INDEX

Numbers
3 dB point, 442
3D printer, 462

A
abstraction, 123, 403
AC (alternating current), 37
AC/DC (Australian rock band), 36
active shield countermeasure, 21
Advanced Encryption Standard. See AES
adversarial machine learning, 25
AES (Advanced Encryption Standard),
12, 308–310
AES-256, 363–364
cipher block chaining (CBC),
363–364
construction, 309
counter with cipher block chaining
message authentication code
(CCM), 395
Indexed Code Block (ICB) mode,
410
key schedule, 365
masked implementation, 407
modes of operation, 308
power analysis of, 310, 316, 395
Rijndael cipher, 308
aliasing, 440
alternating current (AC), 37
analog-to-digital converter (ADC), 66
anti-tamper mesh, 76
Apple M1, 172
arbitrary waveform generator (AWG),
460
Arduino, 160, 192
Arm Cortex JTAG pinout, 469
Arm JTAG pinout, 468
artificial neural network (ANN).
See neural network
assets, 7, 10, 22
asynchronous communication, 43
attackers, 10
attack resistance, 420
attacks, 10
attack surface, 4, 12
attack tree, 10, 403
AWG (arbitrary waveform generator),
460

B
BadFET, 461
balanced logic, 406
ball grid array (BGA), 91–95, 97, 431
flip-chip, 93
heat spreader, 94
plastic, 93
reballing, 432–434
thermally enhanced, 93
bare metal, 7
baud rate, 47
BBI (body biasing injection), 184–186
BBQ lighter, 191
BGA. See ball grid array
binwalk, 18, 109, 111–117
bitcoin wallet, 224
bitrate, 98
bits per second, 47
Black Magic Probe, 448
blinding, 408
body biasing injection (BBI), 184–186
boot attestation, 24
boot configuration, 85
bootloader, 5, 201, 225, 230, 362, 391,
395
boot ROM code, 5, 20, 201
boundary scan, JTAG, 56, 106–108, 447–448
brick, 8

C
CAN (control area network), 447
capacitance, 38
carrier PCB, 92
CBC (Cipher Block Chaining). See AES, cipher block chaining
CC (Common Criteria), 31, 420–422
chain of trust, 6
challenge-response protocol, 410
chip-invasive attacks, 18
chip scale packaging (CSP), 94
ChipSHOUTER, 176, 236, 461
ChipWhisperer, 454, 459, 464
ChipWhisperer-Lite, 167, 218, 269, 366, 454, 459
ChipWhisperer-Nano, 196, 269, 284, 454
ChipWhisperer-Pro, 456, 459
chosen inputs, 333
circuits, 36
Cisco Trust Anchor attack, 76
CLKSCREW, 13
clock fault injection. See glitching, clock
clocking for communications, 43
code read protection, 195, 203
common clock, 44
Common Criteria (CC), 31, 420–422
Common Vulnerability Scoring System (CVSS), 31
Common Weakness Scoring System (CWSS), 31
correlation power analysis (CPA), 311–319, 348, 369
calculation, 315
hypothetical, 315
leakage model, 315, 373
on AES-256, 364
correlation traces, 315, 348
countermeasures, 10, 26, 325, 402
avoiding compiler optimization, 418
balanced logic, 406
branchless code, 405
bypassability, 417
constant time, 404
constant time compare, 404
control flow integrity, 415
decoy operations, 409
double-checking, 414
dual-rail logic, 406
fault canary, 416
fault counter, 416
infective computing, 409
leakage-resistant protocol, 410
masking, 407
noise addition, 406
nontrivial constants, 411
randomized array access, 409
side channel, 325
square-and-multiply-always, 409
strength, 417
timing randomization, 405, 409, 414
unique status variables, 413
unstable clock, 406

CPA. See correlation power analysis
CRC (cyclic redundancy check), 366–367, 415
critical path, 149
crystal, 82–84, 103, 154, 393
crowbar, 163–168, 195
crypto libraries, 410
crypto test, 134
CSP (chip scale packaging), 94
current, 36
CVSS (Common Vulnerability Scoring System), 31
CWSS (Common Weakness Scoring System), 31
cyclic redundancy check (CRC), 366–367, 415
data bus, 294
data bus drivers, 294
data rate, 43
datasheets, 77
DC (direct current), 37
deallocated memory, 390
debug, 58–59, 448–449, 467
decapsulation, 178
decoupling capacitors, 100
decoy operations, 409
deep learning, 326, 355
depackaging, 178
desoldering, 429–431
device labels, 73
DFA (differential fault analysis), 121, 215–221
die markings, reading, 88
difference of means (DoM), 303–306, 377
differential amplifier, 339
differential cluster analysis, 326
differential fault analysis (DFA), 121, 215–221
differential power analysis (DPA), 293, 301, 374, 377
implemented in Python, 305
using with XOR, 374–376
differential probe, 268, 339
differential signaling, 45
digital logic power consumption, 295
digital oscilloscope, 65–69
direct current (DC), 37
disclosure, 33–34
distinguisher, 282
DMM, 64, 426
DoM (difference of means), 303–306, 377
double-checking, 414
double loop, glitching, 191
DPA. See differential power analysis
DRAM hammering, 13
dual-rail logic, 406
dump test, register or memory, 133

EAL (evaluation assurance level), 421
ECB (Electronic Code Book), 308
ECC (elliptic curve cryptography), 117
blinding, 408
power analysis of, 258
ECDSA (Elliptic Curve Digital Signature Algorithm), 258
EEPROM, 4, 51
electromagnetic analysis (EMA), 335
electromagnetic fault injection. See EMFI
electromagnetic probe, 335, 457
building, 335
chip-scale, 459
package-size, 457
preamplifier, 458
Electronic Code Book (ECB), 308
elliptic curve cryptography. See ECC
Elliptic Curve Digital Signature Algorithm (ECDSA), 258
embedded clock, 44
embedded multimedia cards (eMMCs), 53, 110
Ember Trace pinout, 470
EMFI (electromagnetic fault injection), 171–178, 191–194, 223, 236, 461
architectures, 175
coils, 173, 177
coupled drive, 175
direct-drive, 175
effects of shielding, 172
high- and low-side drive, 175
permanent damage, 177
EM-FI Transient Probe tool, Riscure, 461
eMMCs (embedded multimedia cards), 53, 110
EMVC, 420
enlightenment, 419
entropy, 112
error correcting codes, 412
Ethernet, 63, 447
evaluation assurance level (EAL), 421
exploitation phase, 8, 30–31
external interfaces, 3
extracting firmware, 109
FaceDancer, 452
Farad (unit), 38
fault canary, 416
fault counter, 416
fault detection, 416
fault injection. *See* glitching
fault primitive, 132
fault response, 416
fault sensitivity analysis, 154
fault sensor, 416
fault simulation, 418

Federal Communications Commission Identifier (FCC ID), 72

FIB (focused ion beam), 21
filtering, trace, 352
FIPS 140-3, 421
firmware, 109, 395
 - analysis, 111
 - entropy, 112
 - extraction, 111
 - signature, 116
 - update, 395
firmware re-hosting, 17
first-order attacks, 407
FiSim, 419
flash, 110, 452, 467
flash memory, 4
Flashrom, 453
flip-chip, 93
flux, 429
focused ion beam (FIB), 21
frequency filtering, 353
FTDI, 445, 448, 452
fuses, 5, 117
fuzzing, 17

G

G-code, 462
GDB (GNU Debugger), 448
Glasgow Interface Explorer, 446
Glib jocks quiz nymph to vex dwarf, 115
Glitch Amplifier, Riscure, 461

Glib jocks quiz nymph to vex dwarf, 115
Glitch Amplifier, Riscure, 461
glitch delay, 128

Glitch Amplifier, Riscure, 461
glitching, 119, 147, 189, 223, 236
 - body biasing injection (BBI), 184–186
 - causes of, 151–154
clock, 126, 135, 138, 148–157, 459
crowbar, 163–168, 195
electromagnetic. *See* EMFI
 - electromagnetic fault injection
laser. *See* LFI (laser fault injection)
memory corruption, 390
optical, 178–184, 461
parameter search, 131, 142–145, 239, 242
plotting results, 144
reading beyond array end, 227
reset, 393
sensitive operations, 122, 190
spark gap, 193
tools, 126, 189
triggering, 129–130, 186–187, 191, 200, 204
voltage, 158–171, 195, 210, 460
glitch length, 128

GlobalPlatform TEE certification, 421
global success rate (GSR), 327
GNU Debugger (GDB), 448
GreatFET, 446

H

Hamming distance (HD), 318
Hamming weight (HW), 297
harmonics, 346, 353
hash-based message authentication code (HMAC), 404
hash table (HTAB), 388
heat map, 338
heat spreader, 94, 172
Hello World, 219
henry (unit), 38
H-Field probe. *See* electromagnetic probe
higher-order attacks, 407–408
high impedance, 41
hill-climbing algorithm, 144
hot air gun, 431
hypoervisor, 388

I

icWaves, Riscure, 456
IDA (interactive disassembler), 124, 228
identification phase, 8, 30, 31
IEEE 802.15.4, 394
impedance, 37
inductance, 38
Industry Canada (IC) code, 74
infective computing, 409
initialization vector (IV), 374
input correlation, 348
instruction synchronization barrier (ISB), 130
intellectual property (IP) blocks, 3
interactive disassembler (IDA), 124, 228
inter-IC interface (I2C), 50–53
 addressing, 51
EEPROM, 51
intermediate correlation, 348
ISO 17825, 422
ISO 19790, 421
IV (initialization vector), 374

J
jitter. See noise, temporal
Joint Hardware Attack Subgroup (JHAS), 421
Joint Interpretation Library (JIL), 31, 420
 for reverse engineering, 106, 448
Joules (unit), 38
JTAGulator, 447
jumper, 101

K
kernel, 389
key enumeration, 262, 300
key zeroization attack, 410
known-key analysis, 349

L
Langer EMV, 458
leakage model, 315, 318
leakage-resistant protocol, 410
LFI (laser fault injection), 178, 461
 front- and backside, 180, 462
 preparation, 178
 wavelength, 181, 462
linear regression, 326
LNA (low noise amplifier), 458
logic analyzer, 69, 443
logic levels, 39
logic thresholds, 40
loop termination checking, 415
loop test, 132
low noise amplifier (LNA), 458
LPC microcontroller, 195
LUNA, 451

M
magnetic probe. See electromagnetic probe
Manchester encoding, 44
marking code for small parts, 78
masking, 407
master key, 394
memcmp, 404
memory copy test, 133
memory interfaces, 60
memory protection, 231
message blinding, 408
metastability, 151
microarchitectural attacks, 14
microcontroller data bus, 294
microscope, 435
 USB, 436
mini-grabber, 453
misalignment, 353
modchips, 392
modular exponentiation, 254–256, 409
multimedia card (MMC), 53
multimeter
 measuring continuity with, 65
 measuring voltage with, 64
multiplexor, 159, 210
mutual information analysis, 326

N
neural network, 355–357
noise addition, 406
noise, amplitude, 324
noise, temporal, 325
noninvasive attacks, 18, 236
nontrivial constants, 411
nonvolatile memory, 3
normalization, trace 352
Ohm’s law, 37, 267
one-time-programmable (OTP) fuses, 4
open collector, 43
open drain, 43
OpenOCD, 448, 468
OpenSSH, 122
AC coupling, 66, 273
aliasing artifacts, 440
bandwidth, 66, 441
input sensitivity, 453
memory depth, 439
PC attached, 453
probes, 65, 68
sample rate, 439, 455
trigger out, 443
output correlation, 348
over-the-air (OTA), 395
parallel bus, 59–61
partial guessing entropy (PGE), 328–329
partial success rate, 327
patents, 75
PCB. See printed circuit board
PCI Express (PCIe), 63, 449
Pearson’s correlation coefficient, 312
PGE (partial guessing entropy), 328–329
phase-locked loop. See PLL
Philips Hue, 393
PhyWhisperer-USB, 234, 451
PicoEVB, 449
PicoScope, 453
Piñata, 464
PIN code check, 246–252, 404
PKCS#1 v1.5 padding, 219
plastic quad flat pack (PQFP), 89
Platform Security Architecture (PSA), 421
PlayStation 3 hypervisor attack, 388–391
PLL (phase-locked loop), 154–155
PLL bypass, 391
power analysis, 204, 245, 265, 297, 395
hardware implementation leakage model, 319
initiating encryption, 332
leakage assumption, 301
leakage model, 315, 318
measurement tools, 453
metrics, 326
signal processing for, 257
without prior knowledge, 331
power consumption, 38
data dependent, 297
power management IC (PMIC), 84, 105, 162, 164
PowerPC JTAG pinout, 469
power rails, 165
power supply, 437
practical lab
Arduino glitching, 190
BBQ lighter, 191
differential fault analysis, 215–222
differential power analysis, 361
ECDSA (Elliptic Curve Digital Signature Algorithm), 258
power consumption simulation, 299–300
Raspberry Pi glitching, 164–171
read protection bypass, 194–214
RSA fault attack, 215–222
SPA attack, 275–284
printed circuit board (PCB)
components, 98–101
mapping, 101–108
modifying, 434
photographing, 436
power planes, 105
reverse engineering, 102
tracing, 81, 104
printer cartridges, 362
processor (central processing unit or CPU), 2
program counter control, 133
PSA (Platform Security Architecture), 421
pulldown, 42
pullup, 42
push-pull, 42
Q
quad flat no-lead (QFN), 91, 95, 95–96
quad flat pack (QFP), 90
quantization error, 67
quantum attacks, 301

R
randomized array access, 409
read-only memory. See ROM
reference designator, 103
remote boot attestation, 24
removal alloy, 432
reset, target, 129
resistance, 37
resistor, 100
resynchronization, 353, 371
ringing, 45
Riscure Glitch Amplifier, 461
Riscure icWaves, 456
Riscure Spider, 460
Riscure VC Glitcher, 460
ROM (read-only memory), 4
patching, 5
root of trust, 5
rotary tool, 434
Rotating S-boxes Masking (RSM), 407
Rowhammer attack, 13
RS-232, 47
RSA, 117, 215, 409
blinding, 408
CRT (Chinese Remainder Theorem), 215, 220
MBED-TLS, 219, 256
power analysis of, 254, 256
windowing implementation, 256

S
SAD (sum of absolute differences), 288, 353, 371, 456
SAKURA Project, 463
Saleae, 444
sampling rate, 67, 341
SASEBO Project, 463
scalar multiplication, 259
schematics, 77
Schneier’s law, 419
SDIO (Secure Digital Input/Output), 53

search strategy
big to small, 143
divide and conquer, 143
exercising patience, 144
intelligent search, 144
interval, 142
nesting, 142
random, 142
small to big, 143
second-order attacks, 407
secure boot, 391
Secure Digital card (SD card), 53, 111
Secure Digital Input/Output (SDIO), 53
security labs, 421
security nihilism, 8, 419
security objectives, 10
SEGGER J-Link, 449
self-clocking, 44
serial communications, 46–48, 445
baud rate, 47
for triggering, 445
serial interface, high speed, 61
Serial Peripheral Interface (SPI), 48–50, 445, 452
flash, 110, 452, 467
Serial Wire Debug (SWD), 16, 469
shunt resistor, 210, 267, 273, 334
side channel, 245–246
countermeasures, 325
power. See power analysis
timing. See timing attack
signature, 116
silkscreen, 103
simple power analysis. See SPA
small outline integrated circuit (SOIC), 89, 96, 452, 467
clip adapter, 452
small outline no-lead (SON), 91
small outline package (SOP), 89
smartphone glitching, 194
SMD. See surface-mount device
SoC. See System-on-Chip
power supply, 165
soldering, 431
soldering iron, 427–429
plating, 428
solder mask, 104
solder spheres, 433
source synchronous clock, 44
SPA (simple power analysis), 253
applying to RSA, 254–257
spectrogram, 345
spectrum analysis, 345
SPI (Serial Peripheral Interface), 48–50, 445, 452
flash, 110, 452, 467
Spider, Riscure, 460
sportsball, 9
square-and-multiply algorithm, 409
quinting at traces, 282
straps, 15, 16, 101
sum of absolute differences (SAD), 288, 353, 371, 456
surface-mount device (SMD)
ball grid arrays, 91
leaded packages, 88
leadless packages, 91
marking code, 78
rework, 431
SWD (Serial Wire Debug), 16, 469
switching-based injector, 159
symbols, communication, 39
synchronous communication, 44
synchronous sampling, 67, 342, 455
System-on-Chip (SoC), 2, 164
power supply, 165

T
TAs (trusted applications), 6
target, laboratory, 463–465
target, resetting, 129
TEE (trusted execution environment), 5
TEMPEST, 246
template attack, 326
test leads, 426
test points, 101
test vector leakage assessment (TVLA), 349–352, 422
thin quad flat pack (TQFP), 89, 96
thin SON (TSON), 91
thin SOP (TSOP), 89
timing attack, 246–252, 257–258, 384, 404
timing randomization, 405, 409, 414
timing violation, 150–154
Total Phase Beagle 480, 450
trace, 67
compression, 341, 355
filtering, 352
normalization, 352
visualization, 344
transistor-transistor logic (TTL), 40
Trezor One, 224
trigger, 68, 445, 456
tristate, 42
trusted applications (TAs), 6
trusted execution environment (TEE), 5
t-test, 349–350
TTL (transistor-transistor logic), 40
TTL serial, 47
TVLA (test vector leakage assessment), 349–352, 422

U
unicorn, 8
unique status variables, 413
Universal Asynchronous Receiver/Transmitter (UART), 46
Universal Serial Bus (USB), 62, 226–227
direct firmware upgrade (DFU), 109
Human Interface Device (HID), 62
from Python, 233
sniffer, 229, 233, 242, 450
triggering on, 233
unstable clock, 406
USB isolator, 192
USB On-The-Go (OTG), 62

V
VC Glitcher, Riscure, 460
vias, 102
visualization, trace, 344
volatile keyword, 418
volatile memory, 2
voltage, 36
voltage glitching, 158–171, 195, 210, 460
voltage regulators, 105
voltmeter, 64
W
wafer-level CSP (WLCSP), 94
weaponize, 392
wide small outline no lead (WSON), 91, 95, 467

X
Xbox 360 attack, 391–393, 405
XY scanning, 462
XTAL. See crystal

Z
Zigbee Light Link, 394