
INDEX

A
abstract syntax trees (ASTs), 74–76

fuzzing, 280–281
vs. Semgrep approach, 86
Semgrep dump-ast feature, 98–99

access control list (ACL), 64
accumulated complexity, 254
Acer QuickAccess, 64
Active Server Pages (ASP) files, 152
AddressSanitizer (ASan), 215–216, 248
Adobe Systems Incorporated, 293–294
AFL++ (American Fuzzy Lop plus plus)

afl-cmin tool, 243–244
afl-cov tool, 248–250
afl-plot tool, 276–277
CMPLOG mode, 259
coverage-guided fuzzing with, 234–238
dictionaries, 275–278
Frida mode, 259–262
Grammar Mutator project, 279–280
patching validation checks, 242
QEMU mode, 258–259
writing harnesses, 246–247

“afl-fuzz” blog post (Zaleweski), 233–234
AFP (Apple Filing Protocol), 7, 295
Agent Extensibility Protocol (AgentX),

52–55
Amegma Galaxy Attack, reverse

engineering, 122–126
Analyze function, ILSpy, 131
Andriesse, Dennis, xxv
Android Package (APK) format, 69–70
“Angelboy” security researcher, 7
angr framework, 190–191

performing symbolic execution, 191–193
solving constraints, 193–195
static analyses supported by, 192
writing SimProcedures, 195–199

angr-management frontend, 190
antivirus software, 296

Apache Log4j vulnerability, 6, 9, 268
Apache OpenOffice, 6, 68, 287
Apache Software Foundation (ASF), 9–10
API (application programming interface)

calls
hijacking in emulation, 185–187
identifying and classifying, 42–43

fuzzers, 206
APK (Android Package) format, 69–70
Apple Filing Protocol (AFP), 7, 295
application layer, TCP/IP, 50
applications, reverse engineering. See

scripts under reverse engineering
Apport, exploiting hardcoded path in,

57–59
archinfo classes, 190
archive viewer utility, PyInstaller, 122–124
arguments, tainted, 22–24
ARM architecture, 146, 179
Art of War, The (Sun Tzu), 257
ASan (AddressSanitizer), 215–216, 248
asar tool, 112
ASF (Apache Software Foundation), 9–10
ASP (Active Server Pages) files, 152
assembly code, 137–138
ast module, Python, 74–77
ASTs. See abstract syntax trees
asynchronous functions, 118
Atom Shell. See Electron framework
Atom Shell Archive (ASAR) files,

110–112
attacker-controlled sources, identifying,

26–29
Attacking Network Protocols (Forshaw), xxv
attack surfaces, mapping code to, xxiii,

39–40, 71
file formats, 66–67

custom fields, 70–71
directory-based, 69–70
TLV pattern, 67–68

300 Index

attack surfaces (continued)
internet, 40

web client vulnerabilities, 40–43
web server vulnerabilities, 43–50

local attack surfaces, 55–56
files in IPC, 56–61
named pipes, 63–65
other IPC methods, 65–66
sockets, 61–63

network protocols, 50–52
data structures, 52–53
procedures, 53–55

Auto-Fuzz feature, Fuzz Introspector, 255
autofuzz mode, Jazzer, 263–264, 266
automated code analysis, xxiii, 19–20,

73, 103–104
abstract syntax trees, 74–76
static code analysis tools, 77

CodeQL, 77–84
Semgrep, 84–87

variant analysis, 87–88
multi-repository, 101–103
single-repository, 87–100

@Autowired annotation, Spring
framework, 46

availability in target selection, 8–9
Azure, SONiC build pipelines on, 30

B
backtrace command, GDB, 17–18,

237–238
banned functions, 20
Baudrillard, Jean, 231
beautifiers, using on minified code,

119–120
binaries, xxiii, 107–108, 143–144.

See also hybrid analysis in reverse
engineering; source and sink
discovery in reverse engineering

closed source, fuzzing, 258–262
compiled, applying code coverage

for, 172–175
emulating with Qiling, 178–180
intermediate representations,

126–127
Common Language Runtime

assemblies, 127–131
Java bytecode, 131–137

machine code, 137–139
dynamically linked binaries, 140–141
packed binaries, 142–143
statically linked binaries, 139–140
stripped binaries, 141–142

managed memory, fuzzing, 262–263
with Go, 268–273
with Jazzer, 263–268

performing symbolic execution, 191–193
scripts, 109

Node.js Electron applications,
109–122

Python applications, 122–126
targets in sink-to-source analysis, 30
types of, 108–109

Binary Template format, 010 Editor,
224–229

Binwalk, 146–147
black-box fuzzing, 5, 205.

See also boofuzz
with radamsa, 219–223

blocks in boofuzz, 209
body in file formats, 66
Böhme, Marcel, 207
boofuzz, 207–208

fuzzing MQTT protocol, 209–212
fuzzing MQTT PUBLISH packet,

212–214
fuzzing NanoMQ, 214–219
MQTT protocol overview, 208–209

bootstrapped fuzzing, 223–229
branches, visualizing in code coverage,

177–178
brokers, paying for zero days, 285
browser sandbox, 108
buffer overflow

sink-to-source analysis on
dhcp6relay, 20

building proof of concept, 34–37
confirming exploitability, 24–26
confirming reachable attack

surfaces, 29
filtering for exploitable scenarios,

22–24
identifying attacker-controlled

sources, 26–29
selecting sinks, 20–22
testing exploits, 29–33

Index 301

taint analysis example, 14–16
applying taint analysis, 18–20
triggering buffer overflow, 16–18

bug bounty programs, 284–287, 293
bugs, 2

vs. vulnerabilities, 3–4
building

targets in sink-to-source analysis, 30–31
testing environments, 29–33

build instructions, LibreDWG, 250–252
bundled script-based executables, 122
bytecode, Python, 124–126

C
C programming language

comparing machine code, assembly,
and pseudocode, 137–138

dynamically linked binaries, 140–141
macros in, 90

C++ programming language, 225–226
C# programming language

intermediate representations,
126–137

named pipes in, 64–65
C11 standard, 21
Calderon, Paulino, xxv
canary strings, using to evaluate

exploitability, 168–169
Canna server, 62
captive portals, 41
CefSharp API calls, 42–43
CERT (Computer Emergency Response

Team), 292–293
CFG (control flow graph), 76
Chantzis, Fotios, xxv
child format–related vulnerabilities, 70
Chromium Embedded Framework, 41–43
chunked data, TLV for, 67–68
CIA (confidentiality, integrity, and

availability) triad, 2
CIFuzz GitHub action, 223
CIL (Common Intermediate

Language), 108–109, 127–130
CISA (Cybersecurity and Infrastructure

Security Agency), 284–285, 293
Claripy frontend, 190
Claroty Team82, 207
CLE component, angr, 190–191

CLI (command line interface) tool,
GitHub, 49

client-side vulnerabilities. See web client
vulnerabilities

closed source binaries, fuzzing, 258–262
with Frida mode, 259–262
with QEMU mode, 258–259

cloud storage applications, monitoring
events in, 166

CLR (Common Language Runtime)
assemblies, 127–131

ClusterFuzz, 223, 246
CMPLOG mode, AFL++, 259
CNAs (CVE Numbering Authorities),

3, 292–294
CodeBrowser, Ghidra. See Ghidra

CodeBrowser
code coverage, 172

afl-cov coverage reports, 249
afl-plot tool graphs of, 276–277
applying for compiled binary analysis,

172–175
visualizing with Lighthouse, 175–178

when emulating firmware with
Qiling, 181–185

CodeQL, 77
multifile taint tracking example,

77–81
multi-repository variant analysis,

101–103
vs. Semgrep, 85–86
VS Code extension, 81–84

code review, xxii–xxiii, 6–7, 104, 297.
See also attack surfaces, mapping
code to; automated code analysis;
taint analysis

command injection vulnerabilities
static code analysis, 78–84
testing for possibility of, 157
ways to exploit, 160–161

command line interface (CLI) tool,
GitHub, 49

Common Intermediate Language
(CIL), 108–109, 127–130

Common Language Runtime (CLR)
assemblies, 127–131

Common Vulnerabilities and Exposures
(CVE) records, 3, 87, 292–294

302 Index

Common Vulnerability Scoring System
(CVSS), 2, 287–288

compilation, by interpreters, 109
compiled binary analysis, applying code

coverage for, 172–175
compiled languages, 110
compiled Python files, 124
Computer Emergency Response Team

(CERT), 292–293
conditional branches, visualizing in

code coverage, 177–178
confidentiality, integrity, and availability

(CIA) triad, 2
confused deputy problem, 58
connections in boofuzz, 209
CONNECT packet, MQTT protocol,

209–212, 215–216
consortiums as CNAs, 293
constraints, solving in symbolic analysis,

193–195
containers

images, 30, 36
Podman container management tool,

30–32
privileged, 32

control flow graph (CFG), 76
controllers in MVC framework, 45–47
control packet types, MQTT protocol,

208–209
coordinated vulnerability disclosure

(CVD), 283–285
assigning CVE identifiers, 292–294
bug bounty programs, 285–287
disclosing vulnerabilities, 291–292
writing vulnerability reports, 287–291

coverage-guided fuzzing, xxiv, 7,
231–232, 255

advantages of, 232–234
with AFL++, 234–238
Fuzz Introspector, 250–252

analyzing function complexity,
253–255

identifying fuzz blockers, 252–253
measuring coverage with afl-cov,

248–250
optimization techniques, 238

fuzzing in parallel, 248
minimizing seed corpus, 243–246

patching validation checks, 238–243
writing harnesses, 246–247

CRC (cyclic redundancy check)
checksum, 224, 238–243

cross-site scripting (XSS) bug, 108
curl project, CVE for, 3–4
custom fields as attack surfaces, 70–71
custom uniform resource identifier

(URI), 41
CVD. See coordinated vulnerability

disclosure
CVE Numbering Authorities (CNAs),

3, 292–294
CVE (Common Vulnerabilities and

Exposures) records, 3, 87, 292–294
CVSS (Common Vulnerability Scoring

System), 2, 287–288
Cybersecurity and Infrastructure

Security Agency (CISA),
284–285, 293

cyclic redundancy check (CRC)
checksum, 224, 238–243

cyclomatic complexity, 254

D
“d4rkn3ss” security researcher, 48
databases, CodeQL, 82–83, 103
data flow analysis, 78, 81, 86, 101–103
data flow graph (DFG), 76
data structures, network protocol, 52–53
dBase database file (DBF) format, 68,

207, 226–229
DbGate application, reverse

engineering, 109–114
analyzing dangerous sink, 120–122
unpacking source maps, 114–119
using beautifiers on minified code,

119–120
Debian package, 110–111
debuggers. See GNU Debugger
decompiling

with Ghidra, 148–155
intermediate representations,

130–131, 132–137
Python files, 124–126

Decompyle++, 124–125
DEF CON archives, xxv
Deirmentzoglou, Evangelos, xxv

Index 303

desktop applications, embedded
browsers in, 41–42

DesktopLauncher.java file, Pixel Wheels, 135
DFG (data flow graph), 76
dhcp6relay server

data structure discrepancies, 52–53
sink-to-source analysis on, 20

building proof of concept, 34–37
confirming exploitability, 24–26
confirming reachable attack

surfaces, 29
filtering for exploitable scenarios,

22–24
identifying attacker-controlled

sources, 26–29
selecting sinks, 20–22
testing exploits, 29–33

DHCP for IPv6 protocol, 52–53
dictionaries, fuzzing with, 274–278
directory-based file formats, 67, 69–70
disassembling

CLR assemblies, 128–129
with Ghidra, 148–155
machine code, 138

disclosing vulnerabilities, 291–292.
See also coordinated vulnerability
disclosure

Docker, 252
Dockerfile, 32–33, 36, 250–251
Domain Name System (DNS), 41
domain validation function, Go fuzzing,

268–271
Dostoevsky, Fyodor, 145
dpkg-deb tool, 110
drawing (DWG) format, 235, 239–240,

243. See also LibreDWG, fuzzing
drcov tool, 173–175
dumb fuzzers, 206, 215–216, 234
dump-ast feature, Semgrep, 98–99
dumping strings in static analysis,

147–148
Dune (Herbert), 1
dwgread program

AFL++ Frida mode, 260
fuzzing with AFL++, 235–238
patching validation checks, 238–243

dynamically linked binaries,
140–141, 149

dynamic analysis, 155, 170.
See also hybrid analysis in
reverse engineering

analyzing library function calls,
158–161

instrumenting functions with Frida,
161–165

monitoring higher-level events,
165–167

tracing library and system calls,
156–158

dynamic symbol table, dumping, 149
DynamoRIO, 172–175

E
edge collisions, 235
EDR (endpoint detection and

response) products, 296
Electron framework, 110

cross-site scripting bug in, 108
reverse engineering applications,

109–114
analyzing dangerous sink, 120–122
unpacking source maps, 114–119
using beautifiers on minified code,

119–120
Electronic Frontier Foundation

(EFF), 285
ELF (Executable and Linkable

Format), 108
Eliot, George, 171
embedded browsers in desktop

applications, 41–42
emulation, 178

binding virtual paths, 187–189
of firmware with Qiling, 178–185
hijacking API calls, 185–187

encryption, 54
endpoint detection and response

(EDR) products, 296
error handling, 54
errors, analyzing to evaluate

exploitability, 167–169
Ethical Hacking (Graham), xxii
European Union Agency for

Cybersecurity, 284
eval sink, DbGate, 120–122
events, monitoring higher-level, 165–167

304 Index

Excel, Microsoft, 40
Executable and Linkable Format

(ELF), 108
executable binaries, 108–109, 111, 122
Expat C library, 88, 102
exploitable vulnerabilities

evaluating, 167–169
in sink-to-source analysis

confirming, 24–26
filtering exploitable scenarios, 22–24
testing exploits, 29–33

exploit development, 5, 16–18, 30
Express framework, 44–45, 81

F
Facebook Gameroom, 41–42
familiarity, role in target selection, 8
feedback loop fuzzing, 206–207
Fernflower decompiler, IntelliJ IDEA,

134–135
ffmpeg application, 158–160, 167
fields, custom, as attack surfaces, 70–71
file2fuzz tool, 271–272
file command, 149
file formats

as attack surfaces, 66–67
custom fields, 70–71
directory-based, 69–70
TLV pattern, 67–68

binaries in, 108
footers in, 66

file fuzzers, 206
files in IPC, 56–57

exploiting hardcoded path in Apport,
57–59

exploiting race condition in
Paramiko, 60–61

financial incentives for vulnerability
disclosure, 285

firmware, emulating with Qiling,
178–185

fixed header, MQTT packets, 208
flow control, 54
fmt package functions, 140
fork call, 189
forked processes, 185–186
FormatFuzzer, 224–229
Forshaw, James, xxv, 169

Fprintln function, 140–141
Fraser, Gordon, 207
FreshTomato firmware

emulating with Qiling, 179–185
evaluating exploitability, 169
hijacking API calls, 185–186
static analysis of, 146

disassembling and decompiling
with Ghidra, 148–155

dumping strings, 147–148
Frida mode, AFL++, 259–262
Frida toolkit

instrumenting functions with, 161–165
Stalker code tracing engine, 173

frida-trace tool, 161–163
from_bytes method, 52
frontend components, DbGate, 121
functions

complexity of, analyzing, 253–255
hijacking, 185–187
instrumenting with Frida, 161–165

fuzz blockers, identifying, 252–253
fuzz coverage, analyzing with OSS-Fuzz,

222–223
fuzzers

API, 206
based on information about

targets, 205
dumb, 206, 215–216, 234
file, 206
FormatFuzzer, 224–229
generation-based, 205, 208,

223–224, 229
grammar-based, 205, 278–280
libFuzzer, 221–222, 267
mutation-based, 205
Peach Fuzzer, 207, 224
protocol, 206
smart, 206
Sulley fuzzer, 207

Fuzzilli, 281
fuzzing, xxii–xxiv, 7–8, 203–204,

257–258, 297. See also
coverage-guided fuzzing

with boofuzz, 207–208
fuzzing MQTT protocol, 209–212
fuzzing MQTT PUBLISH packet,

212–214

Index 305

fuzzing NanoMQ, 214–219
MQTT protocol overview,

208–209
bootstrapped, 223–229
closed source binaries, 258–262
criteria and approaches for, 204–207
harnesses, 8, 232, 246–247, 267
managed memory binaries, 262–263

with Go, 268–273
with Jazzer, 263–268

mutation-based, 219–223
in parallel, 248
text-based formats, 273–274

with dictionaries, 274–278
with grammars, 278–280
with intermediate representations,

280–281
Fuzzing Book, The (Zeller, Gopinath,

Böhme, Fraser, and Holler), 207
“Fuzzing Like a Caveman” series

(h0mbre), 207
Fuzz Introspector, 250–252

analyzing function complexity,
253–255

Auto-Fuzz feature, 255
identifying fuzz blockers, 252–253

G
g++ compiler, 31–32
Galaxy Attack application, reverse

engineering, 122–126
Gameroom, Facebook, 41–42
GCC (GNU Compiler Collection), 235
gcc command, 16–17, 137–138
GCC plug-in, AFL++, 235
GDB. See GNU Debugger
gdb function, 36–37
generation approach to fuzzing, 205
generation-based fuzzers, 205, 208,

223–224, 229
getAtts member function, 97
getMacroFunction function, 120
getopt function, 183, 196–198
getRequest method, 264
Ghidra CodeBrowser

disassembling and decompiling with,
148–155

pseudocode in, 138, 140–141

stripped binaries, 142
visualizing code coverage in, 175–178,

181–185
GitHub

exploring projects on, 10
multi-repository variant analysis

with, 103
OAuth flow in, 49

global taint tracking, 78–81
GNU Compiler Collection (GCC), 235
GNU Debugger (GDB)

and AFL++ Frida mode, 260
buffer overflow, 17–18
when fuzzing with AFL++, 237–238
when minimizing seed corpus,

244–245
Google

disclosure policies, 291–292
Project Zero, 294, 296

Gopinath, Rahul, 207
Go (Golang) programming language

binaries
packed, 142–143
statically linked, 139–140
stripped, 141–142

fuzzing feature, 262–263, 268–273
Graham, Daniel G., xxii
grammar-based fuzzers, 205, 278–280
Grammar Mutator project, AFL++,

279–280
gray-box fuzzing, 5–6, 205
grep command, 24

H
h0mbre, 207
HackerOne, 291, 293–294
Hack In The Box archives, xxv
handshaking, 54
hardcoded path, exploiting in Apport,

57–59
Hardware Hacking Handbook, The (van

Woudenberg and O’Flynn), xxv
harnesses, fuzzing, 8, 232, 246–247,

267–268
headers

in file formats, 66
HTTP requests, 47

Herbert, Frank, 1

306 Index

Holler, Christian, 207
hosted service as CNA, 293
HTML format

custom fields in, 70–71
fuzzing, 273–276

HTTP
client libraries, 43
OAuth flow, 49
requests, 47, 150–153
responses, 48
strings related to, 150–153

httpd binary in firmware
binding virtual paths, 187–188
canary strings, 169
emulating firmware with Qiling,

178–185
hijacking API calls, 185–186
static analysis, 147–148
symbolic execution, 194–195

hybrid analysis in reverse engineering,
xxiv, 171–172, 199

code coverage, 172
for compiled binary analysis,

172–175
visualizing with Lighthouse, 175–178

emulation, 178
binding virtual paths, 187–189
of firmware with Qiling, 178–185
hijacking API calls, 185–187

symbolic analysis, 189–191
performing symbolic execution,

191–193
solving constraints, 193–195
writing SimProcedures, 195–199

I
iCalendar (ICS) format, 70
ICCP (Inter-Chassis Communication

Protocol), 50–51
iccpd server, 50–51
IDA Pro, 146
if statements, 97
IL Disassembler tool, Visual Studio,

128–130
ILSpy decompiler, 130–131
ImageMagick

dynamic analysis of, 155
analyzing library function calls,

158–161

instrumenting functions with
Frida, 161–165

monitoring higher-level events,
165–167

tracing library and system calls,
156–158

evaluating exploitability, 167–169
impact, role in target selection, 9
index.js file, 77–78, 83
Indutny, Fedor, 294
information leaks, exploitable, 22
infosec.exchange website, xxv
input type fuzzing, 206
“insecurity through obscurity,” 258
instrumentation modes, AFL++, 235–236
instrumenting functions with Frida,

161–165
integer overflow vulnerability variants

in Expat. See single-repository
variant analysis

IntelliJ IDEA Fernflower decompiler,
134–135

Intel Pin, 172–173
Inter-Chassis Communication Protocol

(ICCP), 50–51
intermediate representations (IRs),

126–127
Common Language Runtime

assemblies, 127–131
fuzzing with, 280–281
Java bytecode, 131–137

internet as attack surface, 40
web client vulnerabilities, 40–43
web server vulnerabilities, 43

MVC architecture, 45–47
nontraditional web attack surfaces,

48–50
unknown or unfamiliar

frameworks, 47–48
web frameworks, 43–45

internet layer, TCP/IP, 50
interpreters, 109
inter-process communication (IPC)

artifacts, examining, 169
local attack surfaces, 55–56

files in IPC, 56–61
other IPC methods, 65–66

temporary web servers for, 49
ip argument, ping function, 77–78

Index 307

IPv6 addresses, 29, 31–32
IRs. See intermediate representations
item geometry metric, AFL++, 237

J
JADX Android application decompiler,

69–70
jailbreaking, 41
Java

bytecode, 109, 131–137
fuzzing managed memory binaries

written in, 262–268
Java Archive (JAR) files, 126,

131–132, 134
Java Development Kit (JDK), 132
Java virtual machine (JVM), 126

Java Naming and Directory Interface
(JNDI), 6, 268

JavaScript
grammars, 278–280
instrumenting functions with Frida,

161–165
reverse engineering Node.js Electron

applications, 109–114
analyzing dangerous sinks,

120–122
unpacking source maps, 114–119
using beautifiers on minified code,

119–120
Jazzer, fuzzing with, 263–268
JD-GUI decompiler, 134
js-beautify package, 119
JSON documents, Grammar Mutator

grammar for, 279–280
js-yaml package, 9

K
Kaitai Struct format, 224
Kali Linux, installing Sasquatch on, 146
kmalloc function, 23

L
Laphroaig, Manul, 9
last new find metric, AFL++, 236
len argument, relay_relay_reply

function, 27
L’Engle, Madeleine, 203
length in TLV pattern, 67–68
libevent library, 31

libFuzzer, 221–222, 267
libheif library, 21
liblzma software library, 6–7
libraries, shared, 108
library function calls

analyzing, 158–161
tracing, 156–158
in web client functionality, 42

LibreDWG, fuzzing
with AFL++, 235–238
with AFL++ Frida mode, 259–262
Fuzz Introspector and, 250–255
measuring coverage with afl-cov,

248–250
minimizing seed corpus, 243–246
patching validation checks, 240–243
writing harnesses, 246–247

LibreOffice, 6
LibTIFF open source project, 259
libxls C library, fuzzing, 220–223
Lighthouse, visualizing code coverage

with, 175–178
when emulating firmware with

Qiling, 181–185
Light Keeper for Ghidra, 175–177, 181–185
<link> element, HTML format, 70–71
link layer, TCP/IP, 50
Link Layer Discovery Protocol

(LLDP), 50
link time optimization (LTO), 235–236
Linux

disassembling machine code in, 138
in6_addr struct type, 34
Kali, installing Sasquatch on, 146
libraries, installing, 31
Nimbuspwn collection of

vulnerabilities, 61
open system call, 58

LiteDB Studio, reverse engineering,
127–131

Liu Cixin, 39
LLVMFuzzerTestOneInput function,

222–223, 246–247
local attack surfaces, 55–56

files in IPC, 56–57
exploiting hardcoded paths in

Apport, 57–59
exploiting race conditions in

Paramiko, 60–61

308 Index

local attack surfaces (continued)
named pipes, 63–65
other IPC methods, 65–66
sockets, 61–63

local HTTP server, 49
local transport protocols, 55–56
lock files, 56–59
Log4j vulnerability, Apache, 6, 9, 268
log data, analyzing, 169
logging, monitoring, 166
Low Level Virtual Machine (LLVM)

compiler, 235
lpSecurityAttributes argument, 64
LTO (link time optimization), 235–236
ltrace tool, 156–161

M
machine code, reverse engineering,

137–139. See also source and sink
discovery in reverse engineering

dynamically linked binaries, 140–141
packed binaries, 142–143
statically linked binaries, 139–140
stripped binaries, 141–142

Mach object (Mach-O) file format, 108
macro argument, compileMacroFunction

function, 120–121
macros, 90
magick binary, using ltrace on, 158–161
main function

fork call, 189
pseudocode for, 140
stripped binaries and, 142
visualizing code coverage,

181–182, 184
Makefile, dhcp6relay struct, 30–32
make function, 31
managed memory binaries, fuzzing,

262–263
with Go, 268–273
with Jazzer, 263–268

manifest files, 112–113, 126–127, 135
man-in-the-middle (MITM) attacks,

41, 62
man ntohs command, 26
man recv command, 18
manual code review, 19–20, 24, 76
manual dictionary approach, AFL++,

275–278

map coverage metric, AFL++, 236
mapping code to attack surfaces. See

attack surfaces, mapping code to
markup-based formats, 66–67
memcpy function, 18–19, 21–28
memory corruption, 22
memory leak, 272
message_buffer argument,

parse_dhcpv6_hdr function, 29
Message Queuing Telemetry Transport

(MQTT) protocol, 208–209
fuzzing, 209–212
PUBLISH packet, fuzzing, 212–214

metadata in intermediate
representations, 126–128

metavariables, 85, 99–100
metrics, to gauge impact, 9
Microsoft. See also Windows

banned functions, 20
Bug Bounty Program, 286
Excel, 40
.NET framework, 42, 126–131
Office, 67, 70

Microsoft 365 Defender Research
Team, 61

Middlemarch (Eliot), 171
middlemen, paying for zero days, 285
minified code

reversing, 114–119
using beautifiers on, 119–120

MIPS architecture, 146–147, 179
Mirosh, Oleksandr, 6
misconfigurations in named pipes,

64–65
MITM (man-in-the-middle) attacks, 41, 62
MITRE Corporation, 3, 294
mkfifo API call, Unix, 65
mode field, Semgrep, 84–85
model-view-controller (MVC)

architecture, 45–47
_mode parameter, FUN_0001abc0

function, 154
MQTT protocol. See Message Queuing

Telemetry Transport protocol
msg argument, relay_relay_reply

function, 27–28
multifile taint tracking example, 77–81
multi-repository variant analysis,

101–103

Index 309

Muñoz, Alvaro, 6
Murakami, Haruki, 13
mutation-based fuzzers, 205

bootstrapping, 223–224
vs. generation-based fuzzers, 208
radamsa, 219–223

MVC (model-view-controller)
architecture, 45–47

N
named pipes, 63–65
NanoMQ, fuzzing, 214–219
NanoNNG files, 214–215
national CVD policies, 284
National Institute of Standards and

Technology (NIST), 2
native applications, 40
NConvert, 258–259
Netatalk, 7, 295
.NET framework, 42

binaries, reverse engineering,
126–131

NETGEAR Nighthawk R6700v3
router, 48

network attached storage (NAS)
devices, 7, 295

network events, monitoring, 166
network protocols

as attack surfaces, 50–52
data structures, 52–53
procedures, 53–55

overlap with local transport protocols,
55–56

Nimbuspwn collection of
vulnerabilities, 61

Nintendo Switch, 41
NIST (National Institute of Standards

and Technology), 2
nMaxInstances argument,

CreateNamedPipe function, 63
node-ip package, 294
Node.js runtime environment, 43–44,

108. See also Electron framework
nontraditional web attack surfaces,

48–50
npm registry, 9
ntohs function, 26–27
null dereference, 22

O
OAuth flow, 49
objdump command, 138–139
octet strings, 53
OffensiveCon archives, xxv
Office, Microsoft, 67, 70
O’Flynn, Colin, xxv
OleViewDotNet tool, 169
1Q84 (Murakami), 13
Open Design Alliance, 240
OpenOffice, Apache, 6, 68, 287
open source CNAs, 293
open source code dependencies, 6–7
open source software, 87
open system call, Linux, 58
option_length parameter, 35
option->option_length parameter,

26–27
organizations, securing with

vulnerability research, 294–296
Ormandy, Tavis, 296
OSS-Fuzz

analyzing fuzz coverage with, 222–223
Fuzz Introspector within, 250–252

out-of-bounds read vulnerability, 53

P
package.json files, DbGate, 112–113
PACKED attribute, struct definitions,

34–35
packed binaries, reverse engineering,

142–143
packet types, MQTT protocol, 208–209
pack function, 34–35
Padioleau, Yoann, 84
parallel fuzzing, 248
parameters, HTTP requests, 47
Paramiko, exploiting race condition in,

60–61
parse_dhcpv6_hdr function, 28–29
parse_dhcpv6_opt function, 26, 34
parse_dhcpv6_relay function, 34
patches

insufficient, 88
root cause analysis, 88–90
validation checks, 238–243

path explosion, 18–19
pattern-either operator, 94, 100

310 Index

pattern-inside operator, 99–100
pattern operator, 94, 100
patterns

Semgrep, 84–86
variant pattern matching, 92–100

payload, MQTT packets, 208
PDU (protocol data unit), 52–55
PDUHeaderTags class, 52
Peach Fuzzer, 207, 224
Peach Pit format, 224
PE-Bear tool, 128
PE (Portable Executable) file format,

108, 127–128
penetration testing, 5–6
persistent mode, AFL++, 246–247
PF_INET argument, socket function, 51
Pi, Pavel, 146
ping function, 77–78
Pixel Wheels, reverse engineering,

134–137
PoC. See proof of concept
PoC || GTFO (Laphroaig), 9
Podman container management tool,

30–32
polyfills, 117
popen function

dynamic analysis, 161, 163–165
evaluating exploitability, 167–168
static analysis, 149–151, 153–155

Portable Executable (PE) file format,
108, 127–128

Portable Network Graphics (PNG)
format

bootstrapped fuzzing, 223–226
coverage-guided fuzzing, 232–234
TLV pattern in, 67–68

Postgres project, CVE for, 3–4
Practical Binary Analysis (Andriesse), xxv
Practical IoT Hacking (Chantzis, Stais,

Calderon, Deirmentzoglou, and
Woods), xxv

prepare_socket function, 29
primitives in boofuzz, 209, 211–212
printf function, 138
Println function, 140
private keys, 60–61
privileged containers, 32
procedures of network protocols as

attack surfaces, 53–55

processes as local attack surfaces, 55
process monitors, 218–219
Procyon decompiler, 134
product security assessments, 296
project owners, accessibility of, 9
projects, exploring, 10
Project Zero, Google, 294, 296
proof of concept (PoC), 5

in root cause analysis, 92
sink-to-source analysis strategy, 30, 34–37
in vulnerability reports, 288–289

propagation, taint, 13, 19
protocol data unit (PDU), 52–55
protocol fuzzers, 206
pseudocode

vs. machine code, 137–138
visualizing code coverage, 177,

182–183, 184–185
pspy tool, 166
PUBLISH packet, MQTT protocol, 208,

212–214, 215
puts function, 138, 141
Pwn2Own Tokyo 2019, 48
pyi-archive_viewer utility, 122–124
PyInstaller executables, 122–123, 126
Python

ast module, 74–77
bytecode, 124, 126
exploiting race condition in

Paramiko, 60–61
instrumenting functions with Frida,

163–165
reverse engineering, 109, 122–126

PyVEX bindings, 190

Q
QEMU mode, AFL++, fuzzing with,

258–259
Qiling, emulating firmware with,

178–185, 188–189
QL programming language, 81
query-oriented syntax. See CodeQL

R
race condition, exploiting in Paramiko,

60–61
radamsa, mutation-based fuzzing with,

219–223
radius_copy_pw function, 21–22

Index 311

rand standard library function, 195–196
RDS (Remote Desktop Services),

Windows, 63–64
reachability analysis, 76
reachable attack surfaces, confirming, 29
read_byte function, 216–217
read_data_section function, 245
REALLOC macro, 90, 93–101
realloc standard library function,

89–90, 101
Real-World Bug Hunting (Yaworski), xxii
recommendations in vulnerability

reports, 291
recv_from function, 29
recv function, 18–19
regex, 24, 75, 78
regression, 88
rel attribute, HTML format, 70–71
relay_relay_reply function, 24–27, 37
release build, LibreDWG, 245
remote command injection, 83–84
Remote Desktop Services (RDS),

Windows, 63–64
reports, vulnerability. See vulnerability

reports, writing
reproduction steps in vulnerability

reports, 288–289
@RequestMapping annotation, Spring

framework, 46
requests

in boofuzz, 209
HTTP, 47, 150–153

Requests for Comments (RFCs), 51, 280
researcher CNAs, 293
resources in .NET binaries, 127
responses, HTTP, 150–153
responsible disclosure. See coordinated

vulnerability disclosure
--retry-delay command line option,

curl, 3–4
reverse engineering, xxii–xxiv, 7, 104,

107–109. See also hybrid analysis
in reverse engineering; source
and sink discovery in reverse
engineering

intermediate representations, 126–127
Common Language Runtime

assemblies, 127–131
Java bytecode, 131–137

machine code, 137–139
dynamically linked binaries,

140–141
packed binaries, 142–143
statically linked binaries,

139–140
stripped binaries, 141–142

scripts, 109
Node.js Electron applications,

109–122
Python applications, 122–126

RFC 9116, 291–292
RFCs. See Requests for Comments
Rollup, 114–115
root cause

analysis of, 88–92
in vulnerability reports, 289–291

route strings in web frameworks, 46
runButtonClick function, 152–153
runMacroOnChangeSet function,

120–121
runtime behavior, dynamic analysis of.

See dynamic analysis

S
sanitizers

vs. canary strings, 168–169
and fuzzing performance, 235
Jazzer, 264–268
in taint analysis, 19

Sasquatch tool, 146
satisfiability modulo theories (SMT)

problems, 190
scripting languages, 109
scripts

AFL++ Frida mode, 261–262
in Frida, 161–165
reverse engineering, 109

scripts (continued)
Node.js Electron applications,

109–122
Python application, 122–126

SDKs (software development
kits), 42

Secure Shell (SSH) service, 7
security assessments, product, 296
security boundaries in network

protocols, 53
“security by obscurity,” 7

312 Index

security misconfigurations in named
pipes, 64–65

security.txt file format, 291–292
sed tool, 32
seed corpus, 205

adding in OSS-Fuzz, 251
minimizing for fuzzing, 243–246

selling zero days, 285
semantic parsing, 274. See also text-based

formats, fuzzing
Semgrep code analysis tool

OSS, 86–87
Playground, 86, 93–100
scanning thousands of repositories

with, 102
static analysis with, 84–87

SendMessage function, Windows, 66
sentinel validation, 240
server_callback function, 28–29
server-side request forgery (SSRF),

263–268
server-side vulnerabilities. See web server

vulnerabilities
session management, 54
session termination, 54
sessions in boofuzz, 209
set_api function, 187
setupLogging function, 135–136
Shah, Shubham (shubs), xix–xx
shared libraries, 108
shorts, 52
SimProcedures, writing, 195–199
simulated program state (SimState), 193
simulation manager, 193
single-repository variant analysis, 87–88

root cause analysis, 88–92
variant pattern matching, 92–100

sinks. See also source and sink discovery
in reverse engineering; taint
analysis

analyzing when reverse engineering,
120–122

identifying in taint analysis, 18
selecting in sink-to-source analysis,

20–22
in variant pattern matching, 93

sink-to-source analysis strategy, 20
building proof of concept, 34–37

confirming exploitability, 24–26
confirming reachable attack

surfaces, 29
filtering for exploitable scenarios,

22–24
identifying attacker-controlled

sources, 26–29
when reverse engineering, 120–122
selecting sinks, 20–22
testing exploits, 29–33

smart devices, attack surfaces on, 48
smart fuzzers, 206
SMT (satisfiability modulo theories)

problems, 190
snappy Golang library, 271–272
socket function, 51
socket library, 35
sockets as local attack surfaces, 61–63
software development kits

(SDKs), 42
software development life cycle,

vulnerability research in, 295
solving constraints in symbolic analysis,

193–195
SONiC (Software for Open Networking

in the Cloud)
build process, 30–31
network protocol attack surface, 50
sink-to-source analysis, 20–22
Switch State Service, 52

sonic-snmpagent PDU procedure code,
52, 54–55

sonic-swss-common library, 31
Soo, Jacob, xvii–xviii
source and sink analysis. See taint

analysis
source and sink discovery in reverse

engineering, xxiv, 145–146, 169–170
dynamic analysis, 155

analyzing library function calls,
158–161

instrumenting functions with
Frida, 161–165

monitoring higher-level events,
165–167

tracing library and system calls,
156–158

evaluating exploitability, 167–169

Index 313

static analysis, 146–147
disassembling and decompiling

with Ghidra, 148–155
dumping strings, 147–148

source code. See also code review
accessing with source maps, 114–119
for book, xxiv–xxv
closed source targets, 258
intermediate representations, 124
reverse engineering Python

applications, 123–126
source-map library, 115–116
source maps, unpacking, 114–119
sources. See also sink-to-source analysis

strategy; source and sink discovery
in reverse engineering

attacker-controlled sources,
identifying, 26–29

in taint analysis, 18–19
spaceraccoon.dev blog, xxv
SPQR (Beard), 107
Spring MVC web framework, 45–46
sprintf function, 20
SSH (Secure Shell) service, 7
s_size primitive, boofuzz, 211
SSRF (server-side request forgery),

263–268
stability metric, AFL++, 237
stack canary, 16
stage process metric, AFL++, 237
Stais, Ioannis, xxv
Stalker code tracing engine, Frida, 173
state management, 54
statically linked binaries, reverse

engineering, 139–140
static analysis, 77. See also hybrid analysis

in reverse engineering
with CodeQL, 77

multifile taint tracking example,
77–81

VS Code extension, 81–84
in reverse engineering, 146–147, 170

disassembling and decompiling
with Ghidra, 148–155

dumping strings, 147–148
with Semgrep, 84–87

Stenberg, Daniel, 3
storeAtts function, 96, 98

strcat function, 20
strcpy function, 20
strided_copy function, 21
strings

canary, using to evaluate
exploitability, 168–169

dumping in static analysis, 147–148
HTTP-related, 150–153

strings function, 134, 147–148
stripped binaries, 141–142, 149
strncat function, 20
strong name signature in .NET binaries,

127–128
subagent processing, 53–55
Sulley fuzzer, 207
summaries in vulnerability reports,

287–288
Sun Tzu, 257
.svelte files, 121
swap files, 57
Swift, Graham, 283
Switch, Nintendo, 41
Switch State Service (SWSS),

SONiC, 52
s_word primitive, boofuzz, 211
symbolic analysis, 189–191

performing symbolic execution,
191–193

solving constraints, 193–195
writing SimProcedures, 195–199

symbolic link (symlink) attacks, 58–59
symbol table, dumping, 139, 149
Symbol Tree panel, Ghidra

CodeBrowser, 148–150
Synamtec Endpoint Protection, 296
syntactic parsing, 274. See also text-based

formats, fuzzing
system calls, tracing in dynamic analysis,

156–158, 161
system events, monitoring, 166
system function, 149–150, 157–158,

162–163

T
taint analysis, xxiii, 13–14

buffer overflow example, 14–16
applying taint analysis, 18–20
triggering buffer overflow, 16–18

314 Index

taint analysis (continued)
vs. fuzzing, 204
sink-to-source analysis strategy, 20

building proof of concept, 34–37
confirming exploitability, 24–26
confirming reachable attack

surfaces, 29
filtering for exploitable scenarios,

22–24
identifying attacker-controlled

sources, 26–29
selecting sinks, 20–22
testing exploits, 29–33

taint propagation, 13, 19
taint tracking

multifile, 77–81
multi-repository variant analysis,

101–103
targets

in boofuzz, 209
fuzzers based on information

about, 205
selecting for vulnerability research,

8–10
TCP/IP (Transmission Control

Protocol/Internet Protocol)
model, 50

Team82, Claroty, 207
temporary web servers, 49
testing

in sink-to-source analysis strategy,
29–33

in vulnerability research, 9
text-based formats, fuzzing, 273–274

with dictionaries, 274–278
with grammars, 278–280
with intermediate representations,

280–281
third parties, paying for zero days, 285
ThrowMagickException function, 168
thunk functions, 141, 150
TIFF files, 258–259
token-based dictionaries, 275–278
Transmission Control Protocol/Internet

Protocol (TCP/IP) model, 50
transpiled JavaScript in DbGate, 116–118
transport layer, TCP/IP, 50
Trending page, GitHub, 10
TRX file format, 146

type declarations, 117
type metadata in .NET binaries, 127
type–length–value (TLV) pattern, 67–68
TypeScript in DbGate, 116–118

U
Ubuntu, privilege escalation

vulnerability in, 57–59
uint16_t variables, 26
UltimatePacker for eXecutables (UPX),

142–143
undiscovered complexity, 254–255
Unicorn emulator framework, 178–179
uniform resource identifiers (URIs),

41, 47
Unix, creating named pipes in, 65
Unix domain sockets (UDSs), 62–63
unpacking source maps, 114–119
unsigned integer types, 91
utdbf program, 226–229
utils.js file, 77–78, 81

V
V8 engines, 110
validation checks, patching, 238–243
validators in taint analysis, 19
value in TLV patterns, 67
van Woudenberg, Jasper, xxv
variable header, MQTT packets, 208
variant analysis, 87–88

multi-repository, 101–103
single-repository, 87–88

root cause analysis, 88–92
variant pattern matching, 92–100
vendors

as CNAs, 293
paying for zero days, 285

views in MVC framework, 45
Vim editor, 56–57
virtual local area network (VLAN), 32
virtual machine runtime

environments, 126
virtual paths, binding in emulation,

187–189
virtual private network (VPN), 296
Visual Studio

CodeQL extension for, 81–84,
102–103

IL Disassembler tool, 128–130

Index 315

vi test command, 56–57
vsprintf function, 20
vulnerabilities, 2–4

bugs vs., 3–4
CVE records, 3
disclosing, 291–292

vulnerability reports, writing, 287–288
recommendations, 291
reproduction steps, 288–289
root cause, 289–291

vulnerability research, 1–2, 4–5,
10, 297. See also coordinated
vulnerability disclosure; zero-day
vulnerabilities

disciplines and techniques in, 6–8
Jacob Soo on, xvii–xviii
vs. penetration testing, 5–6
securing organizations with, 294–296
Shubham Shah on, xix–xx
target selection, 8–10

W
w3m web browser, 275
WeasyPrint HTML-to-PDF conversion

engine, 70–71
web applications, 40
WebAssembly binary code, 108–109
web client vulnerabilities, 40–41

attack vectors, 41–42
identification and classification,

42–43
web frameworks as attack surfaces,

43–45
MVC architecture, 45–47
unknown or unfamiliar frameworks,

47–48
WebKit, 41
Webpack, 114, 119–120
web server vulnerabilities, 43

nontraditional web attack surfaces,
48–50

web frameworks, 43–45
white-box fuzzing, 5, 8, 205
Windows. See also Microsoft

named pipe filesystem, 63–64
Remote Desktop Services, 63–64
SendMessage function, 66

Wireshark, 211–212
Woods, Beau, xxv
world-readable and -writable named

pipes, 64–65
wrapper functions, 21–22
Wrinkle in Time, A (L’Engle), 203
_write_private_key_file method,

Paramiko, 60

X
X key in IDA Pro, 146
XML, 67

directory-based formats, 69–70
Expat integer overflow vulnerability

variants, 88–100
XML External Entity (XXE) injection,

69–70
XmlGetAttributes macro, 97
XSS (cross-site scripting) bug, 108

Y
YAML language, 84–85
Yaworski, Peter, xxii

Z
Zalewski, Michal, 233–234
Zeller, Andreas, 207
Zero Day Initiative (ZDI), xxv, 91, 286
zero-day vulnerabilities, xxi–xxii.

See also coordinated vulnerability
disclosure; vulnerability research

010 Editor Binary Template format,
224–229

ZIP archive format, 67, 69–70

