accessories and packaging, 200–201
adaptations, influenza, 333–335
Akiba, 64–65
all-in-one desktop Novena, 218, 242–243
Amendment 1092 to National Defense Authorization Act, 149–150
American vs. Chinese manufacturing, 35–36
amino acids, 328–329
anisotropic tape, 257–259
antibiotic-resistant superbugs, 342–343
anticounterfeit measures for US military, 149, 154–156
Apple
Apple II, 207, 326–327, 373
Foxconn, 18, 20
quality control, 37
refinement costs, 202
AppoTech chips, 293
approved vendor list (AVL), 76
Arduino, 213, 360
Arduino Uno, 104–105, 127
manufacturing, 44–57
copper sheets, 46–48
etching PCBs, 51–53
PCB pattern, applying to copper, 49–50
soldermask and silkscreen, 53–54
testing and finishing, 54–57
artisan engineering, 213
Asanović, Krste, 310–311
Ashby chart, 230
audit logs for test programs, 96
authentic parts, keeping reserve of, 156
automation
for electronics assembly, 29–31
test program, 96
in zipper factory, 67–70
AVL (approved vendor list), 76

bacteria
CRISPRs in, 347–350
metabolic pathways, 325–327
barcode, embedding in chips, 154
battery board, Novena, 223–224
battery pack, Novena, 243–244
beachhead, building, 315–317
bicycle safety light, 74–75, 79–82
bill of materials (BOM), 74–84
approved vendor list, 76
for bicycle safety light, 74–75, 79–82
change, planning for, 82–84
extended part numbers, 78–79
form factor, 77–78
quotations, 107–108
tolerance, composition, and voltage specification, 76–77
biology and bioinformatics, 277–278
comparing H1N1 to computer virus, 327–335
adaptable influenza, 333–335
DNA and RNA as bits, 328–330
hacking swine flu, 331–332
silver lining, 335
unique access ports, 330–331
patching genome, 346–354
CRISPRs in bacteria, 347–350
gene drive, 352–354
human engineering, 351–352
where to cut genes, 350–351
personalized genomics, 344–346
reverse engineering superbugs, 335–344
antibiotic resistance, 342–344
O104:H4 DNA sequence, 336–338
reversing tools for biology, 338–340
UNIX Shell Scripts, 340–342
BLASTX decompiler, 339–340
Blueprint interview, 372–382
BOM. See bill of materials
bonding USB chips to PCBs, 61
booting OS, 321
bootstrapping, 197, 203
boot structure, reverse engineering, 311–315
bottom line, and DFM, 88–91
breakout board for beginners, 241–242
building technology without using it, 23–24
business model, 363

C

capacitors, 12, 76–77
case construction
 chumby, 26–28
 Novena, 233–236
cash flow, Chumby, 193
cell phones
 hacking, 306–324
 attaching debugger, 317–320
 beachhead, building, 315–317
 booting OS, 321
 building new toolchains, 321–323
 results, 323–324
 reverse engineering boot structure, 311–315
 system architecture, 306–311
screen replacement, 120–121
$12 phone, 126–140
engineer rights, 135–140
from gongkai to open source, 134–135
hardware, 128–131
CFT (Cyber Fast Track) initiative, 289
change, planning for and coping with, 82–84
check plots, 268
Chibitronics, 251–274
 background, 251–259
 check plots, 268
Chinese New Year, impact on supply chain, 272–273
complications regarding simple requests, 267–268
delivery, 264–266
developing new process, 259
incorrect placement of components, 268–269
last-minute changes, 271–272
process capability test, 261–264
shipping, 273–274
single points of failure, eliminating, 271
stencil of sticker patterns, 271–272
test program, 92–94
translation issues, 270–271
visiting factory, 260–261
China. See also factories; Shenzhen, China
 Chinese New Year, impact on supply chain, 272–273
 Chinese translation problems, 270–271
 technology growth, 364–366
China Software Developer Network (CSDN) interview, 357–372
 about hardware hackers, 367–372
 about open hardware and maker movement, 358–367
chip-on-board (CoB) technology, 29
chips
 bonding to PCBs, 61
 counterfeit, 143–148. See also US military hardware, counterfeit chips in
decapping, 282–283
hand-placing on PCBs, 59–61
SEG Electronics Market, 11–14
for USB memory sticks, 57–59
chip shooters, 30
Chipworks, 246
chroma keying, 303–304
Chumby, 1–2, 181
 automation in assembly, 29–31
 case production, 26–28
 cash flow, 193
 chumby classic, 183–184
Chumby (continued)

cumby One
 development of, 184–189
 trim and finish, 101–104
 connector placement, 25–26
 contracts, 193–205

counterfeit microSD cards
 authenticity, 159–160
 electronic card ID data, 158–159
 forensic investigation, 160–162
 gathering data, 162–165
 summarizing findings, 166–168
 visible differences, 157–158

factory testing, 41

factory tours, 16–17

hacker-friendly platform, 182–184

injection molding, 31–34

interview with Phil Torrone, 189–205

lessons learned from, 374–375

margin, 192–193

merchant buyers, 192

microphone factory installation, 20–23

motherboard, 188–189

NeTV. See NeTV

quality control, 36–39

remote testing, 39–40

reverse logistics and returns, 193

test points, 187–188

circuit stickers, 251–274. See also
 Chibitronics

background, 251–259

check plots, 268

Chinese New Year, impact on
 supply chain, 272–273

complications for simple requests, 267–268

delivery, 264–266

developing new process, 259

incorrect placement of components, 268–269

last-minute changes, 271–272

process capability test, 261–264

shipping, 273–274

single points of failure,
 eliminating, 271

stencils of, 271–272

translation issues, 270–271

visiting factory, 260–261

Circuit Sticker Sketchbook, 256–257,
 267–268

clamshell testing, 54

cloning, 116

CoB (chip-on-board) technology, 29

Coders’ Rights Project, 137

COGS (cost of goods sold), 90–92

colors, communicating with operators through, 96

community-enforced IP rules, 124–125

community support for Novena, 247–249

company structure, 202–203

composition, BOM, 76–77

computer virus, comparing H1N1
 virus to, 327–335

adaptability, 333–335

antibodies, 335

DNA and RNA as bits, 328–330

hacking H1N1 virus 331–332

unique access ports in organisms, 330–331

configuration fuses, 281

contracts, negotiating, 193–205

copper sheets, for PCBs, 46–50

copying, 116

copyrights, 137, 138, 175–177

cosmetic blemishes, 87–88

cost of goods sold (COGS), 90–92

counterfeit goods. See fake goods

couriers, 112

covrayer, 260–261

craftspeople, need for, 26–28

CRISPR/Cas system, 347–352

Cross, Sean “xobs”, 134–135, 215–216,
 289–290. See also Novena;
 SD cards, hacking

crowdfunding, 197–198, 265, 266, 382

Crowd Supply, 250, 264, 265

CrypTech, 248–249
custom battery pack problems, 243–244
Cyber Fast Track (CFT) initiative, 289

D

data display channel (DDC), 304
Debian, 246
debugger, attaching, 317–320
decapping IC, 282–283
decompiler, 339–340
dedicated hardware real-time clock (RTC) module, 238–239
dedication to quality, 20–23
defective units, paying for, 3
delivery of circuit stickers, 264–266
design files, sharing, 363
design for manufacturing (DFM), 84–100. See also test program
to bottom line, 88–91
overview, 85–86
testing vs. validation, 97–100
tolerances, 86–88
design process, 105–106
design vocabulary, 101
desktop Novena, 218, 242–243
DFM. See design for manufacturing
Digital Millennium Copyright Act (DMCA), 137
direct repeat sequence, 348
direct-to-consumer (DTC) personal genomics, 344–345
disease predictions based on mutations, 345
distribution channel, 196
DIY speakers, 237–238
DMCA (Digital Millennium Copyright Act), 137
DNA, 328–330. See also genome
double-shot molds, 103–104
DRAM chips, 12–13
drilling process, PCB boards, 46–48
drug resistance, 338–341
DTC (direct-to-consumer) personal genomics, 344–345

E

ECO (engineering change orders), 82–84
E. coli, 342
EDID (extended display identification data), 304
EDK (embedded development kit), 135
EDM (electrical discharge machine), 33
EFF (Electronic Frontier Foundation), 137
effects stickers, 263
EHEC O104:H4, 335–344
answering questions with UNIX shell scripts, 340–342
antibiotic resistance, 342–344
DNA sequence, 336–338
reversing tools for biology, 338–340
electrical discharge machine (EDM), 33
electronic card ID data, 158–159
Electronic Frontier Foundation (EFF), 137
electronic tolerances, 86–87
embedded development kit (EDK), 135
enclosure, Novena, 224–227
end-of-life (EOL), 82
engineering change orders (ECO), 82–84
engineering humans, 351–352
engineering samples, 170–172
engineer rights, 135–140
copyrights, 138
patents and other laws, 136–137
programming languages, 138–140
EOL (end-of-life), 82
erasing
flash memory, 284–285
memory cards, 298
security bits, 285–287
etching PCBs, 51–53
e-waste, handling, 155–156
extended display identification data (EDID), 304
extended part numbers, 78–79
external mimicry, 150–151
F

factories, 2–3, 43–44. See also quality;
 specific factories by name
 automation, 29–31
 building technology without using it, 23–24
 dedication to quality, 20–23
 defective units, paying for, 3
 feeding workers, 18–20
 injection molding, 31–34
 mistakes in manufacturing, 34, 41–42
 need for craftspeople, 26–28
 partnerships with, 107–113
 import duties, 113
 ordering more units than proven demand, 112
 quotations, 108–111
 scrap and yield, 111–112
 shipping costs, 112
 tips for forming, 107–108
 scale in Shenzhen, 17–18
 scrap, 152
 searching for, 378
 skilled workers, 24–26
 testing, 41

failure analysis services, 281
failures, learning from, 368–369
Fairchild 74LCX244, 146–147
fake goods, 143–174
 chips, well-executed, 143–148
 chips in US military hardware, 149–156
 anticounterfeit measures, 154–156
 types of counterfeit parts, 150–153
 US military designs, 153–154
FPGAs, 168–174
 incorrect ID codes, 170–172
 solutions, 172–174
 white screen issue, 168–170
microSD cards, 156–168
 authenticity, 159–160
 electronic card ID data, 158–159
 forensic investigation, 160–162
 gathering data, 162–165
 summarizing findings, 166–168
 visible differences, 157–158
feeding factory workers, 18–20
Feist Publications, Inc. v. Rural Telephone Service Co., Inc., 138
Fernly shell, 315–316, 317–319
Fernvale, 306
 attaching debugger, 317–320
 beachhead, building, 315–317
 booting OS, 321
 Frond, 307–308
 legal tasks, 134–136
 peripheral connectors, 308–309
 results, 323–324
 reverse engineering boot structure, 311–315
 system architecture, 306–311
 system diagram, 309
 toolchains, building new, 321–323
field programmable gate array.
 See FPGAs
film imaging, 49–50
firmware
 in memory cards, 292
 Novena, 246–247
five-digit multimeter, 98
flash chips, for USB memory sticks, 57–59
flash memory, erasing, 284–285
flat patterns, 26–28
flex circuits, 252–253
flex PCB factory, 260–261
flow marks, 236
flying head testing, 54
form factor, 77–78
forward bias voltage, 88, 89
founders, suggestions for, 199
Foxconn, 18, 20
FPC (internal flexible printed circuit)
 header, 238–239
FPGAs (field programmable gate array)
counterfeit, 168–174
incorrect ID codes, 170–172
solutions, 172–174
white screen issue, 168–170
future trends, 212–213
Novena, 239
Freescale/NXP iMX6 CPU, 220
front bezel, Novena, 237–238
fully decapped chips, 282
functionally decapped chips, 282–283
fuzzing, 293

G

gene drive, 352–354
General-Purpose Breakout Board (GPBB), 241–242
genome
disease predictions based on mutations, 345
genotyping, 344–345
patching, 346–354
CRISPRs in bacteria, 347–350
engineering humans, 351–352
gene drive, 352–354
where to cut genes, 350–351
reference, 345–346
genotyping, 344–345
ghost shift, 115, 152
golden samples, 36, 82
gongkai (公开), 117–118, 119–120.
See also shanzhai
cell phone screen replacement, 120–121
defined, 131–134
vs. kai fang yuan dai ma (开放源代码), 372
$12 phone, 126–140
engineer rights, 135–140
from gongkai to open source, 134–135
hardware, 128–131
GPBB (General-Purpose Breakout Board), 241–242
gray markets, 154

H

H1N1 virus, comparing to computer virus, 327–335
adaptability, 333–335
antibodies, 335
DNA and RNA as bits, 328–330
 hacking H1N1 virus 331–332
unique access ports in organisms, 330–331
H5 port, 330
hacker-friendly platform, 182–184
hacker spirit, 371
hacking hardware. See hardware hacking
hand-placing chips on PCBs, 59–61
hard drive, choosing, 244–246
hardware hacking, 279–281
CSDN interview about, 367–372
general discussion, 275–278
HDCP-secured links to allow custom overlays, 298–306
of PI C18F1320, 281–289
closer look, 283–284
decapping IC, 282–283
erasing flash memory, 284–285
erasing security bits, 285–287
protecting other data, 287–289
of SD cards, 289–298
potential security issues, 298
resource for hobbyists, 298
reverse engineering microcontroller, 293–297
shanzhai phones, 306–324
attaching debugger, 317–320
beachhead, building, 315–317
booting OS, 321
building new toolchains, 321–323
Fernvale results, 323–324
reverse engineering boot structure, 311–315
system architecture, 306–311
structure of cards, 290–293
hardware startups, 378–380
hash function, 315
HDCP-secured links, hacking, 298–306
health, caring for, 205
heirloom laptops, 210–211
Heirloom Novena, 218, 227–232
 hard drive, 245–246
 mechanical engineering details, 229–232
 wood for enclosure, 228–229
honest finishes, 101
horizontal gene transfer, 343
human engineering, 351–352

I
ID codes, FPGA, 170–172
import duties and licenses, 113
i.MX233, 184
incoming quality control (IQC) guidelines, 160
incorrect placement of components on circuit stickers, 268–269
industrial design, 100–106
 Arduino Uno silkscreen art, 104–105
 chumby One trim and finish, 101–104
 personal design process, 105–106
injection molding
 general discussion, 31–34
 in Novena manufacturing, 233–236
innovation, 359
input networks, 87
intellectual property (IP). See also gongkai; shanzhai
general discussion, 115–118
 Western vs. Chinese models, 131–132
internal flexible printed circuit (FPC) header, 238–239
interoperability, 380
interviews, 357–382
 Blueprint, 372–382
 China Software Developer Network (CSDN), 357–372
 about hardware hackers, 367–372
 about open hardware and maker movement, 358–367
Make:, 189–205
inventory turning, 196–197
investigating fake microSD cards, 158–159, 160–162
involvement in manufacturing process, 36–39
IP. See intellectual property
IQC (incoming quality control) guidelines, 160
Ito, Joi, 264

J
Japan, economic development of, 365
JTAG, 170

K
kai fang yuan dai ma (开放源代码), 372
keystreams, 304–306
Kare, Susan, 39
Kickstarter, 197–198, 377
Kingston microSD cards, 156–168
 authenticity, 159–160
 electronic card ID data, 158–159
 forensic investigation of, 160–162
 gathering data, 162–165
 summarizing findings, 166–168
 visible differences, 157–158
knit lines, 235
Kovan, 169

L
labor costs, 110
laptop Novena, 218
laser imaging, 49
last-minute changes, 271–272
LCA (Linux Conference Australia), 57
LCD bezel, Novena, 226
LEDs, in bicycle safety light, 74–75, 79–82
Li, Xiao, 23–24
LinkIT ONE, MediaTek, 323–324
Linux Conference Australia (LCA), 57
logs for test programs, 96
M

Make: interview, 189–205
MakerBot, 203
maker movement, 358–367
managed NAND system, 186–187
man-in-the-middle (MITM) attacks, 290, 298, 301
manufacturer ID, 158–159
manufacturing. See factories
margins
chumby, 192–193
factory, 110–111
Master Chao, 26–28
MCM (multichip module), 310
mechanical engineering, Novena, 229–232
mechanical tolerances, 87–88
MediaTek LinkIT ONE, 323–324
MediaTek MT6250DA, 130–131
MediaTek MT6260, 140, 310–311
merchant buyers, 192
metal spiral binding, Circuit Sticker Sketchbook, 267–268
microcontroller
in memory cards, 292
reverse engineering, 293–297
test program, 92–94
microphone, chumby, 20–23
microSD cards
chumby One, 186
counterfeit, 156–168
authentication, 159–160
electronic card ID data, 158–159
forensic investigation, 160–162
gathering data, 162–165
summarizing findings, 166–168
visible differences, 157–158
military hardware, counterfeit chips in, 149–156
anticounterfeit measures, 154–156
types of counterfeit parts, 150–153
US military designs, 153–154
minimum order quantity (MOQ), 81
min-max spread, 86–87
mirror-finished plastic, 70–71
mistakes in manufacturing, 34, 41–42
MITM (man-in-the-middle) attacks, 290, 298, 301
MIT Media Lab, 264
monastic design, 100
Moore’s law, 206–212, 359
MOQ (minimum order quantity), 81
motherboard
chumby One, 188–189
Novena, 221–222, 238–239
Mottweiler, Kurt, 228, 238
multichip module (MCM), 310
mutations, disease predictions based on, 345
Mycoplasma pneumoniae, 325–327
MyriadRF, 248

N

NAND flash chips, 13
NeTV, 280, 387–388
background on HDCP, 300–301
conceptual diagram of, 303
development of, 299–300
FPGA diagram, 305
goals for, 301
how it worked, 302–303
keystream, creating, 304–305
user overlay content, creating, 303–304
NeTV2, 388–389
New Balance factory, 17–18
Ng, P.C., 344–345
nonrecurring engineering (NRE) costs, 111
Novena, 133, 215–250
all-in-one desktop, 218, 242–243
breakout board for beginners, 241–242
case construction, 233–236
community support, 247–249
custom battery pack, 243–244
Novena (continued)
design, 219–227
 battery board, 223–224
 enclosure, 224–227
 motherboard, 221–222
dimensions, 219
DIY speakers, 237–238
firmware, 246–247
front bezel changes, 237–238
hard drive, choosing, 244–246
Heirloom, 218, 227–232
 hard drive, 245–246
 mechanical engineering details, 229–232
 wood for enclosure, 228–229
injection molding, 233–236
laptop, 218
motherboard, 238–239
power pass-through board, 242–243
pricing, 218
PVT2 mainboard, 238–240
users, 217–218
NRE (nonrecurring engineering)
costs, 111
NuttX, 141

O
O104:H4 DNA sequence, 336–338
ocean freight, 273–274
ODMs (original design manufacturers), 379–380
online hardware startups, 378–380
on-time delivery, 266
open BOM, 124–125
open source, 117, 134–135
 hardware, 176–178, 205–214. See also Chibitronics; Chumby; Fernvale; Kovan; NeTV; Novena
 CSDN interview about, 358–367
 heirloom laptops, 210–211
 monetization, 195–196
 opportunities for, 211–214
 trends in, 206–209
 software, 362
ordering more units than proven demand, 112
original design manufacturers (ODMs), 379–380
overlay, creating, 303–304
overmolding, 34

P
package type, 77–78
pad printing, 102
palindromic sequences, 348
PAM (proto-space adjacent motif), 350–351
Particle’s Spark Core, 306–307
partnerships with factories, 107–113
 import duties, 113
 order more units than proven demand, 112
 quotations, 108–111
 scrap and yield, 111–112
 shipping costs, 112
 tips for forming, 107–108
 part numbers, 78–79
patching genome, 346–354
 CRISPRs in bacteria, 347–350
 engineering humans, 351–352
 gene drive, 352–354
 where to cut genes, 350–351
patents, 136–137, 194–195
patterning, 46
pattern makers, 26–28
PB2 influenza gene, 331–332
PCBs, 44–57
 applying pattern to copper, 49–50
 bonding chips to, 61
 for circuit stickers, 260–261
 copper sheets, 46–48
 etching, 51–53
 Fernvale Frond, 307–308
 hand-placing chips on, 59–61
 soldermask and silkscreen, 53–54
 testing and finishing, 54–57
PCH China Solutions, 17, 37
Peek, Nadya, 226
Peek array, 226
penicillin resistance, 338–339
Perrott, Joe, 27
personal design process, 105–106
personalized genomics, 344–346
Phase Locked Loop (PLL), 140
photore sist, 49–50
physical identifiers, embedding, 154–155
physical programming, 263
PIC18F1320, hacking, 281–289
closer look at, 283–284
decapping IC, 282–283
erasing flash memory, 284–285
erasing security bits, 285–287
protecting other data, 287–289
plastic finishes, 70–71
PLL (Phase Locked Loop), 140
poison pills, 136–137
polyimide, 260–261
power pass-through board, 242–243
pragmatic design, 100
precision, 31–34
pricing
aiming high, 199–200
Novena, 218
quality control, 34–35
probe card, 58
process capability test, 261–264
process geometry, 144–145
production candidate stickers, 263
programming languages, 138–140
protecting data when hacking, 287–289
protein database, 338–339
proteins, 329, 337
proto-space adjacent motif (PAM), 350–351

Q
QC (quality control) room, 36–39
QEMU, 317–318
See also Chibitronics
quality, 34–35
American vs. Chinese
manufacturing, 35–36
dedication to, 20–23
factory testing, 41
involvement in manufacturing process, 36–39
mistakes, 41–42
remote testing, 39–40
quality control (QC) room, 36–39
quaternary structure, 350
quotations, evaluating, 108–111

R
Radio Electronics (无线电), 369
Raspberry Pi, 360
read-evaluate-print-loop (REPL) shell, 293–297
real-time clock (RTC) module, 238–239
reballing, 155
rebinned parts, 151–152
recycling, 154–155
red ring of death, 42
reference genome, 345–346
refurbished parts, 150–151, 154
remote testing, 39–40
repair culture, 213
REPL (read-evaluate-print-loop) shell, 293–297
resistive current limiting, 88
resistors, 76
Restriction of Hazardous Substances (RoHS) testing, 41
retailers, engaging, 200, 378
returns, in retail, 193
reverse engineering, 137
boot structure, 311–315
general discussion, 275–278
microcontroller, 293–297
superbugs, 335–344
antibiotic resistance, 342–344
O104:H4 DNA sequence, 336–338
reversing tools, 338–340
UNIX shell scripts, 340–342
reverse logistics, 193
RNA, 328–330
RNA-dependent RNA polymerase, 333
robotics controller, 78
RoHS (Restriction of Hazardous Substances) testing, 41
ROM, dumping, 312–316
rooting, user, 370
routing PCBs, 55
RTC (real-time clock) module, 238–239
rubberized tags, 25

S

Samsung microSD cards, 163–168
SanDisk microSD cards, 163–168
satin-finished plastic, 70–71
scale in factories, 17–18
scarcity and demand, 70–71
Scarmagno, Italy, 44–45
scrap, handling, 111–112
scriptic language, 139–140
SD cards, hacking, 289–298
potential security issues, 298
resource for hobbyists, 298
reverse engineering microcontroller, 293–297
structure of cards, 290–293
vulnerabilities, 290
secondary structure, 349–350
second-sourcing, 153
security bits, erasing, 285–287
security issues, SD cards, 298
semiautomated process, in zipper factory, 68–70
sensor and microcontroller stickers, 263
shanzhai (山寨), 116–117, 121–125, 177, 371–372. See also gongkai
cell phones, 2
community-enforced IP rules, 124–125
hacking phones, 306–324
attaching debugger, 317–320
beachhead, building, 315–317
booting OS, 321
building new toolchains, 321–323
Fernvale results, 323–324
reverse engineering boot structure, 311–315
system architecture, 306–311
more than copycats, 123–124
sharing design files, 363
Shenzhen, China, 1–4. See also factories
screen replacement, 120–121
SEG Electronics Market, 8–14
shanzhai organizations in, 123
Shenzhen Bookstore, 14–15
“ship or die” motto, 198–199
shipping products, 112, 273–274
side-by-side bonding, 166
signatures, in memory, 319–320
silkscreen, 53–54, 57
single nucleotide polymorphisms (SNPs), 345–346
single points of failure, eliminating, 271
sink marks, 235
skilled workers, 24–26
smartcards, 144–145
smart watches, 124
SMT (surface mount technology), 55, 77–78
SNPs (single nucleotide polymorphisms), 345–346
soldermask, 53–54, 57
Song Jiang, 122
smartphones. See cell phones
spacers, 348
speakers, Novena, 237–238
SPI ROMulator FPGA, 313
ST19CF68 chips, 144–148
stacked CSPs, 166
standardization of platforms, 212
stencil of circuit sticker patterns, 271–272
superbugs, reverse engineering, 335–344
antibiotic resistance, 342–344
O104:H4 DNA sequence, 336–338
reversing tools, 338–340
UNIX shell scripts, 340–342
supply chain, impact of Chinese New Year on, 272–273
surface mount technology (SMT), 55, 77–78
swine flu. See H1N1 virus, comparing to computer virus
switches
Novena, 237
validating, 98–99
system architecture, 306–311
System Elettronica, 44–57
 applying PCB pattern to copper sheet, 49–50
 applying soldermask and silkscreen, 53–54
copper sheets, 46–48
etching PCBs, 51–53
testing and finishing, 54–57
System-on-Chip devices, 310–311

T
tampo printing, 102
technology level, in China, 364–366
Tek MDO4104B-6 oscilloscope, 313
tertiary structure, 350
testing
 flash chips, 58–59
 PCBs, 54–57
 vs. validation, 97–100
test jigs, 99–100, 271
test points, chumby One, 187–188
test program, 91–95
guidelines for, 94–97
 icons, communicating with operators through, 96
 real-world, 92–94
 setup of, 95–96
 update mechanisms for, 97
3D transistors, 245
through-hole packages, 77–78
tolerances, 76–77, 86–88
Tomlin, Steve, 39, 299
toolchains, building new, 321–323
tooling, 233–234
Torrone, Phil, 189–205
toy factories, 29–30
transistor scaling, 210–211
translation problems, 270–271
transparency in factory relationships, 107–108
trim and finish, chumby, 101–104
triple-reassortant virus, 334–335
$12 phone, 126–140
 engineer rights, 135–140
 from gongkai to open source, 134–135
hardware, 128–131

U
U-Boot (Universal Bootloader), 246
Ubuntu Edge, 382
unique access ports, in organisms, 330–331
Universal Protein Resource (UniProt), 338–339, 341
UNIX shell scripts, answering biological questions with, 340–342
upstreaming, 246
USB flashing tool, open version of, 320–322
USB memory stick factory, 57–64
 beginning of USB sticks, 57–59
 bonding chips to PCBs, 61
 close look at USB stick boards, 61–64
 hand-placing chips on PCBs, 59–61
USB ports, Novena, 237
US military hardware, counterfeit chips in, 149–156
 anticounterfeit measures, 154–156
 types of counterfeit parts, 150–153
 US military designs, 153–154
UV dye in chips, 154–155
UV-erasable programmable read-only memory (UV-EPROM), 284–285, 286
V
vacuum-tube radio schematic, 207
validation vs. testing, 97–100
Vanchip VC5276, 130
Vasut, Marek, 246, 248
venture capitalist funding, 195–196, 197–199
vibrapots, 67–68
viruses. See H1N1 virus, comparing to computer virus
V-NAND, 245, 246
voltage specification, BOM, 76–77

W
Wang, Chris “Akiba”, 64–65
waste, handling, 155–156
white screen issue, 168–170
wire bonding, 29–30, 61
wood enclosure for Novena, 228–229

X
Xbox 360, 42
Xbox One, 369
Xilinx, 170–174
xobs, 134–135, 215–216, 289–290. See also Novena; SD cards, hacking

Y
yield, 84–85, 90, 111–112
Young’s modulus, 229–230

Z
zipper factory, 64–71
fully automated process, 67–68
irony of scarcity and demand, 70–71
semiautomated process, 68–70
Z-tape, 257–259