
7
E N D P O I N T A N A LY S I S

Now that you’ve discovered a few APIs, it’s
time to begin using and testing the end-

points you’ve found. This chapter will cover
interacting with endpoints, testing them for vul-

nerabilities, and maybe even scoring some early wins.
By “early wins,” I mean critical vulnerabilities or data leaks sometimes

present during this stage of testing. APIs are a special sort of target because
you may not need advanced skills to bypass firewalls and endpoint secu-
rity; instead, you may just need to know how to use an endpoint as it was
designed.

We’ll begin by learning how to discover the format of an API’s numer-
ous requests from its documentation, its specification, and reverse engi-
neering, and we’ll use these sources to build Postman collections so we can
perform analysis across each request. Then we’ll walk through a simple pro-
cess you can use to begin your API testing and discuss how you might find
your first vulnerabilities, such as information disclosures, security miscon-
figurations, excessive data exposures, and business logic flaws.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

2 Chapter 7

Finding Request Information
If you’re used to attacking web applications, your hunt for API vulnerabili-
ties should be somewhat familiar. The primary difference is that you no
longer have obvious GUI cues such as search bars, login fields, and buttons
for uploading files. API hacking relies on the backend operations of those
items that are found in the GUI—namely, GET requests with query param-
eters and most POST/PUT/UPDATE/DELETE requests.

Before you craft requests to an API, you’ll need an understanding of its
endpoints, request parameters, necessary headers, authentication require-
ments, and administrative functionality. Documentation will often point
us to those elements. Therefore, to succeed as an API hacker, you’ll need
to know how to read and use API documentation, as well as how to find
it. Even better, if you can find a specification for an API, you can import it
directly into Postman to automatically craft requests.

When you’re performing a black box API test and the documentation
is truly unavailable, you’ll be left to reverse engineer the API on your own.
You will need to thoroughly fuzz your way through the API to discover end-
points, parameters, and header requirements in order to map out the API
and its functionality.

Finding Information in Documentation
As you know by now, an API’s documentation is a set of instructions pub-
lished by the API provider for the API consumer. Because public and part-
ner APIs are designed with self-service in mind, a public user or a partner
should be able to find the documentation, understand how to use the API,
and do so without assistance from the provider. It is quite common for the
documentation to be located under directories like the following:

https://example.com/docs

https://example.com/api/docs

https://docs.example.com

https://dev.example.com/docs

https://developer.example.com/docs

https://api.example.com/docs

https://example.com/developers/documentation

When the documentation is not publicly available, try creating an
account and searching for the documentation while authenticated. If you still
cannot find the docs, I have provided a couple API wordlists on GitHub that
can help you discover API documentation through the use of a fuzzing tech-
nique called directory brute force (https://github.com/hAPI-hacker/Hacking-APIs).
You can use the subdomains_list and the dir_list to brute-force web applica-
tion subdomains and domains and potentially find API docs hosted on the
site. There is a good chance you’ll be able to discover documentation during
reconnaissance and web application scanning.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

https://github.com/hAPI-hacker/Hacking-APIs

Endpoint Analysis 3

If an organization’s documentation really is locked down, you still
have a few options. First, try using your Google hacking skills to find it on
search engines and in other recon tools. Second, use the Wayback Machine
(https://web.archive.org/). If your target once posted their API documentation
publicly and later retracted it, there may be an archive of their docs avail-
able. Archived documentation will likely be outdated, but it should give you
an idea of the authentication requirements, naming schemes, and endpoint
locations. Third, try social engineering techniques to trick an organization
into sharing its documentation. These techniques are beyond the scope
of this book, but you can get creative with smishing, vishing, and phish-
ing developers, sales departments, and organization partners for access to
the API documentation. Act like a new customer trying to work with the
target API.

N O T E API documentation is only a starting point. Never trust that the docs are accurate
and up to date or that they include everything there is to know about the endpoints.
Always test for methods, endpoints, and parameters that are not included in docu-
mentation. Distrust and verify.

Although API documentation is straightforward, there are a few ele-
ments to look out for. The overview is typically the first section of API docu-
mentation. Normally found at the beginning of the doc, the overview will
provide a high-level introduction of how to connect and use the API. In addi-
tion, it could contain information about authentication and rate limiting.

Review the documentation for functionality, or the actions that you can
take using the given API. These will be represented by a combination of an
HTTP method (GET, PUT, POST, DELETE) and an endpoint. Every orga-
nization’s APIs will be different, but you can expect to find functionality
related to user account management, options to upload and download data,
different ways to request information, and so on.

When making a request to an endpoint, make sure you note the request
requirements. Requirements could include some form of authentication,
parameters, path variables, headers, and information included in the body
of the request. The API documentation should tell you what it requires of
you and mention in which part of the request that information belongs. If
the documentation provides examples, use them to help you. Typically, you
can replace the sample values with the ones you’re looking for. Table 7-1
describes some of the conventions often used in these examples.

Table 7-1: API Documentation Conventions

Convention Example Meaning

: or {} /user/:id
/user/{id}
/user/2727
/account/:username
/account/{username}
/account/scuttleph1sh

The colon or curly brackets are used by
some APIs to indicate a path variable.
In other words, “:id” represents the vari-
able for an ID number and “{username}”
represents the account username you are
trying to access.

(continued)

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

https://web.archive.org/

4 Chapter 7

Convention Example Meaning

[] /api/v1/user?find=[name] Square brackets indicate that the input is
optional.

|| “blue” || “green” || “red” Double bars represent different possible
values that can be used.

< > <find-function> Angle brackets represent a DomString,
which is a 16-bit string.

For example, the following is a GET request from the vulnerable Pixi
API documentation:

1 GET 2/api/picture/{picture_id}/likes get a list of likes by user

3 Parameters

Name Description

x-access-token *
string Users JWT Token
(header)

picture_id * in URL string

number
(path)

You can see that the method is GET 1, the endpoint is /api/picture/
{picture_id}/likes 2, and the only requirements are the x-access-token
header and the picture_id variable to be updated in the path 3. Now
you know that, in order to test this endpoint, you’ll need to figure out
how to obtain a JSON Web Token (JWT) and what form the picture_id
should be in.

You can then take these instructions and insert the information into
an API browser such as Postman (see Figure 7-1). As you’ll see, all of the
headers besides x-access-token will be automatically generated by Postman.

Here, I authenticated to the web page and found the picture_id listed
under the pictures. I used the documentation to find the API registra-
tion process, which generated a JWT. I then took the JWT and saved it as
the variable hapi_token; we will be using variables throughout this chapter.
Once the token is saved as a variable, you can call it by using the variable
name surrounded by curly brackets: {{hapi_token}}. (Note that if you are
working with several collections, you’ll want to use environmental vari-
ables instead.) Put together, it forms a successful API request. You can see
that the provider responded with a “200 OK,” along with the requested
information.

Table 7-1: API Documentation Conventions (continued)

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 5

Figure 7-1: The fully crafted request to the Pixi endpoint /api/{picture_id}/likes

In situations where your request is improperly formed, the provider will
usually let you know what you’ve done wrong. For instance, if you make a
request to the same endpoint without the x-access-token, Pixi will respond
with the following:

{
 "success": false,
 "message": "No token provided."
}

You should be able to understand the response and make any necessary
adjustments. If you had attempted to copy and paste the endpoint without
replacing the {picture_id} variable, the provider would respond with a status
code of 200 OK and a body with square brackets ([]). If you are stumped
by a response, return to the documentation and compare your request with
the requirements.

Importing API Specifications
If your target has a specification, in a format like OpenAPI (Swagger),
RAML, or API Blueprint, or in a Postman collection, finding these will be
even more useful than finding the documentation. When provided with a

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

6 Chapter 7

specification, you can simply import it into Postman and review the requests
that make up the collection, as well as their endpoints, headers, parameters,
and some required variables.

Specifications should be as easy or as hard to find as their API docu-
mentation counterparts. They’ll often look like the page in Figure 7-2. The
specification will contain plaintext and typically be in JSON format, but
could also be in YAML, RAML, or XML format. If the URL path doesn’t
give away the type of specification, scan the beginning of the file for a
descriptor, such as "swagger":"2.0", to find the specification and version.

Figure 7-2: The Pixi swagger definition page

To import the specification, begin by launching Postman. Under the
Workspace Collection section, click Import, select Link, and then add the
location of the specification (see Figure 7-3).

Figure 7-3: The Import Link functionality within Postman

Click Continue, and on the final window, select Import. Postman will
detect the specification and import the file as a collection. Once the collec-
tion has been imported into Postman, you can review the functionality here
(see Figure 7-4).

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 7

Figure 7-4: The imported Pixi App collection

After you’ve imported a new collection, make sure to check the collection
variables. You can display the collection editor by selecting the three hori-
zontal circles at the top level of a collection and choosing Edit. Here, you
can select the Variables tab within the collection editor to see the variables.
You can adjust the variables to fit your needs and add any new variables you
would like to this collection. In Figure 7-5, you can see where I have added
the hapi_token JWT variable to my Pixi App collection.

Figure 7-5: The Postman collection variables editor

Once you’ve finished making updates, save your changes using the Save
button at the top-right corner. Importing API specifications to Postman like
this could save you hours of manually adding all endpoints, request meth-
ods, headers, and requirements.

Reverse Engineering APIs
In the instance where there is no documentation and no specification, you
will have to reverse engineer the API based on your interactions with it. We
will touch on this process in more detail in Chapter 9. Mapping an API with
several endpoints and a few methods can quickly grow into quite a beast
to attack. To manage this process, build the requests under a collection in
order to thoroughly hack the API. Postman can help you keep track of all
these requests.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

8 Chapter 7

There are two ways to reverse engineer an API with Postman. One way is
by manually constructing each request. While this can be a bit cumbersome,
it allows you to capture the precise requests you care about. The other way
is to proxy web traffic through Postman and then use it to capture a stream
of requests. This process makes it much easier to construct requests within
Postman, but you’ll have to remove or ignore unrelated requests. Finally, if
you obtain a valid authentication header, such as a token, API key, or other
authentication value, add that to Kiterunner to help map out API endpoints.

Manually Building a Postman Collection

To manually build your own collection in Postman, select New under My
Workspace, as seen at the top right of Figure 7-6.

Figure 7-6: The workspace section of Postman

In the Create New window, create a new collection and then set up a
baseURL variable containing your target’s URL. Creating a baseURL variable
(or using one that is already present) will help you quickly make alterations
to the URL across an entire collection. APIs can be quite large, and mak-
ing small changes to many requests can be time-consuming. For example,
suppose you want to test out different API path versions (such as v1/v2/v3)
across an API with hundreds of unique requests. Replacing the URL with
a variable means you would only need to update the variable in order to
change the path for all requests using the variable.

Now, any time you discover an API request, you can add it to the collec-
tion (see Figure 7-7).

Figure 7-7: The Add Request option within a new Postman collection

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 9

Select the collection options button (the three horizontal circles) and
select Add Request. If you want to further organize the requests, you can
create folders to group the requests together. Once you have built a collec-
tion, you can use it as though it were documentation.

Building a Postman Collection by Proxy

The second way to reverse engineer an API is to proxy web browser traffic
through Postman and clean up the requests so that only the API-related
ones remain. Let’s reverse engineer the crAPI API by proxying our browser
traffic to Postman.

First, open Postman and create a collection for crAPI. At the top right
of Postman is a signal button that you can select to open the Capture
requests and cookies window (see Figure 7-8).

Figure 7-8: The Postman Capture requests and cookies window

Make sure the port number matches the one you’ve configured in
FoxyProxy. Back in Chapter 4, we set this to port 5555. Save requests to
your crAPI collection. Finally, set Capture Requests to On. Now navigate to
the crAPI web application and set FoxyProxy to forward traffic to Postman.

As you start using the web application, every request will be sent
through Postman and added to the selected collection. Use every feature

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

10 Chapter 7

of the web application, including registering a new account, authenticat-
ing, performing a password reset, clicking every link, updating your profile,
using the community forum, and navigating to the shop. Once you’ve fin-
ished thoroughly using the web application, stop your proxy and review the
crAPI collection made within Postman.

One downside of building a collection this way is that you’ll have cap-
tured several requests that aren’t API related. You will need to delete these
requests and organize the collection. Postman allows you to create folders
to group similar requests, and you can rename as many requests as you’d
like. In Figure 7-9, you can see that I grouped requests by the different
endpoints.

Figure 7-9: An organized crAPI collection

Adding API Authentication Requirements to Postman
Once you’ve compiled the basic request information in Postman, look
for the API’s authentication requirements. Most APIs with authentication
requirements will have a process for obtaining access, typically by send-
ing credentials over a POST request or OAuth, or else by using a method

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 11

separate from the API, such as email, to obtain a token. Decent documenta-
tion should make the authentication process clear. In the next chapter, we
will dedicate time to testing the API authentication processes. For now, we
will use the API authentication requirements to start using the API as it was
intended.

As an example of a somewhat typical authentication process, let’s regis-
ter and authenticate to the Pixi API. Pixi’s Swagger documentation tells us
that we need to make a request with both user and pass parameters to the
 /api/register endpoint to receive a JWT. If you’ve imported the collection,
you should be able to find and select the “Create Authentication Token”
request in Postman (see Figure 7-10).

Figure 7-10: A successful registration request to the Pixi API

The preconfigured request contains parameters you may not be aware of
and are not required for authentication. Instead of using the preconfigured
information, I crafted the response by selecting the x-www-form-urlencoded
option with the only parameters necessary (user and pass). I then added the
keys user and pass and filled in the values shown in Figure 7-10. This process
resulted in successful registration, as indicated by the 200 OK status code
and the response of a token.

It’s a good idea to save successful authentication requests so you
can repeat them when needed, as tokens could be set to expire quickly.
Additionally, API security controls could detect malicious activity and
revoke your token. As long as your account isn’t blocked, you should be
able to generate another token and continue your testing. Also, be sure to
save your token as a collection or environmental variable. That way, you’ll
be able to quickly reference it in subsequent requests instead of having to
continuously copy in the giant string.

The next thing you should do when you get an authentication token
or API key is to add it to Kiterunner. We used Kiterunner in Chapter 6 to
map out a target’s attack surface as an unauthenticated user, but adding an
authentication header to the tool will greatly improve your results. Not only

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

12 Chapter 7

will Kiterunner provide you with a list of valid endpoints, but it will also
hand you interesting HTTP methods and parameters.

In the following example, we use the x-access-token provided to us dur-
ing the Pixi registration process. Take the full authorization header and
add it to your Kiterunner scan with the -H option:

$ kr scan http://192.168.50.35:8090 -w ~/api/wordlists/data/kiterunner/routes-large.kite -H
'x-access-token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjp7Il9pZCI6NDUsImVtYWlsIjoiaGF
waUBoYWNrZXIuY29tIiwicGFzc3dvcmQiOiJQYXNzd29yZDEhIiwibmFtZSI6Im15c2VsZmNyeSIsInBpYyI6Imh0dHBzO
i8vczMuYW1hem9uYXdzLmNvbS91aWZhY2VzL2ZhY2VzL3R3aXR0ZXIvZ2FicmllbHJvc3Nlci8xMjguanBnIiwiaXNfYWRt
aW4iOmZhbHNlLCJhY2NvdW50X2JhbGFuY2UiOjUwLCJhbGxfcGljdHVyZXMiOltdfSwiaWF0IjoxNjMxNDE2OTYwfQ._qoC
_kgv6qlbPLFuH07-DXRUm9wHgBn_GD7QWYwvzFk'
This scan will result in identifying the following endpoints:
GET 200 [217, 1, 1] http://192.168.50.35:8090/api/user/info
GET 200 [101471, 1871, 1] http://192.168.50.35:8090/api/pictures/
GET 200 [217, 1, 1] http://192.168.50.35:8090/api/user/info/
GET 200 [101471, 1871, 1] http://192.168.50.35:8090/api/pictures

Adding authorization headers to your Kiterunner requests should
improve your scan results, as it will allow the scanner to access endpoints it
otherwise wouldn’t have access to.

Analyzing Functionality
Once you have the API’s information loaded into Postman, you should
begin to look for issues. This section covers a method for initially testing
the functionality of API endpoints. You’ll begin by using the API as it was
intended. In the process, you’ll pay attention to the responses and their
status codes and error messages. In particular, you’ll seek out functional-
ity that interests you as an attacker, especially if there are indications of
information disclosure, excessive data exposure, and other low-hanging
vulnerabilities. Look for endpoints that could provide you with sensitive
information, requests that allow you to interact with resources, areas of the
API that allow you to inject a payload, and administrative actions. Beyond
that, look for any endpoint that allows you to upload your own payload and
interact with resources.

To streamline this process, I recommend proxying Kiterunner’s results
through Burp Suite so you can replay interesting requests. In past chapters,
I showed you the replay feature of Kiterunner, which lets you review indi-
vidual API requests and responses. To proxy a replay through another tool,
you will need to specify the address of the proxy receiver:

$ kr kb replay -w ~/api/wordlists/data/kiterunner/routes-large.kite
--proxy=http://127.0.0.1:8080 "GET 403 [48, 3, 1] http://192.168.50.35:8090/api/
picture/detail.php 0cf6889d2fba4be08930547f145649ffead29edb"

This request uses Kiterunner’s replay option, as specified by kb replay.
The -w option specifies the wordlist used, and proxy specifies the Burp Suite
proxy. The remainder of the command is the original Kiterunner output.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 13

In Figure 7-11, you can see that the Kiterunner replay was successfully cap-
tured in Burp Suite.

Figure 7-11: A Kiterunner request intercepted with Burp Suite

Now you can analyze the requests and use Burp Suite to repeat all inter-
esting results captured in Kiterunner.

Testing Intended Use
Start by using the API endpoints as intended. You could begin this process
with a web browser, but web browsers were not meant to interact with APIs,
so you might want to switch to Postman. Use the API documentation to
see how you should structure your requests, what headers to include, what
parameters to add, and what to supply for authentication, and then send
the requests. Adjust your requests until you receive successful responses
from the provider.

As you proceed, ask yourself these questions:

•	 What sorts of actions can I take?

•	 Can I interact with other user accounts?

•	 What kinds of resources are available?

•	 When I create a new resource, how is that resource identified?

•	 Can I upload a file? Can I edit a file?

There is no need to make every possible request if you are manually
working with the API, but make a few. Of course, if you have built a collec-
tion in Postman, you can easily make every possible request and see what
response you get from the provider.

For example, send a request to Pixi’s /api/user/info endpoint to see what
sort of response you receive from the application (see Figure 7-12).

In order to make a request to this endpoint, you must use the GET
method. Add the {{baseUrl}}/api/user/info endpoint to the URL field. Then
add the x-access-token to the request header. As you can see, I have set the
JWT as the variable {{hapi_token}}. If you are successful, you should receive
a 200 OK status code, seen just above the response.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

14 Chapter 7

Figure 7-12: Setting the x-access-token as the variable for the JWT

Performing Privileged Actions
If you’ve gained access to an API’s documentation, any sort of adminis-
trative actions listed there should grab your attention. Privileged actions
will often lead to additional functionality, information, and control. For
example, admin requests could give you the ability to create and delete
users, search for sensitive user information, enable and disable accounts,
add users to groups, manage tokens, access logs, and more. Luckily for us,
admin API documentation information is often available for all to see due
to the self-service nature of APIs.

If security controls are in place, administrative actions should have
authorization requirements, but never assume that they actually do. My
recommendation is to test these actions in several phases: first as an unau-
thenticated user, then as a low-privileged user, and finally as an administra-
tive user. When you make the administrative requests as documented but
without any authorization requirements, you should receive some sort of
unauthorized response if any security controls are in place.

You’ll likely have to find a way to gain access to the administrative
requirements. In the case of the Pixi, the documentation in Figure 7-13
clearly shows us that we need an x-access-token to perform the GET request
to the /api/admin/users/search endpoint. When you test this administrative
endpoint, you’ll see that Pixi has basic security controls in place to prevent
unauthorized users from using administrative endpoints.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 15

Figure 7-13: The requirements for a Pixi administrative endpoint

Making sure that the most basic security controls are in place is a useful
practice. More importantly, protected administrative endpoints establish a
goal for us for the next steps in our testing; we now know that in order to
use this functionality, we need to obtain an admin JWT.

Analyzing API Responses
As most APIs are meant to be self-service, developers will often leave some
hint in the API responses when things don’t go as planned. One of the
most basic skills you’ll need as an API hacker is the ability to analyze the
responses you receive. This is initially done by issuing a request and review-
ing the response status code, headers, and content included in the body.

First check that you are receiving the responses you expect. API docu-
mentation can sometimes provide examples of what you could receive as a
response. However, once you begin using the API in unintended ways, you
will no longer know what you’ll get as a response, which is why it helps to first
use the API as it was intended before moving into attack mode. Developing a
sense of regular and irregular behavior will make vulnerabilities obvious.

At this point, your search for vulnerabilities begins. Now that you’re
interacting with the API, you should be able to find information disclo-
sures, security misconfigurations, excessive data exposures, and business
logic flaws, all without too much technical finesse. It’s time to introduce the
most important ingredient of hacking: the adversarial mindset. In the fol-
lowing sections, I will show you what to look for.

Finding Information Disclosures
Information disclosure will often be the fuel for our testing. Anything that
helps our exploitation of an API can be considered an information dis-
closure, whether it’s interesting status codes, headers, or user data. When

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

16 Chapter 7

making requests, you should review responses for software information,
usernames, email addresses, phone numbers, password requirements,
account numbers, partner company names, and any information that your
target claims is useful.

Headers can inadvertently reveal more information about the applica-
tion than necessary. Some, like X-powered-by, do not serve much of a purpose
and often disclose information about the backend. Of course, this alone
won’t lead to exploitation, but it can help us know what sort of payload to
craft and reveal potential application weaknesses.

Status codes can also disclose useful information. If you were to brute-
force the paths of different endpoints and receive responses with the status
codes 404 Not Found and 401 Unauthorized, you could map out the API’s
endpoints as an unauthorized user. This simple information disclosure
can get much worse if these status codes were returned for requests with
different query parameters. Say you were able to use a query parameter for
a customer’s phone number, account number, and email address. Then
you could brute-force these items, treating the 404s as nonexistent values
and the 401s as existing ones. Now, it probably shouldn’t take too much
imagination to see how this sort of information could assist you. You could
perform password spraying, test password resent mechanisms, or conduct
phishing, vishing, and smishing. There is also a chance you could pair
query parameters together and extract personally identifiable information
from the unique status codes.

API documentation can itself be an information disclosure risk. For
instance, it is often an excellent source of information about business logic
vulnerabilities, as discussed in Chapter 3. Moreover, administrative API
documentation will often tell you the admin endpoints, the parameters
required, and the method to obtain the specified parameters. This infor-
mation can be used to aid you in Improper Assets Management attacks and
authorization attacks (such as BOLA and BFLA), which are covered in later
chapters.

When you start exploiting API vulnerabilities, be sure to track which
headers, unique status codes, documentation, or other hints were handed
to you by the API provider.

Finding Security Misconfigurations
Security misconfigurations represent a large variety of items. At this stage
of your testing, look for verbose error messaging, poor transit encryption,
and other problematic configurations. Each of these issues can be useful
later for exploiting the API.

Verbose Errors
Error messages exist to help the developers on both the provider and
consumer sides understand what has gone wrong. For example, if the API
requires you to POST a username and password in order to obtain an API

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 17

token, check how the provider responds to both existing and nonexistent
usernames. A common way to respond to nonexistent usernames is with
the error “User does not exist, please provide a valid username.” When a
user does exist but you’ve used the wrong password, you may get the error
“Invalid password.” This small difference in error response is an informa-
tion disclosure that you can use to brute-force usernames, which can then
be leveraged in later attacks.

Poor Transit Encryption
Finding an API in the wild without transit encryption is rare. I’ve only come
across this in instances when the provider believes its API contains only non-
sensitive public information. In situations like this, the challenge is to see
whether you can discover any sensitive information by using the API. In all
other situations, make sure to check that the API has valid transit encryption.
If the API is transmitting any sensitive information, HTTPS should be in use.

In order to attack an API with transit insecurities, you would need to
perform a man-in-the-middle (MITM) attack in which you somehow intercept
the traffic between a provider and a consumer. Because HTTP sends unen-
crypted traffic, you’ll be able to read the intercept requests and responses.
Even if HTTPS is in use on the provider’s end, check whether a consumer
can initiate HTTP requests and share their tokens in the clear.

Use a tool like Wireshark to capture network traffic and spot plaintext
API requests passing across the network you’re connected to. In Figure 7-14,
a consumer has made an HTTP request to the HTTPS-protected reqres.in.
As you can see, the API token within the path is clear as day.

Figure 7-14: A Wireshark capture of a user’s token in an HTTP request

Problematic Configurations
Debugging pages are a form of security misconfiguration that can expose
plenty of useful information. I have come across many APIs that had debug-
ging enabled. You have a better chance of finding this sort of misconfigura-
tion in newly developed APIs and in testing environments. For example, in
Figure 7-15, not only can you see the default landing page for 404 errors and

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

18 Chapter 7

all of this provider’s endpoints, but you can also see that the application is
powered by Django.

Figure 7-15: The debug page of Tiredful API

This finding could trigger you to research what sorts of malicious
things can be done when the Django debug mode is enabled.

Finding Excessive Data Exposures
As discussed in Chapter 3, excessive data exposure is a vulnerability that
takes place when the API provider sends more information than the API
consumer requests. This happens because the developers designed the API
to depend on the consumer to filter results.

When testing for excessive data exposure on a large scale, it’s best to
use a tool like Postman’s Collection Runner, which helps you make many
requests quickly and provides you with an easy way to review the results. If
the provider responds with more information than you needed, you could
have found a vulnerability.

Of course, not every excess byte of data should be considered a vulner-
ability; watch for excess information that can be useful in an attack. True
excessive data exposure vulnerabilities are often fairly obvious because of
the sheer quantity of data provided. Imagine an endpoint with the ability
to search for usernames. If you queried for a username and received the
username plus a timestamp of the user’s last login, this is excess data, but
it’s hardly useful. Now, if you queried for the username and were provided
with a username plus the user’s full name, email, and birthday, you have a

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 19

finding. For example, say a GET request to https://secure.example.com/api/users/
hapi_hacker was supposed to give you information about our hapi_hacker
account, but it responded with the following:

{
 "user": {
"id": 1124,
"admin": false,
"username": hapi_hacker,
"multifactor": false
}
"sales_assoc": {
 "email": "admin@example.com",
 "admin": true,
 "username": super_sales_admin,
 "multifactor": false
}

As you can see, a request was made for the hapi_hacker account, but
the administrator’s account and security settings were included in the
response. Not only does the response provide you with an administrator’s
email address and username, but it also lets you know whether they are an
administrator without multifactor authentication enabled. This vulner-
ability is fairly common and can be extremely useful for gaining access to
admin accounts. Also, if there is an excessive data exposure vulnerability
on one endpoint and method, you can bet there are others.

Finding Business Logic Flaws
OWASP provides the following advice about testing for business logic flaws
(https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability):

You’ll need to evaluate the threat agents who could possibly
exploit the problem and whether it would be detected. Again,
this will take a strong understanding of the business. The vulner-
abilities themselves are often quite easy to discover and exploit
without any special tools or techniques, as they are a supported
part of the application.

In other words, because business logic flaws are unique to each busi-
ness and its logic, it is difficult to anticipate the specifics of the flaws you
will find. Finding and exploiting these flaws is usually a matter of turning
the features of an API against the API provider.

Business logic flaws could be discovered as early as when you review the
API documentation and find directions for how not to use the application.
(Chapter 3 lists the kinds of descriptions that should instantly make your
vulnerability sensors go off.) When you find these, your next step should

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability

20 Chapter 7

be obvious: do the opposite of what the documentation recommends!
Consider the following examples:

•	 If the documentation tells you not to perform action X, perform action X.

•	 If the documentation tells you that data sent in a certain format isn’t validated,
upload a reverse shell payload and try to find ways to execute it. Test the
size of file that can be uploaded. If rate limiting is lacking and file size
is not validated, you’ve discovered a serious business logic flaw that will
lead to a denial of service.

•	 If the documentation tells you that all file formats are accepted, upload files
and test all file extensions. You can find a list of file extensions for this
purpose called file-ext (https://github.com/hAPI-hacker/Hacking-APIs/tree/
main/Wordlists). If you can upload these sorts of files, the next step
would be to see if you can execute them.

In addition to relying on clues in the documentation, consider the fea-
tures of a given endpoint to determine how a nefarious person could use
them to their advantage. The challenging part about business logic flaws is
that they are unique to each business. Identifying features as vulnerabilities
will require putting on your evil genius cap and using your imagination.

Summary
In this chapter, you learned how to find information about API requests so
you can load it into Postman and begin your testing. Then you learned to
use an API as it was intended and analyze responses for common vulner-
abilities. You can use the described techniques to begin testing APIs for
vulnerabilities. Sometimes all it takes is using the API with an adversarial
mindset to make critical findings. In the next chapter, we will attack the
API’s authentication mechanisms.

 Lab #4: Building a crAPI Collection and Discovering Excessive Data Exposure
In Chapter 6, we discovered the existence of the crAPI API. Now we will
use what we’ve learned from this chapter to begin analyzing crAPI end-
points. In this lab, we will register an account, authenticate to crAPI, and
analyze various features of the application. In Chapter 9, we’ll attack the
API’s authentication process. For now, I will guide you through the natural
progression from browsing a web application to analyzing API endpoints.
We’ll start by building a request collection from scratch and then work our
way toward finding an excessive data exposure vulnerability with serious
implications.

In the web browser of your Kali machine, navigate to the crAPI web
application. In my case, the vulnerable app is located at 192.168.195.130,
but yours might be different. Register an account with the crAPI web

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

https://github.com/hAPI-hacker/Hacking-APIs/tree/main/Wordlists
https://github.com/hAPI-hacker/Hacking-APIs/tree/main/Wordlists

Endpoint Analysis 21

application. The crAPI registration page requires all fields to be filled out
with password complexity requirements (see Figure 7-16).

Figure 7-16: The crAPI account
registration page

Since we know nothing about the APIs used in this application, we’ll
want to proxy the requests through Burp Suite to see what’s going on below
the GUI. Set up your proxy and click Signup to initiate the request. You
should see that the application submits a POST request to the /identity/api/
auth/signup endpoint (see Figure 7-17).

Notice that the request includes a JSON payload with all of the answers
you provided in the registration form.

Figure 7-17: An intercepted crAPI authentication request

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

22 Chapter 7

Now that we’ve discovered our first crAPI API request, we’ll start build-
ing a Postman collection. Click the Options button under the collection and
then add a new request. Make sure that the request you build in Postman
matches the request you intercepted: a POST request to the /identity/api/
auth/signup endpoint with a JSON object as the body (see Figure 7-18).

Figure 7-18: The crAPI registration request in Postman

Test the request to make sure you’ve crafted it correctly, as there is
actually a lot that you could get wrong at this point. For example, your end-
point or body could contain a typo, you could forget to change the request
method from GET to POST, or maybe you didn’t match the headers of the
original request. The only way to find out if you copied it correctly is to
send a request, see how the provider responds, and troubleshoot if needed.
Here are a couple hints for troubleshooting this first request:

•	 If you receive the status code 415 Unsupported Media Type, you need
to update the Content-Type header so that the value is application/json.

•	 The crAPI application won’t allow you to create two accounts using the
same number or email, so you may need to alter those values in the
body of your request if you already registered in the GUI.

You’ll know your request is ready when you receive a status 200 OK as
a response. Once you receive a successful response, make sure to save your
request!

Now that we’ve saved the registration request to our crAPI collection,
log in to the web app to see what other API artifacts there are to discover.
Proxy the login request using the email and password you registered. When
you submit a successful login request, you should receive a Bearer token
from the application (see Figure 7-19). You’ll need to include this Bearer
token in all of your authenticated requests moving forward.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

Endpoint Analysis 23

Figure 7-19: An intercepted request after a successful login to crAPI

Add this Bearer token to your collection, either as an authorization
method or a variable. I saved mine as an authorization method with the
Type set to Bearer Token, as seen in Figure 7-20.

Figure 7-20: The Postman collection editor

Continue using the application in the browser, proxying its traffic, and
saving the requests you discover to your collection. Try using different parts
of the application, such as the dashboard, shop, and community, to name a
few. Be sure to look for the kind of interesting functionality we discussed in
this chapter.

One endpoint in particular should catch your attention simply based on
the fact that it involves other crAPI users: the forum. Use the crAPI forum as
it was intended in your browser and intercept the request. Submitting a com-
ment to the forum will generate a POST request. Save the POST request to
the collection. Now send the request used to populate the community forum
to the /community/api/v2/community/posts/recent endpoint. Notice anything sig-
nificant in the JSON response body in Listing 7-1?

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

24 Chapter 7

 "id": "fyRGJWyeEjKexxyYpQcRdZ",
 "title": "test",
 "content": "test",
 "author": {
 "nickname": "hapi hacker",
 "email": "a@b.com",
 "vehicleid": "493f426c-a820-402e-8be8-bbfc52999e7c",
 "profile_pic_url": "",
 "created_at": "2021-02-14T21:38:07.126Z"
 },
 "comments": [],
 "authorid": 6,
 "CreatedAt": "2021-02-14T21:38:07.126Z"
 },
 {
 "id": "CLnAGQPR4qDCwLPgTSTAQU",
 "title": "Title 3",
 "content": "Hello world 3",
 "author": {
 "nickname": "Robot",
 "email": "robot001@example.com",
 "vehicleid": "76442a32-f32f-4d7d-ae05-3e8c995f68ce",
 "profile_pic_url": "",
 "created_at": "2021-02-14T19:02:42.907Z"
 },
 "comments": [],
 "authorid": 3,
 "CreatedAt": "2021-02-14T19:02:42.907Z"
 }

Listing 7-1: A sample of the JSON response received from the /community/api/v2/
community/posts/recent endpoint

Not only do you receive the JSON object for your post, you also receive
the information about every post on the forum. Those objects contain
much more information than is necessary, including sensitive information
such as user IDs, email addresses, and vehicle IDs. If you’ve made it this far,
congratulations; this means you’ve discovered an excessive data exposure
vulnerability. Great job! There are many more vulnerabilities affecting
crAPI, and we’ll definitely use our findings here to help locate even more
severe vulnerabilities in the upcoming chapters.

Hacking APIs (Sample Chapter) © 12/3/21 by Corey Ball

