
4
POINTS AND VECTORS

Points and vectors are the basis of geom
etry. In this book, we’ll use them as our

primitives, the building blocks for the rest of
our geometry library. For our geometry library

to be usable, it’s crucial that we implement points and
vectors using bugfree code. A bug in our code will not
only cause errors in the library’s functions but could
propagate to all the other libraries we build on top of
it, giving us all sorts of false calculations.

In this chapter, we have two main tasks. First, we need to implement
classes to represent both points and vectors. Then, we need to make sure
our code is bugfree by unit testing, a process we’ll repeat throughout this
book. Before we can do either, though, we need to implement a few useful
methods.

Comparing Numbers
When it comes to representing real numbers, computers don’t have infinite
precision. Most computers use floatingpoint numbers to store these values,
which cannot represent every rational number, let alone irrational numbers.



Thus, when comparing floatingpoint numbers, you have to specify a toler
ance: a number ϵ as small as you need such that

|a – b| < ϵ

where a and b are the two numbers you want to compare.
A tolerance’s order of magnitude needs to be consistent with the prob

lem’s magnitudes and your desired precision. For example, it wouldn’t make
much sense to use a tolerance of 1E–20mm when working with a planet’s or
bital lengths, which are on the order of millions of kilometers. Similarly, it
would be pointless to use a tolerance of 1E–2cm when working with atomic
distances.

Before we start writing our primitives, we’ll need a way of knowing whether
two floatingpoint numbers can be considered equal or not given a tolerance
ϵ. But we can’t rely on the computer to compare floatingpoint numbers,
as a different digit in the hundredth decimal is logically considered to be a
completely different number. So, we’ll start this chapter by writing a func
tion that compares two numbers using a given tolerance. For our geometri
cal calculations, we’ll use a default tolerance of 1E–10, which is an acceptable
level of precision for most of the calculations we’ll do throughout the book.

Open your project in the IDE, rightclick the project’s root folder, and
select New ▶ Python Package. Name it geom2d and clickOK. This will be the
package for all of our geometry code.

NO T E Because the package name establishes that everything inside is in 2D, we won’t re
peat this piece of information when giving names to our files and classes. Inside the
package, we’ll use names like point or segment instead of point2d or segment2d. If we
wanted to create a threedimensional geometry package, geom3d, we’d still use point
and segment, only with different, threedimensional implementations.

Create a new file by rightclicking the geom2d package folder and select
ing New ▶ Python File. Name it nums, leave the Kind dropdown as is, and
click OK.

With the file created, let’s implement our first comparison function.
Listing 41 has the code for our function.

import math

def are_close_enough(a, b, tolerance=1e-10):

return math.fabs(a - b) < tolerance

Listing 4-1: Comparing numbers

First, we import the math module, part of Python’s standard library that
contains useful mathematical functions. Our function takes two numbers,
a and b, and an optional tolerance parameter that will default to 1E–10 if no
other value is provided. Last, we use the math library’s fabs function to check
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whether the absolute value of the difference between a and b is smaller than
the tolerance, and we return the appropriate Boolean.

In practice, we’ll find there are two particular values we’re comparing
against several: zero and one. To save us from repeatedly writing something
like this:

are_close_enough(num, 1.0, 1e-5)

or this:

are_close_enough(num, 0.0, 1e-5)

let’s implement them as functions. After the previous function, add the
code in Listing 42.

--snip--

def is_close_to_zero(a, tolerance=1e-10):

return are_close_enough(a, 0.0, tolerance)

def is_close_to_one(a, tolerance=1e-10):

return are_close_enough(a, 1.0, tolerance)

Listing 4-2: Number to zero or one comparison

Functions like the ones in Listing 42 aren’t strictly necessary, but they are
convenient, and they make the code more readable.

The Point Class
A point, according to Euclid’s first volume of the Elements, is “that of which
there is no part.” In other words, a point is an entity with no width, length,
or depth. It is just a position in space, something you can’t see with your
naked eye. Points are the base of all Euclidean geometry, and everything else
in his writings is based on this simple concept. Accordingly, our geometry
library will also be based on this powerful primitive.

A point consists of two numbers, x and y. These are its coordinates,
sometimes also called projections. Figure 41 depicts a point P and its coor
dinates in the Euclidean plane.
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Figure 4-1: A point P in the plane
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Let’s implement a class representing a twodimensional point. As be
fore, we’ll create a new file by rightclicking the geom2d package folder and
selecting New ▶ Python File. Name it point and clickOK. Inside the file, en
ter the code in Listing 43.

class Point:

def __init__(self, x, y):

self.x = x

self.y = y

Listing 4-3: Our Point class

The coordinates are passed to the initializer method (__init__) and stored
as attributes of the class.

With our initializer written, let’s implement some functionality.

Calculating Distance Between Points
To compute the distance d(P,Q) between the two points P and Q, we use
Equation 4.1.

d(P,Q) =
√
(Qx – Px)2 + (Qy – Py)2 (4.1)

Here, Px and Py are P’s coordinates, and Qx and Qy are Q’s coordinates. We
can see this graphically in Figure 42.

X

Y

P

Q

P x Q x

d(P, Q)
P y

Q y

Figure 4-2: Distance between the points P and Q

We can implement our distance calculation in two ways. We could call
the method on a point p to compute the distance to another point q, as in
p.distance_to(q). We could also implement the same calculation as a func
tion where both points are given as arguments: distance_between(p, q). The
former is the objectoriented style; the latter is functional. Because we’re do
ing objectoriented programming here, we’ll go with the former.

Listing 44 has the code to implement Equation 4.1 in our class.

import math

class Point:

--snip--
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def distance_to(self, other):

delta_x = other.x - self.x

delta_y = other.y - self.y

return math.sqrt(delta_x ** 2 + delta_y ** 2)

Listing 4-4: Calculating the distance between two points

First, we need to import the math module, which loads a bunch of useful
mathematical operations into our class. We define the distance_to method
with self and other as arguments: self is the current point, and other is the
point we want to calculate the distance to. We then calculate the distance (or
delta) between the two coordinates and use the power (**) operator to square
both deltas and return the square root of their sum.

Let’s test this. Open the Python console from the IDE and try the fol
lowing:

>>> from geom2d.point import Point

>>> p = Point(1, 3)

>>> q = Point(2, 4)

>>> p.distance_to(q)

1.4142135623730951

Exciting! We’ve taken the first major step in building our geometry
library—Euclid would be proud. You can try that same operation with your
calculator and see whether our implementation yields the correct result.
Later in the chapter, we’ll automate a test that checks that the distance method
yields the right result.

While we have the console open and p and q loaded, try the following:

>>> p

<geom2d.point.Point object at 0x10f8a2588>

>>> p.__dict__

{'x': 1, 'y': 3}

Evaluating point p yields a string telling us p is an object of class Point at
memory position 0x10f8a2588. Note that the memory address you obtain will
likely be different than mine. Without knowing everything in the computer’s
memory (and reading hexadecimal), this description isn’t much help. You
can also inspect the __dict__ attribute of any class to get a dictionary of all
the attributes it holds. That gives you more interesting information about
the instance. Later in the chapter, we’ll be implementing a special method
that will help print a cleaner description of the object, something like (2, 5).

Let’s now focus our attention on overloading the + and – operators for
the Point class.
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The Addition and Subtraction Operators
The next basic operations we’ll need are addition and subtraction, opera
tions that we’ll also implement for vectors. We’ll use these basic methods
quite often, both on their own and to build more complex methods. We
could implement them as normal methods, calling them with something
like p.plus(q) and p.minus(q), but we can do better. Python allows us to over
load + and – operators (as we learned in the “Magic Methods” section from
Chapter 2) so that we can write p + q and p - q and have Python know to add
and subtract the points correctly. Overloading operators makes code like
this much easier to read and understand.

Overloading an operator in Python involves implementing a method
using a specific name that corresponds to the operator. Then, when Python
finds the operator, it will replace it with the method you’ve defined and call
it. For the + operator, the name is __add__, and for –, it is __sub__. Table 41
contains common operators we can overload in our classes.

Table 4-1: Python's Overloadable Operators

Operator Method Name Description

+ __add__(self, other) Addition
- __sub__(self, other) Subtraction
* __mul__(self, other) Multiplication
/ __truediv__(self, other) Division
% __mod__(self, other) Modulo
== __eq__(self, other) Equality
!= __ne__(self, other) Inequality
< __lt__(self, other) Less than
<= __le__(self, other) Less than or equal to
> __gt__(self, other) Greater than
>= __ge__(self, other) Greater than or equal to

Let’s implement the addition and subtraction operations as methods.
Inside the Point class and after the distance_to method, add the code in List
ing 45.

class Point:

--snip--

def __add__(self, other):

return Point(

self.x + other.x,

self.y + other.y

)

def __sub__(self, other):

return Point(

self.x - other.x,

self.y - other.y
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)

Listing 4-5: Adding and subtracting points

__add__ creates and returns a new Point where its projections are the sum
of the two parameters’ projections. This operation doesn’t make a lot of
sense algebraically speaking, but we may find it useful later. __sub__ does the
same where the resulting projections are the subtraction of the input points’
projections. Subtracting two points P – Q yields a vector going from Q to P,
but we haven’t created a class for vectors yet. We’ll refactor this code in the
next section so that it returns a vector instance.

Let’s implement our next major primitive: the vector.

The Vector Class
Similar to points, vectors in the Euclidean plane are composed of two num
bers, called the coordinates, that encode a magnitude and a direction. The
vector ⟨3, 5⟩, for instance, can be understood as the displacement achieved
by moving 3 units in the positive direction of the horizontal axis and 5 units
in the positive direction of the vertical axis. Figure 43 depicts a vector p⃗ in
the Euclidean plane.

X

Y

u

v

p

Figure 4-3: A vector p⃗ in the plane

Many physical quantities are vectorial: they require both a magnitude
and a direction to be completely defined. For example, velocities, accelera
tions, and forces are all vector quantities. Since vectors are so common, let’s
create a class to represent them.

Rightclick the geom2d package folder and select New ▶ Python File.
Name it vector and clickOK. Then enter the code in Listing 46.

class Vector:

def __init__(self, u, v):

self.u = u

self.v = v

Listing 4-6: Vector class

The implementation of Vector is similar to that of the Point class. The
coordinates are named u and v instead of x and y. This is just a convention to
avoid mixing points and vectors unwittingly.
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Before we move on, let’s refactor the Point’s __sub__ method so that it
returns a Vector. Recall that subtracting two points P –Q yields a vector going
from Q to P. Modify your point.py file so that it now matches Listing 47.

import math

from geom2d.vector import Vector

class Point:

--snip--

def __sub__(self, other):

return Vector(

self.x - other.x,

self.y - other.y

)

Listing 4-7: Refactoring Point __sub__ method

We’ll take a closer look at this operation in the “Vector Factories” sec
tion of this chapter, where we’ll use this operation to create vectors.

Let’s now implement some useful methods for the Vector class.

Addition and Subtraction Operators
Like with points, adding vectors and subtracting them are common opera
tions. For example, we can get the sum of two forces (which are vector quan
tities) by summing the vectors representing them.

After the __init__ method, enter the code in Listing 48.

class Vector:

--snip--

def __add__(self, other):

return Vector(

self.u + other.u,

self.v + other.v

)

def __sub__(self, other):

return Vector(

self.u - other.u,

self.v - other.v

)

Listing 4-8: Vector addition and subtraction
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In both the __add__ and __sub__ methods, we create a new instance of
Vector to hold the addition or subtraction of projections.

Figure 44 depicts the addition and subtraction operations of two vec
tors, p⃗ and q⃗. Notice how subtracting p⃗ – q⃗ can be interpreted as the sum of p⃗
and –⃗q.
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Figure 4-4: A sum of two vectors: p⃗ + q⃗

Now you might be wondering if we’ll do the same thing for the other
operators. Addition and subtraction translate easily to the world of points
and vectors, but for something like the __mul__ operator (used to overload
the multiplication operation), it’s not as simple. It’s unclear whether mul
tiplication would be the dot product, the cross product, or a vector scaling
operation. Instead of using a single operator, we’ll simply implement these
operations as methods with descriptive names: scaled_by, dot, and cross.

We’ll begin with scaling.

Scaling Vectors
To scale a vector u⃗, you multiply it by a magnitude k called a scalar, which will
stretch or shrink the vector. Mathematically, the scalar multiplication looks
like this:

k · u⃗ = k ·
{

ux
uy

}
=
{

k · ux
k · uy

}
(4.2)

Let’s create a scaling method in the Vector class. Enter the code in List
ing 49 under the __sub__ method.

class Vector:

--snip--

def scaled_by(self, factor):

return Vector(factor * self.u, factor * self.v)

Listing 4-9: Scaling a vector

In the previous code, we simply return a new Vector whose u and v at
tributes are multiplied by factor, the passedin scalar.

Displacing Points
Using the scaled method, we can implement another operation: displacing a
point P by a given vector u⃗ k times. Mathematically, that looks like this:
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(
Px
Py

)
+ k ·

{
ux
uy

}
=
(

Px + k · ux
Py + k · uy

)
(4.3)

Graphically it looks like Figure 45.
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Figure 4-5: Displacing a point P by a vector v⃗ a given number times k (2 in this case)

Let’s implement it programmatically inside our Point class, as the dis
placement subject is the point (Listing 410).

class Point:

--snip--

def displaced(self, vector: Vector, times=1):

scaled_vec = vector.scaled_by(times)

return Point(

self.x + scaled_vec.u,

self.y + scaled_vec.v

)

Listing 4-10: Displacing a point P by a vector v⃗ a given number of times k

The method gets passed two arguments: a vector vector and a scalar
times. The vector is scaled according to times to produce the net displace
ment. For instance, a vector ⟨3, 5⟩ scaled with times = 2 would result in a dis
placement of ⟨6, 10⟩. Note the parameter times gets a default value of 1, as
often the passed vector already has the desired length. The returned point
results from adding the coordinates of the source point and the displace
ment vector’s coordinates.

Let’s try to move a point in the Python terminal. Restart the console so
the previously imported Point and Vector classes don’t get in the way, and
enter the following:

>>> from geom2d.point import Point

>>> from geom2d.vector import Vector

>>> p = Point(2, 3)

>>> v = Vector(10, 20)

>>> p_prime = p.displaced(v, 2)

>>> p_prime.__dict__

{'x': 22, 'y': 43}

You can use a calculator to confirm that the math works as expected.
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Vector Norms
A norm of a vector is its length. A unitary norm is a norm whose length is
exactly one unit. Vectors with a unitary norm are useful for defining direc
tions; hence, we’ll frequently want to know whether a vector has a unitary
norm (whether it’s normal). We’ll also frequently want to normalize a vec
tor: keep its direction but scale it to have a length of 1. The norm of a two
dimensional vector is given by Equation4.4.

∥u⃗∥ =
√

u2x + u2y (4.4)

Let’s implement a property that returns the norm of Vector, and let’s
implement another property that checks whether the vector is normal. Both
are included in Listing 411.

import math

from geom2d import nums

class Vector:

--snip--

@property

def norm(self):

return math.sqrt(self.u ** 2 + self.v ** 2)

@property

def is_normal(self):

return nums.is_close_to_one(self.norm)

Listing 4-11: Norm of a vector

The value obtained from the norm property follows exactly the definition
from Equation 4.4. To know whether a vector has a norm of 1, we use our
numeric comparison is_close_to_one and pass in the vector’s norm.

We’ll implement two other important operations: a method that nor
malizes a vector u⃗, yielding a vector û with the same direction but unitary
length, and a method that scales a vector to have a given length. A normal
ized version of a vector, which we’ll call a unit vector or versor, can be ob
tained as follows:

û =
u⃗

∥u⃗∥
=

1√
u2x + u2y

·
{

ux
uy

}
=


ux√
u2x+u2y
uy√
u2x+u2y

 (4.5)

A vector computed this way will have a length of 1. Multiplying that vec
tor by a scalar k results in a vector u⃗k, which has the same direction as the
original but with a new length that’s exactly the value of the scalar, as shown
in Equation4.6.
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u⃗k = k
u⃗

∥u⃗∥
=

k√
u2x + u2y

·
{

ux
uy

}
=


k·ux√
u2x+u2y
k·uy√
u2x+u2y

 (4.6)

In Listing 412, we’ll turn those equations into code.

class Vector:

--snip--

def normalized(self):

return self.scaled_by(1.0 / self.norm)

def with_length(self, length):

return self.normalized().scaled_by(length)

Listing 4-12: Vectors with unit or chosen length

To normalize a vector, we scale it by the inverse of its norm (which is
equivalent to dividing the vector’s length by its norm). When we want a vec
tor scaled to a given length, we simply normalize the vector and then scale it
by the desired length.

Immutable Design
You may have realized by now that we never mutate the attributes of any of
our objects but rather create and return a new Point or Vector instance. To
normalize a vector, for instance, we could have used the code in Listing 413.

def normalize(self):

norm = self.norm

self.x = self.x / norm

self.y = self.y / norm

Listing 4-13: Normalization of a vector in place

Calling that method would result in a normalization in place, that is, a
mutation of the current object’s attributes. Normalizing in place is faster
and requires less memory but is also much more errorprone. It’s easier
than it seems for your program to mistakenly mutate an object that is being
used by other parts of the program not expecting the change. Finding these
kinds of bugs is really tricky and requires extensive debugging. Furthermore,
programs using immutable data are much easier to understand and reason
about, as you don’t need to keep track of how objects change their state with
respect to time.

Take a look at the following code. It implements the normalize method in
a similar way to the previous one, but it contains a subtle error. In this case,
the normalization would yield a wrong result. Can you spot why?
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def normalize(self):

self.x = self.x / self.norm

self.y = self.y / self.norm

This is a tricky one. By mutating the self.x attribute in the first line, the sec
ond call to get the self.norm property will use the updated value for self.x.
The first and second calls to self.norm yield different results, which is why we
had to store the value of self.norm in a variable.

When the amount of data the object has is small, you’re better off avoid
ing mutations altogether. Your program will behave correctly if executed
concurrently, and your code will be simpler to understand. Reducing muta
bility to a minimum will make your code more robust; as you’ll see through
out the book, we’ll adhere to this principle as much as we can.

Naming Convention
Notice the naming convention for methods. Methods mutating the state of
the object upon calling are named as follows:

• normalize: Normalizes the vector in place

• scale_by: Scales the vector in place

Methods creating a new object as their result are named as follows:

• normalized: Returns a new normalized vector

• scaled_by: Returns a new scaled vector

Next, we’ll implement the dot and cross products in our Vector class.
These simple products will open the door to some useful operations such as
computing the angle between two vectors or testing for perpendicularity.

Dot Product
The dot product between two vectors u⃗ and v⃗ yields a scalar value, a measure
of how different the directions of the two vectors are. In two dimensions,
with θ being the angle between the vectors, this product is given by Equa
tion 4.7.

u⃗ · v⃗ = ∥u⃗∥ · ∥⃗v∥ · cosθ = ux · vx + uy · vy (4.7)

To understand the different values the dot product can have depending
on the relative directions of the two operand vectors, let’s take a look at Fig
ure 46. This figure depicts a reference vector v⃗ and three other vectors: a⃗, b⃗,
and c⃗. A line perpendicular to v⃗ divides the space in two halfplanes. Vector b⃗
lies on that line, so the angle θ between v⃗ and b⃗ is 90°, and since cos(90°) = 0,
then v⃗ · b⃗ = 0. Perpendicular vectors yield a dot product of zero. Vector a⃗
happens to be on the same halfplanes as v⃗; therefore, v⃗ · a⃗ > 0. Lastly, c⃗ is on
the opposite halfplane of v⃗; hence, v⃗ · c⃗ < 0.
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Figure 4-6: Vector directions with respect to v⃗ yield different dot products.

Implementing the dot product is straightforward from Equation 4.7.
Inside the Vector class, enter the code in Listing 414.

class Vector:

--snip--

def dot(self, other):

return (self.u * other.u) + (self.v * other.v)

Listing 4-14: Dot product

Before we move on to the cross product, let’s stop for a minute and an
alyze one of its applications: obtaining the projection of a vector in a given
direction.

Projecting Vectors
When one of the vectors involved in a dot product is a unit vector, this op
eration’s result is the length of the projection of one vector over the other
vector. To see why, let’s use Equation 4.7. Given a vector u⃗ and a unit vector
v̂, the dot product is as follows:

u⃗ · v̂ = ∥u⃗∥ · ∥v̂∥ · cosθ = ∥u⃗∥ · 1 · cosθ = ∥u⃗∥ · cosθ
where ∥u⃗∥ · cosθ is exactly the projection of u⃗ over the direction of v̂. This will
be handy for computing projections over a direction, which we could use to
obtain the axial component of a force on a truss member, for example, as
illustrated in Figure 47. In this case, we’d simply have to do F⃗a = F⃗ · û to
compute the axial component F⃗a.

F

u

Fa

Figure 4-7: Projection of a force F⃗ in the axial direction û of a truss member
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Let’s implement this operation as a new method. Enter the code from
Listing 415 into your class.

class Vector:

--snip--

def projection_over(self, direction):

return self.dot(direction.normalized())

Listing 4-15: Projection of a vector over another vector

Note that the direction argument may not be a unit vector. To make sure
our formula works, we normalize it.

Cross Product
The cross product of two threedimensional vectors yields a new vector that is
perpendicular to the plane containing the other two. The order of operands
matters and defines the direction of the resulting vector. You can figure out
the direction of the cross product using the righthand rule. Notice that this
product is therefore noncommutative, in fact: u⃗ × v⃗ = –⃗v × u⃗. Figure 48
illustrates this phenomenon.

v x u

v

u

u x v

Figure 4-8: Cross products are noncommutative.

In 3D space, the cross product can be computed using Equation 4.8.

u⃗ × v⃗ =


uy · vz – uz · vy
uz · vx – ux · vz
ux · vy – uy · vx

 (4.8)

When working in two dimensions, every vector is contained in the same
plane; thus, every cross product yields a vector perpendicular to that plane.
That is easy to observe from the previous expression by simply noting that
uz = vz = 0:

u⃗ × v⃗ =


uy · 0 – 0 · vy
0 · vx – ux · 0
ux · vy – uy · vx

 =


0
0

ux · vy – uy · vx


In twodimensional applications, the cross product is therefore consid

ered to yield a scalar value, which is the z coordinate of the previous expres
sion’s resulting vector. You can think of this coordinate as being the length
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of the resulting vector. Since the x and y coordinates are zero, this magni
tude given by the z coordinate is all we need to keep. Given θ as the angle
between vectors u⃗ and v⃗, the cross product operation in two dimensions can
be obtained by applying Equation 4.9.

u⃗ × v⃗ = ∥u⃗∥ · ∥⃗v∥ · sinθ = ux · vy – uy · vx (4.9)

Let’s implement the cross product. Enter the code in Listing 416.

class Vector:

--snip--

def cross(self, other):

return (self.u * other.v) - (self.v * other.u)

Listing 4-16: Cross product

One important application of the cross product in two dimensions is
determining the rotational direction of angles. From Figure 48 you can see
that u⃗ × v⃗ > 0, since going from u⃗ to v⃗ describes a positive (counterclockwise)
angle. Conversely, going from v⃗ to u⃗ describes a negative angle resulting in a
negative cross product u⃗× v⃗ < 0. Lastly, note that parallel vectors have a cross
product of zero, which is easy to see because sin0 = 0. Let’s take a closer
look at this fact and write methods in our class that determine whether two
vectors are parallel or perpendicular.

Parallel and Perpendicular Vectors
Using the dot and cross products, it’s easy to test whether two vectors are
parallel or perpendicular to each other. Listing 417 contains the code for
these operations.

class Vector:

--snip--

def is_parallel_to(self, other):

return nums.is_close_to_zero(

self.cross(other)

)

def is_perpendicular_to(self, other):

return nums.is_close_to_zero(

self.dot(other)

)

Listing 4-17: Checking whether vectors are parallel or perpendicular

Checking whether two vectors are parallel to each other is as simple as
checking that their cross product is zero. Likewise, checking whether two
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vectors are perpendicular is as simple as checking whether the dot product
is zero. Notice we use the function is_close_to_zero to account for floating
point number comparison difficulties in the calculations.

Angles Between Vectors
Computing the angle between two vectors can be done with the help of the
dot product expression:

u⃗ · v⃗ = ∥u⃗∥ · ∥⃗v∥ · cosθ
Dividing the dot product term on one side by the norm product on the
other and taking the inverse of the cosine of that expression, we get the fol
lowing:

θ = acos
(

u⃗ · v⃗
∥u⃗∥ · ∥⃗v∥)

)
(4.10)

This expression computes only the magnitude of the angle; if we want to
know the direction, we’ll need to make use of the cross product. The sign of
the angle can be obtained using this:

sgn(u⃗ × v⃗)

where sgn, the sign function, is defined as follows:

sgn(x) =

{
–1 if x < 0
+1 if x ≥ 0

To understand why we only get the magnitude of the angle using Equa
tion 4.10, we need to remember an important property of the cosine func
tion. Recall from elementary geometry that a unit vector’s angle cosine is ex
actly the value of its horizontal projection. As you can see by inspecting the
unit circle from Figure 49, two vectors with opposite angles (angles where
the sum equals zero) get assigned the same cosine value. In other words,
cosα = cos(–α), which means that once an angle goes through the cosine func
tion, its sign is forever lost. That makes it impossible to determine what the
angle’s sign is from a computed value of the dot product.

+

-

cos

Figure 4-9: Cosines of opposite angles are equal.

For many of our applications, we’ll be needing both the magnitude and
sign of angles; with the help of the cross product, we can bring this informa
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tion back. Let’s create two new methods, one that yields the absolute value
of the angle (for those cases where the magnitude is enough) and another
one that includes the sign. Enter the code in Listing 418 in your Vector class.

class Vector:

--snip--

def angle_value_to(self, other):

dot_product = self.dot(other)

norm_product = self.norm * other.norm

return math.acos(dot_product / norm_product)

def angle_to(self, other):

value = self.angle_value_to(other)

cross_product = self.cross(other)

return math.copysign(value, cross_product)

Listing 4-18: Calculating the angle between two vectors

The first method, angle_value_to, computes the angle between self and
other using Equation 4.10. We first obtain the dot product value and divide
it by the product of norms. The angle is then the arc cosine of the result.
The second method, angle_to, returns the value of the angle with the sign
from the cross product. The math.copysign(x, y) function in Python returns
the magnitude of x with the sign of y.

Let’s try these two methods in the console. Reload it and write the fol
lowing:

>>> from geom2d.vector import Vector

>>> u = Vector(1, 0)

>>> v = Vector(1, 1)

>>> v.angle_value_to(u)

0.7853981633974484 # result in radians

>>> v.angle_to(u)

-0.7853981633974484 # result in radians

Just for reference, the angle value of 0.78539... is π/4 rad (45°).
Now let’s suppose we have a vector and want to create a new one by ro

tating the original some angle.

Rotating Vectors
Imagine that in the case of the bar subject to an external force, as we saw in
Figure 47, we’re also interested in knowing the projection of force F⃗ in the
direction perpendicular to the bar. This is the force’s shear component. To
find the projection of the force, we first need to figure out a vector perpen
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dicular to the direction of the bar û, which is obtained by rotating this vector
π/2 radians, as illustrated in Figure 410.

π/2

u

v

Figure 4-10: Rotating the bar’s direction vector π/2 radians

A rotation preserves the length of the original vector because a rotation
is a transformation that respects lengths. Assuming α is the angle that we
want the vector rotated by, we can use the following expression:

u⃗|α =
(
cosα –sinα
sinα cosα

)
·
{

ux
uy

}
=
{

ux · cosα – uy · sinα
ux · sinα + uy · cosα

}
(4.11)

which in Python becomes the code in Listing 419.

class Vector:

--snip--

def rotated_radians(self, radians):

cos = math.cos(radians)

sin = math.sin(radians)

return Vector(

self.u * cos - self.v * sin,

self.u * sin - self.v * cos

)

Listing 4-19: Rotating a vector

The rotated_radians function returns a new vector, the result of rotating
the original one by the given number of radians. Following our immutability
guidelines, we never mutate the source vector; instead, we return a new one
with the rotation applied.

There’s one angle, π/2 rad (90 °), which is quite useful for rotating a
vector. Using π/2 rad, we get a new vector perpendicular to the original
one. To avoid writing v.rotated_radians(math.pi / 2) over and over again, we
can define a new method in our Vector class. Knowing that cos(π/2) = 0 and
sin(π/2) = 1, the angle in Expression 4.11 simplifies to the following:

u⃗|(π/2) =
{

ux · 0 – uy · 1
ux · 1 + uy · 0

}
=
{

–uy
ux

}
Let’s call the method perpendicular. In Python, it looks like Listing 420.
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class Vector:

--snip--

def perpendicular(self):

return Vector(-self.v, self.u)

Listing 4-20: Obtaining a perpendicular vector

There’s another angle we’ll often use for rotations: π rad (180°). Ro
tating a vector π rad results in a vector that is colinear but in the opposite
direction. This time, cos(π) = –1 and sin(π) = 0. The angle expression 4.11
now looks as follows:

u⃗|(π) =
{

ux · (–1) – uy · 0
ux · 0 + uy · (–1)

}
=
{

–ux
–uy

}
Let’s call the method opposite. In Python, it looks like Listing 421.

class Vector:

--snip--

def opposite(self):

return Vector(-self.u, -self.v)

Listing 4-21: Obtaining the opposite vector

These two methods, perpendicular and opposite, don’t really add any
thing we didn’t have before; we could just use rotated_radians. Nevertheless,
they’re convenient, and we’ll be using them often.

Sine and Cosine
To project a vector quantity in the x and yaxes, we use the sine or cosine
values of the vector’s angle, as depicted in Figure 411.

X

Y

u

∣u∣ cos(�)

∣u∣ sin(�)

�

Figure 4-11: Vector projections

We’ll use these to compute the stiffness matrices in global coordinates
of truss structure bars in Part V of the book. The stiffness matrix of a bar is
computed relative to a reference frame whose xaxis is in the direction of the
bar’s directrix, but we’ll need to project this matrix in the direction of the
global x and yaxes to build the structure’s global system of equations.
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If the Vector class didn’t provide these two properties, clients of this
class could get its angle value and then compute the sine or cosine of it.
Even though this is perfectly acceptable, it requires a few operations to first
compute the angle and then one extra sine or cosine operation. But as you
know, we can compute the sine and cosine values much more efficiently by
their mathematical definition.

Say we have vector a⃗ with norm ∥a⃗∥, whose projections are labeled u and
v. The sine and cosine can be computed as follows:

sin θ =
v

∥a⃗∥
cos θ =

u
∥a⃗∥

Let’s implement these as attributes of the Vector class. Enter the code in
Listing 422.

class Vector:

--snip--

@property

def sine(self):

return self.v / self.norm

@property

def cosine(self):

return self.u / self.norm

Listing 4-22: Vector’s direction sine and cosine

The implementation is straightforward given the previous expressions.
Let’s complete our Point and Vector classes adding the last touches.

Completing Our Classes
Our Point and Vector classes are looking good, but they’re missing some
small details. If we compare two instances of any of them, Python may not
be able to determine whether they are equivalent; we’ll fix that shortly. Also,
if you remember, Python prints object instances to the console giving their
class name accompanied with a memory address, which is not that helpful
for us; we’ll also fix this here.

Checking Equality
Try entering the following in the console (don’t forget to reload it):

>>> from geom2d.point import Point

>>> p = Point(1, 0)

>>> p == p

¶ True
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>>> q = Point(1, 0)

>>> p == q

· False

I bet ¶ didn’t surprise you: a Point is equal to itself. What about ·? Did
you raise your eyebrows? We are comparing two points with the same co
ordinates, but Python states they are different. Shouldn’t (1, 0) be equal to
(1, 0)? It should, but first we have to teach Python how to compare two given
instances of our class. By default Python considers two instances of a class
to be equal if they’re effectively the same instance, that is, if they live in the
same memory region. To be more explicit, write this to the console:

>>> p

<geom2d.point.Point object at 0x10baa3f60>

>>> q

<geom2d.point.Point object at 0x10c63b438>

Python sees instance p as the one on the memory address starting at
0x10baa3f60 and instance q on 0x10c63b438. Don’t forget that the memory ad
dresses of your instances will differ from these. We must instruct Python to
compare our Point instances by checking whether the projections are close
enough to be considered the same. If you recall from Table 41, by imple
menting a method called __eq__(self, other), you are effectively overloading
the == operator. Let’s do this for both the Point and Vector classes.

Listing 423 contains the code for Point class (don’t forget to import
nums).

import math

from geom2d import nums

class Point:

--snip--

def __eq__(self, other):

if self is other:

return True

if not isinstance(other, Point):

return False

return nums.are_close_enough(self.x, other.x) and \

nums.are_close_enough(self.y, other.y)

Listing 4-23: Point equality implementation

Listing 424 contains the code for the Vector class.
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import math

from geom2d import nums

class Vector:

--snip--

def __eq__(self, other):

if self is other:

return True

if not isinstance(other, Vector):

return False

return nums.are_close_enough(self.u, other.u) and \

nums.are_close_enough(self.v, other.v)

Listing 4-24: Implementing vector equality

As you can see, in both cases the idea is the same: comparing coordinates
against another given instance. Prior to that, we do two important checks,
though. The first one is to check for the case where we are comparing the
same instance against itself, in which case we don’t require any further com
parison, so we directly return True. The second check is for the case where
other is not an instance of the class. Since Python allows us to compare any
two objects, we may be comparing an instance of Vector against a string, for
example. If we detect this case where we try to compare instances from a
different class, we return False, and we’re done. You’ll see this comparison
pattern throughout the book, as all of our classes implementing __eq__ will
use this same approach.

To make sure we got it right, let’s repeat the experiment. Don’t forget
to reload the console to import the last version of the code and enter the
following code:

>>> from geom2d.point import Point

>>> p = Point(1, 0)

>>> p == p

True

>>> q = Point(1, 0)

>>> p == q

True

There you go! Now our Point and Vector classes comparison actually
works as it is supposed to work.
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String Representation
As you’ve seen in the console when evaluating an instance of a class, the out
put is not super helpful:

>>> from geom2d.vector import Vector

>>> v = Vector(2, 3)

>>> v

<geom2d.vector.Vector object at 0x10c63b438>

If we try to convert the instance to its string representation using the str

function, we get the same result:

>>> str(p)

'<geom2d.vector.Vector object at 0x10c63b438>'

When printing the string representation of Vector instances to the con
sole, we’d find something like the following much more useful:

>>> str(p)

'(2, 5) with norm 5.385164807134504'

That message has the information of the coordinate values and the
value of the norm. Function str() in Python converts an instance of a class
to its string representation. This function first checks whether the passed
argument implements method __str__. If it does, the function calls it and re
turns the result. If it doesn’t, the function simply returns the default string
representation, which in our case is that unhelpful memory position mess.

Let’s implement __str__ in our classes. Enter Listing 425 inside class
Point.

class Point:

--snip--

def __str__(self):

return f'({self.x}, {self.y})'

Listing 4-25: Overriding string representation for Point

Then end Listing 426 in class Vector.

class Vector:

--snip--

def __str__(self):

return f'({self.u}, {self.v}) with norm {self.norm}'

Listing 4-26: Overriding string representation for Vector
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We include instance attributes into the string using fstrings (f''). The
attributes are inserted between curly braces, and Python calls their __str__

methods to get their string representation and concatenate the result. For
example, you can think of the fstring, shown here:

f'({self.x}, {self.y})'

as being translated by Python to something like this:

"(" + str(self.x) + ", " + str(self.y) + ")"

Now, when using str() on instances of our classes, a much nicer descrip
tion will be printed. Let’s reload the Python terminal and give it a second
try:

>>> from geom2d.vector import Vector

>>> v = Vector(2, 3)

>>> str(v)

'(2, 3) with norm 3.605551275463989'

Much better, isn’t it?

Vector Factories
A factory function is just a function that builds an object. Factory functions
are a good option for initializing objects that require some calculation. An
initializer should ideally only set its class attributes and avoid any computa
tion; for that we will use factories.

A factory function is also helpful to improve the readability of the code.
For instance, if you wanted to create a Vector from a point P to another point
Q, this code:

make_vector_between(p, q)

reads much better than this code:

Vector(q.x - p.x, q.y - p.y)

Not only that, but the latter is likely to be written many times, which
should tell you there is an algorithm that needs to be abstracted into its own
concept. In this particular case, the algorithm is the formula to create a vec
tor between two ordered points (see Equation 4.12).

NO T E A missing abstraction is a common problem. It happens when an algorithm repre
senting a concrete concept is not properly encapsulated into its own function or class
with a descriptive name. Its main hazards are that it takes longer for our brains to
understand code when abstractions are not well encapsulated and that the same algo
rithm is copy and pasted in many places, making it difficult to maintain.

Points and Vectors 87



Create a new file inside geom2d, call it vectors, and enter the code from
Listing 427.

from geom2d.point import Point

from geom2d.vector import Vector

def make_vector_between(p: Point, q: Point):

return q - p

def make_versor(u: float, v: float):

return Vector(u, v).normalized()

def make_versor_between(p: Point, q: Point):

return make_vector_between(p, q).normalized()

Listing 4-27: Vector factory functions

This file defines several functions, all of which have the purpose of cre
ating vectors. The first function we define, make_vector_between, creates a
vector going from a point p to another q. We’ve harnessed our Point’s class
__sub__ implementation to create the vector between the points. That is one
handy way of creating vectors, expressed mathematically as shown in Equa
tion4.12.

u⃗P→Q =
{

Qx – Px
Qy – Py

}
(4.12)

Next, we have a function called make_versor, which creates versors, or vec
tors of unit length. Versors are frequently used to express direction or ori
entation, so we’ll want a convenient way of creating them. Note versors are
written with a hat over them, as in û, signifying their length is unitary.

Lastly, we have make_versor_between to create a versor between two points,
which reuses the make_vector_between function to return the normalized result
of it. The resulting versor could also be computed with Equation 4.13.

ûP→Q =
1√

(Qx – Px)2 + (Qy – Py)2
·
{

Qx – Px
Qy – Py

}
(4.13)

Unit Testing
So far we’ve implemented a couple methods on classes Point and Vector, and
we’ve tested some of them in the console by hand, but now we face some big
questions: how can we convince someone else that our code always works as
expected? How can we be sure what we’ve written works all the time? How
can we make sure we don’t break anything when we modify existing code or
add new code?
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Often enough, you’ll need to go back to some piece of code you wrote a
long time ago to fix a bug. The problem comes when you want change that
code but don’t know whether making that change will break what’s already
working. In fact, you may not be aware of what all the code is supposed to
be doing, so you end up changing something you shouldn’t have and break
something else. This phenomenon happens so regularly it has its own name:
regression.

Testing code by hand in the console is tiresome and boring, both en
suring you probably won’t test everything you need to test. Besides that, it’s
not a repeatable process: you’ll forget about which tests you executed for
each method, or if someone else needs to run them, they’ll have to figure
out what to test and how. But still, we really need to make sure our changes
won’t break anything. Code is entirely useless if it doesn’t do what it’s sup
posed to.

What would make our life much easier is an automated test we could ex
ecute, which takes a few milliseconds to run and spits out output that clearly
states whether anything went wrong, where, and why. This is the basic idea
behind unit testing, a crucial activity for any serious developer. Your code
cannot be considered finished until it’s accompanied with good unit tests
that prove its quality. I consider this part of development so vital I want to
cover it early in the book and make extensive use of it. Writing automated,
unitary tests for our code is a simple process, and there’s really no excuse for
not doing it.

Creating unit tests for your code is simple: create a new file, and inside
it add a new class with methods that test small portions of the test subject.
Each test case has an assertion function that ensures a specific result is ob
tained given a set of inputs. The test is considered to pass when the asser
tion succeeds and to fail otherwise. When the test class is executed (as we’ll
see next), the methods are executed, and their assertions are checked.

Don’t worry if this still doesn’t make sense; we’re going to use unit test
ing so much in this book you’ll get to fully understand it.

Testing Distances
The first method we wrote for Point was distance_to, so let’s start our unit
test adventure there. In the geom2d package, create a new file named point_test.py.
Your project’s structure should look like the following:

Mechanics

|- geom2d

| |- __init__.py

| |- nums.py

| |- point.py

| |- point_test.py

| |- vector.py

| |- vectors.py

In point_test.py, enter the code from Listing 428.
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import unittest

from geom2d.point import Point

¶ class TestPoint(unittest.TestCase):

· def test_distance_to(self):

p = Point(1, 2)

q = Point(4, 6)

expected = 5

actual = p.distance_to(q)

¸ self.assertAlmostEqual(expected, actual)

Listing 4-28: Distance between points test

We start by importing the unittest module, shipped with Python. This
module provides us with most of the infrastructure we need to write and ex
ecute unit tests. After importing our Point class, we define the class TestPoint,
which inherits unittest.TestCase ¶. The TestCase class defines a good collec
tion of assertion methods that we gain access to inside our class when we
inherit it.

Next we have the test_distance_to method. It’s important that the method
name starts with the word test_, because this is how the class discovers which
of its methods are tests to be executed. You can define other methods in the
class, but as long as their name doesn’t start with test, they won’t be executed
as tests. Inside the test we create two points that we know are 5 units apart
from each other and assert that their distance p.distance_to(q) is close to that
value.

NO T E unittest module’s choice of words may be confusing. The name UnitTest is used for
the class even though the tests themselves are actually the methods inside the class.
Our class extending UnitTest is just a way of grouping related test cases.

The assertion method assertAlmostEqual (defined in the class we inher
ited from: unittest.TestCase) checks for floatingpoint number equality with
a given tolerance, which is expressed as the number of decimal positions to
compare. The default number of decimal positions to check is 7, and in this
test, we’ll stick to the default (as we didn’t provide any other value). Remem
ber that when dealing with floatingpoint number comparisons, a tolerance
must be used or, in this case, a given number of decimal positions (see the
“Comparing Numbers” section).

There are several ways to run tests. Let’s explore how to do it from both
PyCharm and the console.
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Running the Test from PyCharm
If you take a look at your test file in PyCharm, you’ll see a little green “play”
button to the left of the class and method definitions. The class button ex
ecutes all the tests inside of it (so far we have only one), whereas the button
next to the method will run only that one test. Click the class one; from the
menu, select Run ‘Unittest for point...’. The Run pane appears in the lower
part of the IDE, and the result of executing your tests is displayed. If you did
everything right, you should see the following:

--snip--

Ran 1 test in 0.001s

OK

Process finished with exit code 0

Let’s now learn how to run the same test from the console.

Running the Test from the Console
IDEs other than PyCharm may have their own way to run tests. But regard
less of the IDE you use, you can always run tests from the console. Open the
console or terminal and make sure you’re in the Mechanics project directory.
Then run the following command:

$ python3 -m unittest geom2d/point_test.py

You should see the following result:

Ran 1 tests in 0.000s

OK

We’ll run most of the tests throughout the book from the IDE, but feel
free to run them from the console if you prefer.

Assertion Errors
Let’s see what would’ve happened if the assertion detected a wrong result.
Inside point_test.py, change the expected value for the distance:

expected = 567

actual = p.distance_to(q)

This assertion is expecting points (1, 2) and (4, 6) to be 567 units apart,
which is totally wrong. Now, execute the test again by clicking the green play
button beside the class. This is the result you should see:

Ran 1 test in 0.006s
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FAILED (failures=1)

Failure

Traceback (most recent call last):

...snip...

File ".../geom2d/tests/point_test.py", line 14, in test_distance_to

self.assertAlmostEqual(expected, actual)

...snip...

AssertionError: 567 != 5.0 within 7 places (562.0 difference)

The message with the most valuable information is the last one. It’s
telling us that there was an assertion error; that is, the assertion failed when
it found 5.0 where 576 was expected. It used 7 decimal places in the compar
ison and still found a difference of 562.

Before this assertion error is the traceback, the execution path Python
took until it got the error. As the message states, calls closer to the failure
appear last in the list. As you can see, the test execution failed in file point_test.py
(no surprise) on line 14 (yours may be different), in a test named test_distance_to.
This information will prove invaluable when you modify existing code and
run the tests only to find out whether a test fails, as it can tell you what ex
actly broke. These test failure messages will give you precise information.

Don’t forget to put our unit test back to how we initially wrote it and
make sure it still runs successfully.

Testing Vector Plus and Minus Operations
To ensure + and – operations work properly for vectors (doing the same for
the Point class is left as an exercise for you), let’s use the following test cases:{

1
2

}
+
{

4
6

}
=
{

5
8

}
and {

1
2

}
–
{

4
6

}
=
{

–3
–4

}
Create a new file inside package geom2d for testing the Vector class. Name

it vector_test and enter the code from Listing 429.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):

u = Vector(1, 2)

v = Vector(4, 6)
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def test_plus(self):

expected = Vector(5, 8)

actual = self.u + self.v

self.assertEqual(expected, actual)

def test_minus(self):

expected = Vector(-3, -4)

actual = self.u - self.v

self.assertEqual(expected, actual)

Listing 4-29: Tests for plus and minus operations

Run all tests using the green play button to the left of the class defini
tion. If you got everything right, your two new tests should succeed. Yay!
Our operations were properly implemented. The nice thing is, if there had
been a bug in the implementation, these tests would have pointed out where
and why.

It’s worth noting that this time we’re using assertion method assertEqual,
which under the hood compares both arguments using the == operator. If
we hadn’t overloaded this operator in the Vector class, the tests would fail
even if the results were right. Try this: comment out the __eq__(self, other)

method definition (by appending a # character at the beginning of the line)
in the Vector class and rerun the tests. You’ll find how the last two tests fail
with a message like the following:

<geom2d.vector.Vector object at 0x10fd8d198> !=

<geom2d.vector.Vector object at 0x10fd8d240>

Expected :<geom2d.vector.Vector object at 0x10fd8d240>

Actual :<geom2d.vector.Vector object at 0x10fd8d198>

Familiar? That’s Python assuming two objects from the class can be
equal only if they are the same actual object living in the same memory posi
tion. Our __eq__ operator overload explains to Python the rules to determine
when two objects should be considered the same. Don’t forget to uncom
ment the method.

Testing Vector Product Operations
Let’s add two new test cases for dot and cross products using the same two
vectors defined in the test class:{

1
2

}
·
{

4
6

}
= 4 + 12 = 16

and {
1
2

}
×
{

4
6

}
= 6 – 8 = –2
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In code, this looks like Listing 430.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):

--snip--

def test_dot_product(self):

expected = 16

actual = self.u.dot(self.v)

self.assertAlmostEqual(expected, actual)

def test_cross_product(self):

expected = -2

actual = self.u.cross(self.v)

self.assertAlmostEqual(expected, actual)

Listing 4-30: Tests vector dot and cross products

Run all test cases to make sure the new ones also succeed. Note that, as
we’re comparing numbers again, we use assertion method assertAlmostEqual.

Testing Vector Parallelism and Perpendicularity
Next we’ll test the is_parallel_to and is_perpendicular_to methods. We’ll do
parallel first. In this case, as we’re checking a Boolean expression, we want
to have two tests, one checking that the two vectors are parallel (a positive
test) and another one checking whether they’re not (a negative test). For
the positive case, we’ll rely on the fact that a vector is always parallel to itself.
Enter the code in Listing 431 inside class TestVector.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):

--snip--

def test_are_parallel(self):

self.assertTrue(self.u.is_parallel_to(self.u))

def test_are_not_parallel(self):
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self.assertFalse(self.u.is_parallel_to(self.v))

Listing 4-31: Testing vector parallelism

There are two new assertion methods in this listing that are interesting
ones: assertTrue, which checks whether a given expression evaluates to True;
and assertFalse, which checks whether a given expression evaluates to False.

We’ll follow the same pattern for checking perpendicularity. After the
last two tests, enter the two in Listing 432.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):

--snip--

def test_are_perpendicular(self):

perp = Vector(-2, 1)

self.assertTrue(self.u.is_perpendicular_to(perp))

def test_are_not_perpendicular(self):

self.assertFalse(self.u.is_perpendicular_to(self.v))

Listing 4-32: Testing vector perpendicularity

Run all tests inside class TestVector to make sure they succeed. Congrat
ulations! You’ve implemented your first unit tests. These tests will ensure
the methods in our geometry classes work as expected. Additionally, if you
found a better implementation for any of the methods we covered with tests,
to make sure it still works as expected, just run its tests. Tests also serve to
document the expected behavior of your code. If at some point you need a
reminder about what the code you wrote is supposed to do in a particular
case, unit tests should help.

Writing good tests is not a simple endeavor. One gets good at it by writ
ing many, but there are some guidelines we can follow that will help us.
Let’s take a look at three simple rules that will make our tests much more
resilient.

Three Golden Rules for Unit Testing
We’ve covered tests for a small fraction of the methods from the Point and
Vector classes. Now that you have the required knowledge, try testing all the
methods that we wrote in both the Point and Vector classes. I’ll leave this for
you as an exercise, but you can take a look at the code provided with the
book if you need help: it includes a lot of unit tests. Look for all the meth
ods we didn’t test and write the tests you think are needed to make sure they
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work properly. I encourage you to try, but if you still feel like unit testing is
foreign to you, don’t worry, we’ll be writing unit tests in some other chapters
of this book.

As mentioned, I believe writing unit tests is an integral part of coding,
and handing software not covered by unit tests should be considered a poor
practice. Moreover, writing code for the open source community requires
good unit tests. You’ve got to give the community a reason to believe what
you did actually works. Proving this with automated tests that anybody can
easily run and see for themselves is always a good approach, as it’s unlikely
anybody is going to take the time to think about how to test your code and
then open the console and manually try it all.

You’ll get better at writing reliable unit tests as you practice. For now, I’d
like to give you some basic rules to follow. Don’t expect to fully grasp their
meanings now, but come back to this section from time to time as you move
through the book.

Rule 1: One Reason to Fail
Unit tests should have one and only one reason to fail. This sounds simple,
but in many cases the test subject (what you are testing) is complex and made
up of several components working together.

If tests fail for only one reason, it’s straightforward to find the bug in the
code. Imagine the opposite: a test that could fail for, say, five different rea
sons. When that test fails, you’ll find yourself spending too much time read
ing error messages and debugging code, trying to understand what made it
fail this particular time.

Some developers and test professionals (testing is a profession on its
own, which I spent several years doing) state that each test should have one
and only one assertion. Being pragmatic, sometimes having more than one
assertion is not that harmful, but if it’s one, that’s much better.

Let’s analyze a particular case. Take the test we wrote for checking whether
two vectors are perpendicular. If instead of this:

def test_are_perpendicular(self):

perp = Vector(-2, 1)

self.assertTrue(self.u.is_perpendicular_to(perp))

we had written this:

def test_are_perpendicular(self):

perp = u.perpendicular()

self.assertTrue(self.u.is_perpendicular_to(perp))

then the test could fail because of an error in the is_perpendicular_to method
or because of an error in the implementation of perpendicular, which we use
to compute a perpendicular vector to u⃗. See the difference?
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Rule 2: Controlled Environment
We use the word fixture to refer to the environment where a test runs. The
environment includes all pieces of data surrounding our test and the state of
the test subject itself, all of which may alter the results of the test. This rule
states that you should have total control of the fixture where your test runs.
Inputs and expected outputs of the test should always be known beforehand.
Everything happening inside your tests should be deterministic; that is, there
should be no randomness or dependence on anything out of your control:
dates or times, operating systems, machine environment variables not set by
the test, and so on.

If your tests seem to fail at random, they are useless, and you should get
rid of them. People get used to random failing tests fast and start ignoring
them. The problem comes when they also ignore tests that are failing be
cause of a bug in the code.

Rule 3: Test Independence
Tests should never depend on other tests. Each test should run on its own
and never depend on a fixture set by other tests.

There are at least three reasons for this. First, you’ll want to run or de
bug tests independently. Second, many test frameworks do not guarantee
the execution order of tests. Finally, it’s much simpler to read and under
stand tests that don’t depend on other surrounding tests.

Let’s illustrate this with the test class in Listing 433.

class TestSwitch(unittest.TestCase):

switch = Switch()

def test_switch_on(self):

self.switch.on()

self.assertTrue(self.switch.is_on())

def test_switch_off(self):

# Last test should have switched on

self.switch.toggle()

self.assertTrue(self.switch.is_off())

Listing 4-33: Test depending on another test

See how test_switch_off depends on test_switch_on? By using a method
called toggle, we could get the wrong result if the tests run in a different or
der and the switch has a state of off when this test runs.

Never rely on test execution order; that’s results in trouble. Tests should
always run independently: they should work the same way no matter the
order of execution.
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Summary
In this chapter, we created two important classes: Point and Vector. The rest
of our geom2d library will be built upon these simple but powerful abstrac
tions. We taught Python how to determine whether two given instances
of Point or Vector are logically equal by implementing the special method
__eq__, and we provided a better textual representation with __str__. We cov
ered some of the methods in these classes with unit tests, and I encouraged
you to extend the coverage on your own. The best way to learn to write good
unit tests is by practicing. In the next chapter, we’ll add two new geometrical
abstractions to geom2d: lines and segments. These provide a new dimension
that can be used to construct more complex shapes.
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