to the other.

Artificial consistency can bring value to nontechnical processes. For

example, standardizing on one programming language makes recruiting,

hiring, and, ultimately, sharing engineering resources much easier. But

when the principal purpose of a modernization effort is to provide tech-

nical value, be careful not to be seduced by the assumption that things

that look the same, or that we use the same words to describe, actually

integrate better.

Another place where artificial consistency comes into play is with

databases. The top choices for databases 10 years ago are not the top

choices today, so senior leaders sometimes will ask that legacy databases

be migrated to another option more consistent with whatever newer

systems are using. As with the previous example, there are legitimate

nontechnical reasons to do this, such as not wanting the expense of sup-

porting two different databases that essentially behave the same way,

but the issue quickly can get out of hand when the engineering team is

being asked to remove the key value store they’re using for a cache in

favor of a relational database.

Figuring out when consistency adds technical value and when it is

artificial is one of the hardest decisions an engineering team must make.

Human beings are pattern-matching machines. The flip side of finding

familiar things easier is that we tend to over-optimize, giving in to artifi-

cial consistency when better tools are available to us.

KIll it with Fire © 2021 by Marianne Bellotti

