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B I N A R Y  I N  A C T I O N

In the previous chapter we defined a  
computer as an electronic device that  

can be programmed to carry out a set of  
logical instructions. We then learned at a high 

level how everything in a computer, from the data 
it uses to the instructions it carries out, is stored in 
binary, 0s and 1s. In this chapter, I shed some light on 
how exactly 0s and 1s can be used to represent nearly 
any kind of data. We also cover how binary lends itself 
to logical operations.
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Representing Data Digitally
So far, we’ve focused on storing numbers in binary. More specifically, we 
covered how to store the positive integers, sometimes called whole numbers, 
and zero. However, computers store all data as bits: negative numbers, frac-
tional numbers, text, colors, images, audio, and video, to name a few. Let’s 
consider how various types of data might be represented using binary.

Digital Text
Let’s begin with text as our first example of how bits, 0s and 1s, can rep-
resent something other than a number. In the context of computing, text 
means a collection of alphanumeric and related symbols, also called char-
acters. Text is usually used to represent words, sentences, paragraphs, and 
so forth. Text does not include formatting (bold, italics). For the purposes 
of this discussion, let’s limit our character set to the English alphabet and 
related characters. In computer programming, the term string is also com-
monly used to refer to a sequence of text characters.

Keeping that definition of text in mind, what exactly do we need to 
represent? We need A through Z, uppercase and lowercase, meaning A is a 
different symbol than a. We also want punctuation marks like commas and 
periods. We need a way to represent spaces. We also need digits 0 through 9. 
The digit requirement can be confusing; here I’m talking about including 
the symbols or characters that are used to represent the numbers 0 through 9, 
which is a different thing than storing the numbers 0 through 9. 

If we add up all the unique symbols we need to represent, just described, 
we have around 100 characters. So, if we need to have a unique combination 
of bits to represent each character, how many bits do we need per character? 
A 6-bit number gives us 64 unique combinations, which isn’t quite enough. 
But a 7-bit number gives us 128 combinations, enough to represent the 100 
or so characters we need. However, since computers usually work in bytes, 
it makes sense to just round up and use a full 8 bits, one byte, to represent 
each character. With a byte we can represent 256 unique characters.

So how might we go about using 8 bits to represent each character? 
As you may expect, there’s already a standard way of representing text in 
binary, and we’ll get to that in a minute. But before we do that, it’s impor-
tant to understand that we can make up any scheme we want to represent 
each character, as long as the software running on a computer knows about 
our scheme. That said, some schemes are better than others for represent-
ing certain types of data. Software designers prefer schemes that make com-
mon operations easy to perform.

Imagine that you are responsible for creating your own system that 
represents each character as a set of bits. You might decide to assign 
0b00000000 to represent character A, and 0b00000001 to represent 
character B, and so on. This process of translating data into a digital 
format is known as encoding ; when you interpret that digital data, it’s 
known as decoding.
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E X E RCISE 2-1:  

CR E AT E YOUR OW N SYS T E M FOR R E PR E SE N T ING T E X T

Define a way to represent the uppercase letters A through D as 8-bit numbers, 
and then encode the word DAD into 24 bits using your system. There’s no sin-
gle right answer to this; see Appendix A for an example answer. Bonus: show 
your encoded 24-bit number in hexadecimal too.

ASCII
Fortunately, we already have several standard ways to represent text digitally, 
so we don’t have to invent our own! American Standard Code for Information 
Interchange (ASCII) is a format that represents 128 characters using 7 bits per 
character, although each character is commonly stored using a full byte, 8 bits. 
Using 8 bits instead of 7 just means we have an extra leading bit, left as 0.  
ASCII handles the characters needed for English, and another standard, 
called Unicode, handles characters used in nearly all languages, English 
included. For now, let’s focus on ASCII to keep things simple. Table 2-1 
shows the binary and hexadecimal values for a subset of ASCII characters. 
The first 32 characters aren’t shown; they are control codes such as carriage 
return and form feed, originally intended for controlling devices rather than 
storing text.

E X E RCISE 2-2: E NCODE A ND DECODE A SCII

Using Table 2-1, encode the following words to ASCII binary and hexadecimal, 
using a byte for each character. Remember that there are different values for 
uppercase and lowercase letters.

• Hello

• 5 cats

Using Table 2-1, decode the following words. Each character is repre-
sented as an 8-bit ASCII value with spaces added for clarity.

• 01000011 01101111 01100110 01100110 01100101 01100101

• 01010011 01101000 01101111 01110000 

Using Table 2-1, decode the following word. Each character is repre-
sented as an 8-bit hexadecimal value with spaces added for clarity.

• 43 6C 61 72 69 6E 65 74
Answers are in Appendix A.
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Table 2-1: ASCII Characters 0x20 Through 0x7F

Binary Hex Char Binary Hex Char Binary Hex Char

00100000 20 [Space] 01000000 40 @ 01100000 60 `

00100001 21 ! 01000001 41 A 01100001 61 a

00100010 22 " 01000010 42 B 01100010 62 b

00100011 23 # 01000011 43 C 01100011 63 c

00100100 24 $ 01000100 44 D 01100100 64 d

00100101 25 % 01000101 45 E 01100101 65 e

00100110 26 & 01000110 46 F 01100110 66 f

00100111 27 ' 01000111 47 G 01100111 67 g

00101000 28 ( 01001000 48 H 01101000 68 h

00101001 29 ) 01001001 49 I 01101001 69 i

00101010 2A * 01001010 4A J 01101010 6A j

00101011 2B + 01001011 4B K 01101011 6B k

00101100 2C , 01001100 4C L 01101100 6C l

00101101 2D - 01001101 4D M 01101101 6D m

00101110 2E . 01001110 4E N 01101110 6E n

00101111 2F / 01001111 4F O 01101111 6F o

00110000 30 0 01010000 50 P 01110000 70 p

00110001 31 1 01010001 51 Q 01110001 71 q

00110010 32 2 01010010 52 R 01110010 72 r

00110011 33 3 01010011 53 S 01110011 73 s

00110100 34 4 01010100 54 T 01110100 74 t

00110101 35 5 01010101 55 U 01110101 75 u

00110110 36 6 01010110 56 V 01110110 76 v

00110111 37 7 01010111 57 W 01110111 77 w

00111000 38 8 01011000 58 X 01111000 78 x

00111001 39 9 01011001 59 Y 01111001 79 y

00111010 3A : 01011010 5A Z 01111010 7A z

00111011 3B ; 01011011 5B [ 01111011 7B {

00111100 3C < 01011100 5C \ 01111100 7C |

00111101 3D = 01011101 5D ] 01111101 7D }

00111110 3E > 01011110 5E ^ 01111110 7E ~

00111111 3F ? 01011111 5F _ 01111111 7F [Delete]

It’s fairly straightforward to represent text in a digital format. A system 
like ASCII maps each character, or symbol, to a unique sequence of bits. 
A computing device then interprets that sequence of bits and displays the 
appropriate symbol to the user.
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Digital Colors and Images
Now that we’ve seen how to represent numbers and text in binary, let’s 
explore another type of data: color. Any computing device that has a color 
graphics display needs to have some system for describing colors. As you 
might expect, as with text, we already have standard ways of storing color 
data. We’ll get to them, but first let’s design our own system for digitally 
describing colors.

Let’s limit our range of colors to black, white, and shades of gray. This 
limited set of colors is known as grayscale. Just like we did with text, let’s begin 
by deciding how many unique shades of gray we want to represent. Let’s keep 
it simple and go with black, white, dark gray, and light gray. That’s four total 
grayscale colors, so how many bits do we need to represent four colors? Only 
2 bits are needed. A 2-bit number can represent four unique values, since 2 
raised to the power of 2 is 4.

E X E RCISE 2-3:  

CR E AT E YOUR OW N SYS T E M FOR R E PR E SE N T ING 

GR AYSC A L E

Define a way to digitally represent black, white, dark gray, and light gray. 
There’s no single right answer to this; see Appendix A for an example answer.

Once you’ve designed a system for representing shades of gray in 
binary, you can build on that approach and create your own system for 
describing a simple grayscale image. An image is essentially an arrange-
ment of colors on a two- dimensional plane. Those colors are typically 
arranged in a grid composed of single- color squares called pixels. Here’s a 
simple example in Figure 2-1.

Figure 2-1: A simple image
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The image in Figure 2-1 has a width of 4 pixels and a height of 4 pixels, 
giving it a total of 16 pixels. If you squint and use your imagination, you 
may see a white flower and a dark sky beyond. The image consists of only 
three colors: white, light gray, and dark gray.

N O T E  Figure 2-1 is composed of some really large pixels to illustrate a point. Modern televi-
sions, computer monitors, and smartphone screens can also be thought of as a grid of 
pixels, but each pixel is very small. For example, a high definition display is typically 
1920 pixels (width) by 1080 pixels (height), for a total of about 2 million pixels! As 
another example, digital photographs often contain more than 10 million pixels in a 
single image.

E X E RCISE 2- 4:  

CR E AT E YOUR OW N A PPROACH FOR R E PR E SE N T ING 

SIMPL E IM AGE S

Part 1 Building upon your previous system for representing grayscale colors, 
design an approach for representing an image composed of those colors. If 
you want to simplify things, you can assume that the image will always be 4 
pixels by 4 pixels, like the one in Figure 2-1.
Part 2 Using your approach from part 1, write out a binary representation of 
the flower image in Figure 2-1.
Part 3 Explain your approach for representing images to a friend. Then give 
your friend your binary data and see if they can draw the image above with-
out seeing the original image!

There’s no single right answer to this; see Appendix A for an example answer.

In Exercise 2-4, in part 2, you acted like a computer program that 
was responsible for encoding an image into binary data. In part 3, your 
friend acted like a computer program that was responsible for the reverse, 
decoding binary data into an image. Hopefully she was able to decipher 
your binary data and draw a flower! If your friend pulled it off, then great, 
together you demonstrated how software encodes and decodes data! If 
things didn’t go so well, and she ended up drawing something more like a 
pickle than a flower, that’s okay too; you demonstrated how sometimes soft-
ware has flaws, leading to unexpected results.

Approaches for Representing Colors and Images
As mentioned earlier, there are already standard approaches defined for rep-
resenting colors and images in a digital manner. For grayscale images, one 
common approach is to use 8 bits per pixel, allowing for 256 shades of gray. 
Each pixel’s value typically represents the intensity of light, so 0 represents 
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no light intensity (black) and 255 represents full intensity (white), and values 
in between are varying shades of gray, from dark to light. Figure 2-2 illus-
trates various shades of gray using an 8-bit encoding scheme.

0b00000000 = 0x00 = 0 = 

0b01010101 = 0x55 = 85 = 

0b10101010 = 0xAA = 170 = 

0b11111111 = 0xFF = 255 = 

Figure 2-2: Shades of gray represented  
with 8 bits, shown as binary, hex,  
and decimal

Representing colors beyond shades of gray works in a similar man-
ner. Although grayscale can be represented with a single 8-bit number, an 
approach known as RGB uses three 8-bit numbers to represent the intensity 
of Red, Green, and Blue that combine to make a single color. Dedicating 8 
bits to each of the three component colors means 24 bits are needed to rep-
resent the overall color. 

N O T E  RGB is based on an additive color model, where colors are composed of a mix of 
red, green, and blue light. This is in contrast to the subtractive color model used 
in painting, where the mixed colors are red, yellow, and blue.

For example, the color red is represented in RGB with all 8 red bits set 
to 1, and the remaining 16 bits for the other two colors set to 0. Or if you 
wanted to represent yellow, which is a combination of red and green, but no 
blue, you could set the red and green bits to all 1s and leave the blue bits as 
all 0s. This is illustrated in Figure 2-3.

111111110000000000000000 = 0xFF0000 = Red 

Red Green Blue

111111111111111100000000 = 0xFFFF00 = Yellow  

Red Green Blue

Figure 2-3: Red and yellow represented  
using RGB

In both the examples in Figure 2-3, the colors that are “on” are all 1s, 
but the RGB system allows for the red, blue, and green component colors to 
be partial strength as well. Each component color can vary from 00000000 
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(0 decimal/0 hex) to 11111111 (255 decimal/FF hex). A lower value repre-
sents a darker shade of that color, and a higher value represents a brighter 
shade of that color. With this flexibility of mixing colors, we can represent 
nearly any shade imaginable.

Not only are there standard ways of representing colors, but there are 
also multiple, commonly used approaches for representing an entire image. 
As you saw in Figure 2-1, we can construct images using a grid of pixels, 
with each pixel set to a particular color. Over the years, multiple image 
formats have been devised to do just that. A simplistic approach of repre-
senting an image is called a bitmap. Bitmap images store the RGB color data 
for each individual pixel. Other image formats, such as JPEG and PNG, use 
compression techniques to reduce the number of bytes required to store an 
image, as compared to a bitmap.

Interpreting Binary Data
Let’s examine one more binary value: 011000010110001001100011. What do 
you think it represents? If we assume it is an ASCII text string, it represents 
“abc.” On the other hand, perhaps it represents a 24-bit RGB color, making it 
a shade of gray. Or maybe it is a positive integer, in which case it is 6,382,179 
in decimal. These various interpretations are illustrated in Figure 2-4.

011000010110001001100011

abc
as ASCII as a 32-bit integer

6,382,179

as an RGB color

Figure 2-4: Interpretations of  
011000010110001001100011

So which is it? It can be any of these, or something else entirely. It all 
depends on the context in which the data is interpreted. A text editor pro-
gram will assume the data is text, whereas an image viewer may assume it is 
the color of a pixel in an image, and a calculator may assume it is a number. 
Each program is written to expect data in a particular format, and so a 
single binary value has different meanings in various contexts.

We’ve demonstrated how binary data can be used to represent numbers, 
text, colors, and images. From this you can make some educated guesses 
about how other types of data can be stored, such as video or audio. There’s 
no limit on what kinds of data can be represented digitally. The digital repre-
sentation isn’t always a perfect replica of the original data, but in many cases 
that isn’t a problem. Being able to represent anything as a sequence of 0s and 
1s is enormously useful, since once we’ve built a device that works with binary 
data we can adapt it, through software, to deal with any kind of data!
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Binary Logic
We’ve established the utility of using binary to represent data, but comput-
ers do more than simply store data. They allow us to work with data as well. 
With a computer’s help, we can read, edit, create, transform, share, and oth-
erwise manipulate data. Computers give us the capability to process data 
in many ways using hardware that we can program to execute a sequence 
of simple instructions—instructions like “add two numbers together” or 
“check if two values are equal.” Computer processors that implement these 
instructions are fundamentally based on binary logic, a system for describ-
ing logical statements where variables can only be one of two values—true 
or false. Let’s now examine binary logic, and in the process, we’ll again see 
how everything in a computer comes down to 1s and 0s.

Let’s consider how binary is a natural fit for logic. Typically, when 
someone speaks of logic, they mean reasoning, or thinking through what is 
known in order to arrive at a valid conclusion. When presented with a set of 
facts, logic allows us to determine whether another related statement is also 
factual. Logic is all about truth—what is true, and what is false. Likewise, a 
bit can only be one of two values, 1 or 0. Therefore, a single bit can be used 
to represent a logical state of true (1) or false (0). 

Let’s look at an example logical statement:

GIVEN a shape has four straight sides,
AND GIVEN the shape has four right angles,
I CONCLUDE that the shape is a rectangle.

This example has two conditions (four sides, four right angles) that 
must both be true for the conclusion to be true as well. For this kind of situ-
ation, we use the logical operator AND to join the two statements together. 
If either of the conditions is false, then the conclusion is false as well. I’ve 
expressed that same logic in Table 2-2.

Table 2-2: Logical Statement for a Rectangle

Four sides Four right angles Is a rectangle

False False False

False True False

True False False

True True True

Using Table 2-2, we can interpret each row as follows:

1. If the shape does not have four sides and does not have four right angles, 
it is not a rectangle.

2. If the shape does not have four sides and does have four right angles, it is 
not a rectangle.
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3. If the shape does have four sides and does not have four right angles, it is 
not a rectangle.

4. If the shape does have four sides and does have four right angles, it is a 
rectangle!

This type of table is known as a truth table : a table that shows all the pos-
sible combinations of conditions (inputs) and their logical conclusions (out-
puts). Table 2-2 was written specifically for our statement about a rectangle, 
but really, the same table applies to any logical statement joined with AND. 

In Table 2-3, I’ve made this table more generic, using A and B to repre-
sent our two input conditions, and Output to represent the logical result. 
Specifically, for this table Output is the result of A AND B.

Table 2-3: AND Truth Table  
(Using True and False)

A B Output

False False False

False True False

True False False

True True True

In Table 2-4, I’ve made one more modification to our table. Since this 
book is about computing, I’ve represented false as 0 and true as 1, just like 
computers do.

Table 2-4: AND Truth Table

A B Output

0 0 0

0 1 0

1 0 0

1 1 1

Table 2-4 is the standard form of an AND truth table when you’re deal-
ing with digital systems that use 0 and 1. Computer engineers use such 
tables to express how components will behave when they’re presented with 
a certain set of inputs. Now let’s examine how this works with other logical 
operators and more complex logical statements.

Let’s say you work at a shop that gives a discount to only two types of 
customers: children and people wearing sunglasses. No one else is eligible 
for a discount. If you wanted to state the store’s policy as a logical expres-
sion, you could say the following:

GIVEN the customer is a child,
OR GIVEN the customer is wearing sunglasses,
I CONCLUDE that the customer is eligible for a discount.
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Here we have two conditions (child, wearing sunglasses) where at least 
one condition must be true for the conclusion to be true. In this situation 
we use the logical operator OR to join the two statements together. If either 
condition is true, then the conclusion is true as well. We can express this as 
a truth table, as shown in Table 2-5.

Table 2-5: OR Truth Table

A B Output

0 0 0

0 1 1

1 0 1

1 1 1

By observing the inputs and output in Table 2-5, we can quickly see that a 
discount will be given (Output = 1) when either the customer is a child (A = 1)  
or the customer is wearing sunglasses (B = 1). Note that the input column 
values for A and B are exactly the same for both Table 2-4 and Table 2-5. This 
makes sense, because both tables have two inputs and thus the same possible 
set of input combinations. What differs is the Output column.

Let’s combine AND with OR in a more complex logical statement. For 
the purposes of this example, assume that I go to the beach every day that 
is sunny and warm, and also assume that I go to the beach every year on my 
birthday. In fact, I only and always go to the beach under these specific cir-
cumstances—my wife says I’m overly stubborn in this way. Combining those 
ideas gives us the following logical statement:

GIVEN it is sunny AND GIVEN it is warm,
OR GIVEN it is my birthday, 
I CONCLUDE that I am going to the beach.

Let’s label our input conditions, then write a truth table for this expression.

Condition A It is sunny.

Condition B It is warm.

Condition C It is my birthday.

Our logical expression will look like this:

(A AND B) OR C

Just like in an algebraic expression, the parentheses around A AND B 
mean that part of the expression should be evaluated first. Table 2-6 gives 
us a truth table for this logical expression.
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Table 2-6: (A AND B) OR C Truth Table

A B C Output

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 2-6 is a bit more complex than a simple AND truth table, but it’s 
still understandable. The table format makes it easy to look up a certain 
condition and see the outcome. For example, the third row tells us that if 
A = 0 (it is not sunny), B = 1 (it is warm), C = 0 (it is not my birthday), then 
Output = 0 (I’m not going to the beach today). 

This kind of logic is something that computers regularly need to 
handle. In fact, as mentioned earlier, the fundamental capabilities of a 
computer distill down to sets of logical operations. Although a simple AND 
operator may seem far removed from the capabilities of a smartphone or 
laptop, these logical operators serve as the conceptual building blocks of all 
digital computers.

E X E RCISE 2-5:  

W R I T E A T RU T H TA BL E FOR A LOGIC A L E X PR E SSION

Table 2-7 shows three inputs for a logical expression. Complete the truth table 
output for the expression (A OR B) AND C. The answer is in Appendix A.

Table 2-7: (A OR B) AND C Truth Table

A B C Output

0 0 0  

0 0 1  

0 1 0  

0 1 1  

1 0 0  

1 0 1  

1 1 0  

1 1 1  
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Besides AND and OR, several other common logical operators are used 
in the design of digital systems. I cover each operator in the following pages 
and provide a truth table for each. We use these again in Chapter 4 on digi-
tal circuits.

The logical operator NOT is just what it sounds like, the output is the 
opposite of the input condition. That is, if A is true, then the output is not 
true, and vice versa. As you can see in Table 2-8, NOT only takes a single 
input, rather than two inputs.

Table 2-8: NOT Truth  
Table

A Output

0 1

1 0

The operator NAND means NOT AND, so the output is the reverse 
of AND. If both inputs are true, the result is false. Otherwise, the result is 
true. This is shown in Table 2-9.

Table 2-9: NAND Truth Table

A B Output

0 0 1

0 1 1

1 0 1

1 1 0

The NOR operator means NOT OR, so the output is the reverse of 
OR. If both inputs are false, the result is true. Otherwise, the result is false. 
Table 2-10 shows this as a truth table.

Table 2-10: NOR Truth Table

A B Output

0 0 1

0 1 0

1 0 0

1 1 0

XOR is Exclusive OR, meaning that only a single (exclusive) input can 
be true for the result to be true. That is, the output is true if only A is true 
or only B is true, while the output is false if both inputs are true. This is 
detailed in Table 2-11. 
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Table 2-11: XOR Truth Table

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

The study of logical functions of two- value variables (true or false) 
is known as Boolean algebra or Boolean logic. George Boole described this 
approach to logic in the 1800s, well before the advent of the digital com-
puter. His work proved to be foundational to the development of digital 
electronics, including the computer.

Summary
In this chapter, we covered how binary is used to represent both data and 
logical states. You learned how 0s and 1s can be used to represent nearly 
any kind of data. We looked at text, colors, and images as examples of data 
in a binary format. You were introduced to various logical operators, such 
as AND and OR, and you learned about using truth tables to express a logi-
cal statement. Understanding this is important because the complex proces-
sors found in today’s computers are based on an intricate system of logic. 

We return to the topic of binary when we discuss digital circuits in 
Chapter 4, but first, to prepare you for that topic, we will take a detour  
in Chapter 3 to cover the fundamentals of electrical circuits. We’ll explore 
the laws of electricity, see how electrical circuits work, and get familiar 
with some basic components found in many circuits. You’ll even have an 
opportunity to build your own circuits!


