
1
3 D D R A W I N G W I T H O P E N S C A D

This chapter introduces the OpenSCAD
3D design software with its own built-in

programming language. You’ll learn how
to use text-based commands to draw the basic

3D shapes that will act as the building blocks for all
the designs in this book. OpenSCAD’s easy-to-learn
programming language, specifically designed for 3D
printing, is a descriptive language that offers a more
natural way of describing geometry than traditional
programs.

Z
Y

X

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

2 Chapter 1

Why Use OpenSCAD?
OpenSCAD is an open source program that is freely available for download.
It is one of the most widely used 3D design software applications in the
maker community, and as a result, many online resources are available.
OpenSCAD was built to enable nondesigners to easily create 3D models.
It does not have a graphical user interface like Photoshop. Instead, you
define your design with text-based code, which makes it easier to move
around different parts, change earlier steps in the design process, share
sections of your designs with other people, discuss your design problems
in forums, and email designs to others. You can do similar things in Open-
SCAD as are possible with other high-end tools; however, OpenSCAD is
quick to learn, simple to use, and more accessible.

Getting Started with OpenSCAD
Creating a 3D design with OpenSCAD is a two-step process. First, in the
Editor window, type a code statement to give OpenSCAD instructions
about what to display. Figure 1-1 shows a code statement to draw a simple
OpenSCAD shape circled in red.

Figure 1-1: Code for a cube in the Editor window

This OpenSCAD code statement has two parts. The first part indi-
cates the type of shape you want to draw (in this case, a cuboid). The
second part, which contains what are called parameters, indicates the
properties of that shape. Parameters allow you to specify values that
modify the appearance of the shape. Parameters are always placed
between parentheses ().

Next, draw your shape in the Preview window by clicking the Preview
button (circled in red in Figure 1-2) to see a quick visual preview of your
design.

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 3

Figure 1-2: Drawing a cube after clicking the Preview button

Drawing Basic 3D Shapes
In this section, you’ll learn how to write OpenSCAD code to draw cuboids
(cubes or 3D rectangles), spheres, and cylinders, and you’ll learn how to
import shapes from other design programs.

Drawing Cuboids with cube
Use the cube command to create a cuboid (as shown in Figure 1-2):

cube([5, 10, 20]);

The first part of the statement, cube, indicates that you want to draw a
cuboid. The parameters inside the parentheses modify the cube command
by specifying how big you want your cuboid to be. The square brackets
([]) indicate a vector that organizes the three dimensions of your cuboid.
The order of the numbers in the vector is important: 5 is the width of the
cuboid along the x-axis, 10 is the length of the cuboid along the y-axis, and
20 is the height of the cuboid along the z-axis. Finally, mark the end of the
statement with a semicolon (;).

Notice that one corner of the cuboid touches the origin: the point at
which the three axes meet, represented by the coordinates (0, 0, 0).

Drawing Spheres with sphere
To draw a sphere, use the sphere command followed by the sphere’s radius
in parentheses to indicate its size. For example, the following statement
draws a sphere with a radius of 10 units (Figure 1-3):

sphere(10);

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

4 Chapter 1

Figure 1-3: A sphere with a radius of 10 units

You can change the size of a sphere by changing its radius. Unlike
cuboids, which might have three distinct measurements for width, length,
and height, a sphere has the same measurements along all three axes.
That’s why the basic sphere command has only one number inside the
parentheses. As with the cube command, mark the end of the code state-
ment with a semicolon. But unlike with the cube command, OpenSCAD
centers a sphere around the origin.

Drawing Cylinders and Cones with cylinder
To draw a cylinder, use the cylinder command followed by parentheses con-
taining the cylinder’s height and the length of the two radii of the circles
that form its top and bottom. The following statement draws a cylinder with
two radii of the same size (Figure 1-4):

cylinder(h=20, r1=5, r2=5);

Figure 1-4: A cylinder with a height of 20 units, a
bottom radius of 5 units, and a top radius of 5 units

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 5

Because keeping track of the cylinder’s three parameters can be con-
fusing, OpenSCAD allows you to label each parameter and include them
in the command in any order. In parentheses, set the following values: h,
which is the height of the cylinder along the z-axis; r1, which is the radius at
the bottom of the cylinder; and r2, which is the radius at the top of the cyl-
inder. As with the sphere and cube commands, use a semicolon to mark the
end of the statement.

PA R A ME T ER OR DER

It’s perfectly fine to pass parameters to cylinder without labels for height and
radii, so entering cylinder(15, 8, 8) is equivalent to cylinder(h=15, r1=8, r2=8).
However, if you don’t use labels, the parameters must be in the exact order for it
to be read properly. If using labels, you can enter the parameters in any order, for
example: cylinder(r1=8, r2=8, h=15).

The two radii of a cylinder don’t need to have the same measurements.
When they’re different, the cylinder looks more like a cone with its top cut off
(or, a truncated cone, according to mathematicians), as shown in Figure 1-5:

cylinder(h=20, r1=5, r2=3);

Figure 1-5: A cone with a height of 20 units, a
bottom radius of 5 units, and a top radius of 3 units

You can draw a pointed cone, like the one in Figure 1-6, by assigning
one of the radii a radius of 0:

cylinder(h=20, r1=0, r2=5);

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

6 Chapter 1

Figure 1-6: A pointed cone with a height of 20 units,
a bottom radius of 0 units, and a top radius of 5 units

Notice also that, unlike the shapes drawn with the sphere and cube com-
mands, cylinders are centered around the z-axis, with one face touching the
xy-plane.

Importing 3D Models with import
OpenSCAD allows you to import shapes from other 3D design programs
if they’re saved in the .stl format, which is a common format for 3D mod-
els. You can import these preexisting 3D shapes with the import command.
For example, use the following statement to import a popular file called
3DBenchy.stl (Figure 1-7):

import("3DBenchy.stl");

Figure 1-7: An imported 3D model of a boat often
used to calibrate 3D printers

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 7

To import a 3D shape, place the .stl file’s name within parentheses after
the import command. Enclose the name of the file in quotation marks (" ")
to indicate that the filename is literal text and should not be interpreted by
OpenSCAD. Note that you should save the .stl file in the same folder/direc-
tory as your OpenSCAD program, and be sure to save your OpenSCAD pro-
gram before you generate a preview of your design; otherwise, OpenSCAD
might have trouble finding the file. Mark the end of the statement with a
semicolon.

Modifying Basic Shapes
Some of the basic ways to alter the shapes you draw with OpenSCAD
include moving or smoothing them.

Moving Shapes
If the design you’re creating has more than one shape, you’ll need to
know how to move those shapes around the Preview window. Otherwise,
by default, they will sit on top of each other, and you may not be able
to see the shapes of different sizes. For example, consider the following
design (Figure 1-8):

cube([20, 10, 10]);
sphere(5);
cylinder(h=30, r1=2, r2=2);

Figure 1-8: Multiple shapes drawn with default
positioning

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

8 Chapter 1

Centering Shapes with center=true

By default, the sphere command draws a sphere so that it’s centered around
the origin; the cube, cylinder, and import commands don’t do this. If you
want to draw other shapes so that they’re also centered around the origin,
add the center=true parameter inside the parentheses, as in this snippet
(Figure 1-9):

cube([5, 10, 20], center=true);

Figure 1-9: A cuboid centered around the origin

Now the cuboid’s center will be at (0, 0, 0). You can also add the
center=true parameter to cylinder shapes in order to center cylinders and
cones around the origin. It’s not possible to center imported shapes with
center=true.

Moving Shapes to a Specific Location with translate

To move a shape to a specific location in the Preview window, use the
 translate operation. This operation modifies a shape as a whole so it’s
included right before the shape it’s meant to modify.

For example, the following statement draws a cuboid that is shifted
from its default position by 10 units in the negative direction along the
x-axis, 20 units in the positive direction along the y-axis, and 0 units
along the z-axis (Figure 1-10):

translate([-10, 20, 0]) cube([20, 10, 10]);

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 9

Figure 1-10: A translated cuboid with a starting
corner at (–10, 20, 0)

The translate operation uses square brackets to group the x, y, and z
dimensions into a vector. Similar to specifying the dimensions of a cube
shape, the order of the numbers in the vector is important. The first number
in the translation vector describes movement along the x-axis; the second
describes movement along the y-axis; and the third describes movement along
the z-axis. Finally, mark the end of the entire statement with a semicolon.

You may have noticed that the vector you use to modify the translate
operation moves the shape’s starting corner—the corner that touches the
origin by default. Figure 1-11 shows how the translate operation moves the
cuboid relative to the origin (the original cube is shown in gray). You can
use the axes legend to predict the location of your shapes after the translate
operation has been applied.

Figure 1-11: A cuboid moved 10 units along the
x-axis and 20 units along the y-axis, compared
with the same-sized cuboid at the origin

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

10 Chapter 1

To create a more complex design, you may need to move shapes around
in different configurations. Use the translate operation in front of a command
to move it into a different position. For instance, the following statements draw
a cuboid, a sphere, and a cylinder in one Preview window (Figure 1-12):

translate([-10, 10, 0]) cube([20, 10, 10]);
translate([20, 0, 0]) sphere(5);
translate([0, 0, -10]) cylinder(h=30, r1=2, r2=2);

Figure 1-12: Three distinct shapes, translated
from default positions

Both the sphere and cylinder move according to their respective center
points, while the cube moves relative to the corner that touches the origin.
Notice that the movement is different if you apply the same translation
operations to a cube and cylinder that have been centered (Figure 1-13):

translate([-10, 10, 0]) cube([20, 10, 10], center=true);
translate([20, 0, 0]) sphere(5);
translate([0, 0, -10]) cylinder(h=30, r1=2, r2=2, center=true);

Figure 1-13: Three distinct shapes, translated
from centered positions

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 11

Smoothing Curves with $fn
You might be wondering why the spheres and cylinders you’ve drawn so far
don’t appear to be round, but instead are formed by a series of flat panels.
That’s because OpenSCAD, like most 3D design software, uses a collection
of straight lines to approximate a curve. To save on memory and reduce
the processing time required to draw complex shapes, OpenSCAD uses
a relatively small number of these lines by default. The cylinder shown in
Figure 1-13, for example, uses only six line segments to approximate the
curve of the circular faces of the cylinder.

To make your cylinders and spheres smoother, specify the number of
line segments used to approximate a curve by including the $fn param-
eter. Setting $fn to 10, for instance, makes a cylinder look a bit rounder,
because it draws the circumference of the cylinder with 10 line segments
(Figure 1-14):

cylinder(h=20, r1=2, r2=2, $fn=10);

Figure 1-14: Approximating the curve of a cylinder
with 10 line segments

As with other parameters, include $fn in the parentheses within the
command.

Although the cylinder in Figure 1-14 is rounder than a default cylinder,
it’s still not visibly round. Increase $fn to an even larger value in order to
make the cylinder rounder (Figure 1-15):

cylinder(h=20, r1=2, r2=2, $fn=50);

With 50 line segments, the curve in this cylinder looks a lot smoother.
After a certain point, though, increasing $fn will stop showing any vis-
ible effect. Also, note that OpenSCAD takes longer to generate shapes
with large $fn values (as there are more details to generate), so be sure to

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

12 Chapter 1

consider the trade-off between smoothness and computational overhead
when you set $fn. Generally, $fn=50 will produce a “roundness” that is more
than sufficient.

Figure 1-15: A cylinder with a curve approximated
with 50 line segments

Combining 3D Shapes with Boolean Operations
Sometimes you’ll want to create shapes with features that are more com-
plex than the basic shapes you’ve made so far. The Boolean operations in
OpenSCAD allow you to combine multiple shapes, like cuboids, spheres,
cylinders, and cones, into one shape (Figure 1-16). You can do this by using
one of three operations: union, difference, or intersection.

union intersectiondifference

Figure 1-16: An illustration of basic Boolean operations

The union operation groups two shapes together, the difference opera-
tion subtracts one shape from another, and the intersection operation keeps
only the parts where two shapes intersect with each other.

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 13

BOOL E A N OPER AT IONS

You can think of Boolean as yes/no. It’s commonly used in math and software
engineering when you need to define whether something exists or doesn’t exist.
The Boolean operations discussed here define whether a volume of space
should have material or should be empty.

Subtracting Shapes with difference
Let’s start by subtracting shapes with the difference operation (Figure 1-17):

difference() {
 cube([10, 10, 10]);
 sphere(5);
}

Figure 1-17: A sphere subtracted from a cuboid
with the difference operation

Indicate a difference operation, followed by a set of parentheses, and then
enter at least two commands between a set of curly brackets. Order matters
when you use the difference operation; it keeps only the first shape, remov-
ing the parts of that shape where the remaining shapes intersect it. Notice in
Figure 1-18 what happens when you exchange the order of the two shapes:

difference() {
 sphere(5);
 cube([10,10,10]);
}

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

14 Chapter 1

Figure 1-18: A cuboid subtracted from a sphere
with the difference operation

Reversing the operations creates a sphere with a slice missing, precisely
where cube would have drawn a cuboid shape on top of the original sphere.

Debugging difference Operations with #

It can be easy to lose track of the shape you’re subtracting because it is no
longer visible in the design. To make things easier, place a hash mark (#) in
front of a subtracted shape to create a ghost version of the shape. The fol-
lowing code is identical to the code that drew Figure 1-17, except it uses a
hash mark to render the sphere as a ghost-like image (Figure 1-19):

difference() {
 cube([10,10,10]);
 #sphere(5);
}

Figure 1-19: A ghost version of a subtracted
sphere to help with problem-solving

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 15

Use the hash mark to help you debug your designs, and then when your
design is correct, be sure to remove the hash mark from your code.

Avoiding “Shimmering Walls” with the difference Operation

When subtracting shapes with the difference operation, you may sometimes
end up with “shimmering walls” like those in Figure 1-20.

Figure 1-20: Two cuboids subtracted from a larger
cuboid create shimmering walls

The shimmering walls appear because the subtracted shapes share a
face with the shape they’re being subtracted from. This creates an ambigu-
ous scenario; should the face remain or be subtracted? Because of this con-
cern, a model with shimmering walls isn’t 3D-printable.

To solve this issue, only subtract shapes that extend slightly beyond the
size of the outer shape (Figure 1-21).

Figure 1-21: Two slightly larger cuboids subtracted
from an outer cuboid

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

16 Chapter 1

Once you’ve removed the ghost shapes, the remaining shape should
contain no shimmering walls (Figure 1-22):

difference() {
 cube([10, 10, 10]);

 translate([-1,2.5,2.5]) cube([12, 5, 5]);
 translate([2.5,2.5,-1]) cube([5, 5, 12]);
}

Figure 1-22: A subtracted shape that is fit for 3D printing

You should now be able to 3D-print this design.

Carving Out Overlapping Shapes with intersection
You can also carve away everything except the overlapping portion of two
shapes by using the intersection operation (Figure 1-23):

intersection() {
 sphere(5);
 cube([10,10,10]);
}

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 17

Figure 1-23: The cutout of an overlapping sphere
and cuboid, drawn with the intersection operation

First, indicate the intersection operation followed by parentheses, and
then enter at least two commands between curly brackets. Unlike with the
difference operation, the order in which you include the shapes doesn’t mat-
ter with intersection.

Grouping Shapes with union
To group shapes into a single entity, use the union operation (Figure 1-24):

union() {
 cube([10, 10, 10]);
 sphere(5);
}

Figure 1-24: A sphere and a cuboid grouped
together with a union operation

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

18 Chapter 1

The union operation combines all the shapes inside the curly brackets
into one shape. Indenting all the lines that come between the curly brack-
ets makes your code readable and easy to understand. Similar to intersec-
tion and difference, there’s no way to modify the union operation, so you’ll
never need to put any information inside its parentheses.

Although it appears as if you can combine shapes by simply drawing
them on top of each other, each shape will still remain a separate entity.
This can be a problem when using the difference operation, as that opera-
tion subtracts only from the first shape inside the curly brackets. To avoid
this problem, you can group multiple shapes into one shape by using the
union operation. Include this grouped shape within difference as the first
shape. For example, the following program uses the union operation to
subtract a sphere from two shapes at once (Figure 1-25):

difference() {
 union() {
 cube([10, 10, 10]);
 cylinder(h=10, r1=2, r2=2);
 }
 sphere(5);
}

Figure 1-25: A sphere subtracted from a cylinder and
a cuboid grouped together with union

OpenSCAD first combines the cube and cylinder into one shape, and
then subtracts the sphere from that new shape. Without the union operation,
OpenSCAD would, instead, subtract both the cylinder and sphere from the
cuboid (Figure 1-26).

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 19

Figure 1-26: A sphere and a cylinder subtracted
from a cuboid

Once you’ve created a complex shape with difference, intersection, or
union, a computer can easily break it into geometric primitives to generate
an accurate 3D model of your design. You can then print this complex 3D
model on a 3D printer or import it into a 3D virtual reality program.

Getting Ready for 3D Printing
When you’re ready to send your OpenSCAD design to another application
for 3D printing, you’ll need to export an .stl version of your design from
OpenSCAD. You can then import this file into your 3D printing prepara-
tion software to adjust the settings, then turn it into a physical object with a
3D printer.

To export an .stl version of your design, first render your design by
clicking the Render button (circled in red in Figure 1-27). Whereas Preview
generates a quick picture of your model, Render fully calculates all of the
surfaces needed to define the model. Especially complex designs require
more surfaces and might have slow Render times as a result.

Figure 1-27: Rendering a design with the Render button

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

20 Chapter 1

Finally, export your design as an .stl by selecting FileExportExport
as STL (Figure 1-28).

Figure 1-28: Exporting a design as an .stl file

Summary
Congratulations! You should now be able to create designs that include
cuboids, spheres, and cylinders in any size and draw them in OpenSCAD’s
Preview window. You can also import 3D shapes, smooth curves, and move
shapes to anywhere along the x-, y-, and z-axis. Finally, you also should know
how to create complex designs out of basic shapes by grouping, subtracting,
and cutting out overlapping shapes.

Here are some important points to remember:

•	 The name of an OpenSCAD command describes the type of shape
you’d like to draw.

•	 Commands are followed by parentheses. Information inside paren-
theses () modifies a command. The values inside the parentheses
are called parameters. You can think of parameters as adjectives that
describe characteristics of the shape.

•	 A semicolon (;) marks the end of most statements. Statements can
include both commands and operations.

•	 Use the translate operation to move your shapes around the Preview
window. Indicate the amount and direction of movement by changing
the vector parameter of the translate operation.

•	 Square brackets ([]) collect numbers together to form a vector. The
order of the numbers inside a vector is important.

•	 Boolean operations use curly brackets ({ }) to collect multiple shapes
together. These curly brackets also form a complete OpenSCAD state-
ment and do not require a semicolon to end the statement.

•	 Parentheses, square brackets, and curly brackets always come in pairs.

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 21

•	 $fn can be used as a parameter to change the smoothness of a single
shape. You can also set $fn to a high value at the beginning of your code
to generate smooth curves for every shape in a design. High values for
$fn can result in slow rendering times.

•	 Use indentation to help make your code readable and easy to
understand.

•	 A design must be rendered before it can be exported as an .stl file.

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

22 Chapter 1

DESIGN TIME: 3D SHAPES

Practice your composition and design skills by building each of the complex shapes in Figure 1-29.
We strongly recommend that you finish building each shape before moving on.

1. Mouse 2. Yo-yo

3. Spinner 4. Epcot

5. Half-pipe 6. Ice cream cone

Figure 1-29: Practice drawing these shapes.

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

3D Drawing with OpenSCAD 23

BIG PROJECTS: 3D SHAPES

The following big projects will help you practice the commands covered in this chapter, and will
introduce you to some basic considerations for using your 3D printer, such as printer resolution and
temperature.

CA L IBR AT ION PY R A MID

Building a calibration pyramid, shown in Figure 1-30, will help you determine whether you need
to tweak the settings on your 3D printing preparation software. It will also help you practice using
cube and translate.

Figure 1-30: Calibration pyramid

• Try printing this at different resolutions. Try Low, Medium, and High quality. Compare
print times and results.

• Try printing this pyramid at different sizes. Measure the pyramid after you print it.
Check to make sure your physical measurements match the virtual measurements of
your 3D model.

• Tweak your software settings so the pyramid has straight lines at all corners after it’s
printed.

(continued)

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

24 Chapter 1

SMIL E Y-FACE PENDA N T

To create the smiley-face pendant shown in Figure 1-31, you’ll need to use your 3D printer to print
large, flat shapes. Flat shapes can be difficult to print because they tend to curl.

Figure 1-31: Smiley-face pendant

If you have a heated bed on your 3D printer, use it. Vary the temperature of your heated bed
to see which temperature works best for the type of filament you are using.

If you don’t have a heated bed, inserting thin helper disks can keep prints from curling. Helper
disks are 1 mm thick, so you can easily remove them after your print is complete. You can place
helper disks around the perimeter of your design, and then easily cut them off after you’ve finished
the print. Some 3D printing preparation software allow you to insert these discs automatically.
Otherwise, you can insert ultra-thin cylinders in your OpenSCAD design.

HOL E-A ND -PINS T ES T

To design a hole-and-pins test, you’ll use your 3D printer to print pieces that fit together, as shown
in Figure 1-32. If you design this properly, the pins should fit snugly inside the holes.

Figure 1-32: Hole-and-pins test

If you design the pins to be exactly the same size as the holes, the two pieces won’t fit together.
The pins should be slightly smaller than the holes. How much smaller depends on the type of filament
you’re using and your printer settings. Both the brand and type of plastic will make a difference.

Programming with OpenSCAD (Sample Chapter) © 2021 by Justin Gohde and Marius Kintel

