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l e T ’ s  g e T  f u n C T i o n a l

I’ve mentioned several times that F# is a 
functional language, but as you’ve learned 

from previous chapters you can build rich 
applications in F# without using any functional 

techniques. Does that mean that F# isn’t really a 
functional language? No. F# is a general-purpose, 
multi paradigm language that allows you to program
in the style most suited to your task. It is considered a functional-first lan-
guage, meaning that its constructs encourage a functional style. In other 
words, when developing in F# you should favor functional approaches 
whenever possible and switch to other styles as appropriate.

In this chapter, we’ll see what functional programming really is and 
how functions in F# differ from those in other languages. Once we’ve estab-
lished that foundation, we’ll explore several data types commonly used with 
functional programming and take a brief side trip into lazy evaluation.
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what Is functional Programming?
Functional programming takes a fundamentally different approach toward 
developing software than object-oriented programming. While object-oriented 
programming is primarily concerned with managing an ever-changing 
system state, functional programming emphasizes immutability and the 
application of deterministic functions. This difference drastically changes 
the way you build software, because in object-oriented programming you’re 
mostly concerned with defining classes (or structs), whereas in functional 
programming your focus is on defining functions with particular emphasis on 
their input and output.

F# is an impure functional language where data is immutable by default, 
though you can still define mutable data or cause other side effects in your 
functions. Immutability is part of the functional concept called referential 
transparency, which means that an expression can be replaced with its result 
without affecting the program’s behavior. For example, if you can replace 
let sum = add 5 10 with let sum = 15 without otherwise affecting the pro-
gram’s behavior, then add is said to be referentially transparent. But immu-
tability and referential transparency are only two aspects of functional 
programming, and they certainly don’t make a language functional on 
their own.

Programming with functions
If you’ve never done any “real” functional programming, F# will forever 
change the way you think about functions because its functions closely 
resemble mathematical functions in both structure and behavior. For 
example, Chapter 3 introduced the unit type, but I avoided discussing 
its importance in functional programming. Unlike C# and Visual Basic, 
F# makes no distinction between functions that return values and those 
that don’t. In fact, every function in F# accepts exactly one input value 
and returns exactly one output value. The unit type enables this behavior. 
When a function doesn’t have any specific input (no parameters), it actually 
accepts unit. Similarly, when a function doesn’t have any specific output, it 
returns unit.

The fact that every F# function returns a value allows the compiler to 
make certain assumptions about your code. One important assumption is 
that the result of the last evaluated expression in a function is the function’s 
return value. This means that although return is a keyword in F#, you don’t 
need to explicitly identify return values.

Functions as Data
A defining (and arguably the most important) characteristic of any func-
tional language is that it treats functions like any other data type. The .NET 
Framework has always supported this concept to some degree with delega-
tion, but until relatively recently delegation was too cumbersome to be 
viable in all but a few limited scenarios. Only when LINQ was introduced 
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with the goodness of lambda expressions and the built-in generic delegate 
types (Action and Func) did delegation reach its full potential. F# uses delega-
tion behind the scenes, but unlike C# and Visual Basic, its syntax abstracts 
away the delegation with the -> token. The -> token, generally read as “goes 
to” or “returns,” identifies a value as a function value where the data type 
specified on the left is the function’s input type and the data type on the 
right is its return type. For example, the signature for a function that both 
accepts and returns a string is string -> string. Similarly, a parameterless 
function that returns a string is represented as unit -> string.

Signatures become increasingly complex when you begin working 
with higher-order functions—functions that accept or return other functions. 
Higher-order functions are used extensively in F# (and functional program-
ming in general) because they allow you to isolate common parts of func-
tions and substitute the parts that change. 

In some ways, higher-order functions are to functional programming 
what interfaces are to object-oriented programming. For example, consider 
a function that applies a transformation to a string and prints the result. 
Its signature might look something like (string -> string) -> string -> unit. 
This simple notation goes a long way toward making your code more com-
prehensible than when you’re dealing with the delegates directly.

n o T e  You can use the function signatures in type annotations whenever you’re expecting a func-
tion. As with other data types, though, the compiler can often infer the function type.

Interoperability Considerations
Despite the fact that F# functions are ultimately based on delegation, be care-
ful when working with libraries written in other .NET languages, because 
the delegate types aren’t interchangeable. F# functions rely on the over-
loaded FSharpFunc delegate types, whereas traditional .NET delegates are 
often based on the Func and Action types. If you need to pass Func and Action 
delegates into an F# assembly, you can use the following class to simplify 
the conversion.

open System.Runtime.CompilerServices

[<Extension>]
type public FSharpFuncUtil =
  [<Extension>]
  static member ToFSharpFunc<'a, 'b> (func : System.Func<'a, 'b>) =
    fun x -> func.Invoke(x)

  [<Extension>]
  static member ToFSharpFunc<'a> (act : System.Action<'a>) =
    fun x -> act.Invoke(x)

The FSharpFuncUtil class defines the overloaded ToFSharpFunc method as 
traditional .NET extension methods (via the ExtensionAttribute on both the 
class and methods) so you can easily call them from another language. The 
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first overload handles converting single-parameter Func instances, while the 
second handles single-parameter Action instances. These extension methods 
don’t cover every use case, but they’re certainly a good starting point.

Currying
Functions in F# work a bit differently than you’re probably accustomed to. 
For example, consider the simple add function, introduced in Chapter 2.

let add a b = a + b

You might think that add accepts two parameters, but that’s not how F# 
functions work. Remember, in F# every function accepts exactly one input 
and returns exactly one output. If you create the preceding binding in FSI 
or hover over the name in Visual Studio, you’ll see that its signature is:

val add : a:int -> b:int -> int

Here, the name add is bound to a function that accepts an integer (a) 
and returns a function. The returned function accepts an integer (b) and 
returns an integer. Understanding this automatic function chaining—
called currying—is critical to using F# effectively because it enables several 
other features that affect how you design functions.

To better illustrate how currying actually works, let’s rewrite add to more 
closely resemble the compiled code.

> let add a = fun b -> (+) a b;;

val add : a:int -> b:int -> int

The most significant thing here is that both this and the previous ver-
sion have exactly the same signature. Here, though, add accepts only a single 
parameter (a) and returns a separate function as defined by a lambda 
expression. The returned function accepts the second parameter (b) and 
invokes the multiplication operator as another function call.

Partial Application
One of the capabilities unlocked by curried functions is partial application. 
Partial application allows you to create new functions from existing ones 
simply by supplying some of the arguments. For example, in the case of add, 
you could use partial application to create a new addTen function that always 
adds 10 to a number.

> let addTen = add 10;;

val addTen : u(int -> int)
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> addTen 10;;
val it : int = 20

Notice at u how addTen’s definition and signature are listed. Although 
we didn’t explicitly include any parameters in the definition, the signature 
is still a function that both accepts and returns an integer. The compiler 
evaluated the curried add function as far as it could with the provided argu-
ments (just 10, in this case) and bound the resulting function to the name, 
addTen. 

Currying applies arguments one at a time, from left to right, so partially 
applied arguments must correspond to the function’s first parameters.

w a r n i n g  Once you’re comfortable with currying and partial application, you may start think-
ing that you could simulate them in C# or Visual Basic by returning Func or Action 
instances. Don’t. Neither language is designed to support this type of functional 
programming, so simulating these concepts is inelegant at best and immensely error 
prone at worst.

Pipelining
Another feature often associated with currying (and used extensively in F#) 
is pipelining. Pipelining allows you to create your own function chains by 
evaluating one expression and sending the result to another function as the 
final argument.

Forward Pipelining

Usually you’ll send values forward to the next function using the forward 
pipelining operator (|>). If you don’t want to do anything with a function’s 
result when it returns something other than unit, you can pipe the result 
forward to the ignore function like this:

add 2 3 |> ignore

Pipelining isn’t restricted to simple scenarios like ignoring a result. As 
long as the last argument of the receiving function is compatible with the 
source function’s return type, you can create complex function chains. 
For example, suppose you have a list of daily temperatures in degrees 
Fahrenheit and want to find the average temperature, convert it to Celsius, 
and print the result. You could do it the old-fashioned, procedural way by 
defining a binding for each step, or you could use pipelining to chain the 
steps like this:

let fahrenheitToCelsius degreesF = (degreesF - 32.0) * (5.0 / 9.0)

let marchHighTemps = [ 33.0; 30.0; 33.0; 38.0; 36.0; 31.0; 35.0;
                       42.0; 53.0; 65.0; 59.0; 42.0; 31.0; 41.0;
                       49.0; 45.0; 37.0; 42.0; 40.0; 32.0; 33.0;
                       42.0; 48.0; 36.0; 34.0; 38.0; 41.0; 46.0;
                       54.0; 57.0; 59.0 ]
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marchHighTemps
|> List.average
|> fahrenheitToCelsius
|> printfn "March Average (C): %f"

Here the marchHighTemps list is piped to the List module’s average func-
tion. The average function is then evaluated and its result passed on to the 
fahrenheitToCelsius function. Finally, the average temperature in Celsius is 
passed along to printfn.

Backward Pipelining

Like its forward counterpart, the backward pipelining operator (<|) sends the 
result of an expression to another function as the final argument, but does it 
from right to left instead. Because it changes precedence within an expres-
sion, the backward pipelining operator is sometimes used as a replacement 
for parentheses.

The backward pipelining operator can change the semantics of your 
code. For instance, in the fahrenheitToCelsius example in the previous sec-
tion, the emphasis is on the list of temperatures because that’s what’s listed 
first. To change the semantics to emphasize the output, you could place the 
printfn function call ahead of the backward pipelining operator.

printfn "March Average (F): %f" <| List.average marchHighTemps

Noncurried Functions

Although pipelining is typically associated with curried functions, it also 
works with noncurried functions (like methods) that accept only a single 
argument. For instance, to force a delay in execution you could pipe a value 
into the TimeSpan class’s static FromSeconds method and then send the result-
ing TimeSpan object to Thread.Sleep, as shown here.

5.0
|> System.TimeSpan.FromSeconds
|> System.Threading.Thread.Sleep

Because neither the TimeSpan class nor the Thread class is defined in F#, 
the functions aren’t curried, but you can see how we can chain these func-
tions together with the forward pipelining operator.

Function Composition
Like pipelining, function composition allows you to create function chains. 
It comes in two forms: forward (>>) and backward (<<).

Function composition is subject to the same rules as pipelining regard-
ing inputs and outputs. Where function composition differs is that instead of 
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defining a one-time operation, the composition operators actually generate 
new functions. Continuing with our average temperature example, you could 
easily create a new function from the List.average and fahrenheitToCelsius 
functions with the forward composition operator.

> let averageInCelsius = List.average >> fahrenheitToCelsius;;

val averageInCelsius : (float list -> float)

The composition operator results in a new function that accepts a list 
of floats and returns a float. Now, instead of calling the two functions inde-
pendently, you can simply call averageInCelsius instead.

printfn "March average (C): %f" <| averageInCelsius marchHighTemps

As with pipelining, you can compose functions from noncurried func-
tions. For instance, you could compose the forced delay example from 
“Noncurried Functions” on page 108 as well.

> let delay = System.TimeSpan.FromSeconds >> System.Threading.Thread.Sleep;;

val delay : (float -> unit)

As you might expect, you can now call the delay function to temporarily 
pause execution.

> delay 5.0;;
val it : unit = ()

Recursive functions
There are typically three looping constructs associated with imperative 
code: while loops, simple for loops, and enumerable for loops. Because each 
relies on a state change to determine when the exit criteria have been met, 
you’ll need to take a different approach to looping when writing purely 
functional code. In functional programming, the preferred looping mecha-
nism is recursion. A recursive function is one that calls itself either directly or 
indirectly through another function. 

Although methods within a type are implicitly recursive, let-bound 
functions, such as those defined within a module, are not. To make a let-
bound function recursive, you must include the rec keyword in its definition, 
as this factorial function illustrates.

let rec factorial v =
  match v with | 1L -> 1L
               | _ -> v * factorial (v - 1L)
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The rec keyword instructs the compiler to make the function name 
available within the function but does not otherwise change the function’s 
signature (int64 -> int64).

Tail-Call Recursion
The preceding factorial example is simple, but it suffers from a major flaw. 
For example, consider what happens when you call factorial 5. On each 
recursive iteration (other than when the value is 1), the function calculates 
the product of v and the factorial of v - 1. In other words, calculating the 
factorial for a given value inherently requires each subsequent factorial call 
to complete. At run time, it looks a bit like this:

5L * (factorial 4L)
5L * (4L * (factorial 3L))
5L * (4L * (3L * (factorial 2L)))
-- snip --

The preceding snippet shows that each call is added to the stack. It’s 
unlikely that this would be a problem with a factorial function, since the 
calculation can quickly overflow the data type, but more complex recursion 
scenarios could result in running out of stack space. To address this prob-
lem, you can revise the function to use a tail call by removing the depen-
dency on subsequent iterations, as shown here:

u let factorial v =
  let vrec fact c p =
    match c with | 0L -> p
                 | _ -> wfact <| c - 1L <| c * p
  xfact v 1L

The revised factorial function u creates and then calls a nested 
recursive function, fact v, to isolate the implementation details. The fact 
function accepts both the current iteration value (c) and the product 
calculated by the previous iteration (p). At w (the nonzero case), the fact 
function makes the recursive call. (Notice how only the arguments to 
the recursive call are calculated here.) Finally, to initiate recursion, the 
factorial function x invokes the first fact iteration, passing the supplied 
value and 1L.

Although the recursive call is still present in the code, when the F# 
compiler detects that no iteration is dependent on subsequent iterations, 
it optimizes the compiled form by replacing the recursion with an impera-
tive loop. This allows the system to iterate as long as necessary. You can 
observe this optimization by examining the stack traces for each version by 
inserting a breakpoint and looking at the call stack window (if you’re run-
ning this as a console application) or by printing out the stack information 
returned from System.Diagnostics.StackTrace, as shown here. (Note that your 
namespaces will likely vary.)
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Standard recursion
   at FSI_0024.printTrace()
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at FSI_0028.factorial(Int64 v)
   at <StartupCode$FSI_0029>.$FSI_0029.main@()
   -- snip --

Tail recursion
   at FSI_0024.printTrace()
   at FSI_0030.fact@75-8(Int64 c, Int64 p)
   at <StartupCode$FSI_0031>.$FSI_0031.main@()
   -- snip --

Mutually Recursive Functions
When two or more functions call each other recursively, they are said to be 
mutually recursive. Like mutually recursive types (described in Chapter 4), 
mutually recursive functions must be defined together with the and keyword. 
For example, a Fibonacci number calculation is easily expressed through 
mutual recursion.

let fibonacci n =
  let rec f = function
              | 1 -> 1
              | n -> g (n - 1)
  and g = function
          | 1 -> 0
          | n -> g (n - 1) + f (n - 1)
  f n + g n

The preceding fibonacci function defines two mutually recursive func-
tions, f and g. (The function keyword inside each is a shortcut for pattern 
matching.) For all values other than 1, f calls g. Similarly, g recursively calls 
itself and f. 

Because the mutual recursion is hidden inside fibonacci, consumers of 
this code can simply call fibonacci directly. For example, to compute the 
sixth number in the Fibonacci sequence you’d write:

> fibonacci 6;;
val it : int = 8

Mutual recursion can be useful, but this example is really only good for 
illustrating the concept. For performance reasons, a more realistic Fibonacci 
example would likely forego mutual recursion in favor of a technique called 
memoization, where expensive computations are performed once and the 
results are cached to avoid calculating the same values multiple times.
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Lambda expressions
If you’ve ever used LINQ or done any other functional programming, you’re 
probably already familiar with lambda expressions (or function expressions, as 
they’re sometimes called). Lambda expressions are used extensively in func-
tional programming. In brief, they provide a convenient way to define simple, 
single-use, anonymous (unnamed) functions. Lambda expressions are typi-
cally favored over let-bound functions when the function is significant only 
within its context (such as when filtering a collection).

Lambda expression syntax is similar to that of a function value except 
that it begins with the fun keyword, omits the function identifier, and uses 
the arrow token (->) in place of an equal sign. For example, you could 
express the Fahrenheit-to-Celsius conversion function inline as a lambda 
expression and immediately evaluate it like this:

(fun degreesF -> (degreesF - 32.0) * (5.0 / 9.0)) 212.0

Although defining ad hoc functions like this is certainly one use for 
lambda expressions, they’re more commonly created inline with calls to 
higher-order functions, or included in pipeline chains.

Closures
Closures enable functions to access values visible in the scope where a func-
tion is defined regardless of whether that value is part of the function. 
Although closures are typically associated with lambda expressions, nested 
functions created with let bindings can be closures as well, since ultimately 
they both compile to either an FSharpFunc or a formal method. Closures are 
typically used to isolate some state. For instance, consider the quintessential 
closure example—a function that returns a function that manipulates an 
internal counter value, as shown here:

let createCounter() =
  let count = ref 0
  (fun () -> count := !count + 1
             !count)

The createCounter function defines a reference cell that’s captured by the 
returned function. Because the reference cell is in scope when the returned 
function is created, the function has access to it no matter when it’s called. 
This allows you to simulate a stateful object without a formal type definition.

To observe the function modifying the reference cell’s value, we just 
need to invoke the generated function and call it like this:

let increment = createCounter()
for i in [1..10] do printfn "%i" (increment())
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functional Types
F# includes native support for several additional data types. These types—
tuples, records, and discriminated unions—are typically associated with 
func tional programming, but they’re often useful in mixed-paradigm devel-
opment as well. While each of these types has a specific purpose, they’re all 
intended to help you remain focused on the problem your software is trying 
to solve. 

Tuples
The most basic functional type is the tuple. Tuples are a convenient way 
to group a number of values within a single immutable construct with- 
out creating a custom type. Tuples are expressed as comma-delimited 
lists and are sometimes enclosed in parentheses. For example, the follow-
ing two definitions representing geometric points as tuples are equally 
valid.

> let point1 = 10.0, 10.0;;

val point1 : float * float = (10.0, 10.0)

> let point2 = (20.0, 20.0);;

val point2 : float * float = (20.0, 20.0)

The signature for a tuple type includes the type of each value separated 
by an asterisk (*). The asterisk is used as the tuple element delimiter for 
mathematical reasons: Tuples represent the Cartesian product of all values 
their elements contain. Therefore, to express a tuple in a type annotation, 
you write it as an asterisk-delimited list of types like this:

let point : float * float = 0.0, 0.0

Despite some syntactic similarities, particularly when the values 
are enclosed in parentheses, it’s important to recognize that other than 
the fact that they contain multiple values, tuples aren’t collections; they 
simply group a fixed number of values within a single construct. The 
tuple types don’t implement IEnumerable<'T>, so they can’t be enumerated 
or iterated over in an enumerable for loop, and individual tuple values 
are exposed only through properties with nonspecific names like Item1 
and Item2.
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T uPl e s in .ne T

Tuples have always been part of F# but were only introduced to the larger 
 .NET Framework with  .NET 4 . Prior to  .NET 4, the tuple classes were located 
in the FSharp.Core library, but they have since been moved to mscorlib . This 
difference is only really important if you intend to write cross-language code 
against earlier versions of the  .NET Framework, because it affects which 
assembly you reference . 

Extracting Values

Tuples are often useful for returning multiple values from a function or for 
sending multiple values to a function without currying them. For instance, 
to calculate the slope of a line you could pass two points as tuples to a slope 
function. To make the function work, though, you’ll need some way to 
access the individual values. (Fortunately, tupled values are always acces-
sible in the order in which they’re defined, so some of the guesswork is 
eliminated.)

When working with pairs (tuples containing two values like the geo-
metric points we discussed previously), you can use the fst and snd func-
tions to retrieve the first and second values, respectively, as shown here.

let slope p1 p2 =
  let x1 = fst p1
  let y1 = snd p1
  let x2 = fst p2
  let y2 = snd p2
  (y1 - y2) / (x1 - x2)

slope (13.0, 8.0) (1.0, 2.0)

Notice how we define bindings for the various coordinates with the 
fst and snd functions. As you can see, however, extracting each value this 
way can get pretty tedious and these functions work only with pairs; if you 
were to try either against a triple (a tuple with three values), you’d get a type 
mismatch. (The reason is that at their core, tuples compile to one of the 
nine generic overloads of the Tuple class.) Aside from sharing a common 
name, the tuple classes are independent of each other and are otherwise 
incompatible.

A more practical approach to extract tuple values involves introducing 
a Tuple pattern. Tuple patterns allow you to specify an identifier for each 
value in the tuple by separating the identifiers with commas. For example, 
here’s the slope function revised to use Tuple patterns instead of the pair 
functions.
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let slope p1 p2 =
  let x1, y1 = p1
  let x2, y2 = p2
  (y1 - y2) / (x1 - x2)

You can see how Tuple patterns may help, but you need to be careful 
with them. If your pattern doesn’t match the number of values in the tuple, 
you’ll get a type mismatch. 

Fortunately, unlike the pair functions, resolving the problem is simply a 
matter of adding or removing identifiers. If you don’t care about a particu-
lar value in your Tuple pattern, you can ignore it with the Wildcard pattern 
(_). For instance, if you have three-dimensional coordinates but care only 
about the z-coordinate, you could ignore the x- and y-values as follows:

> let _, _, z = (10.0, 10.0, 10.0);;

val z : int = 10

Tuple patterns aren’t limited to let bindings. In fact, we can make a 
further revision to the slope function and include the patterns right in the 
function signature!

let slope (x1, y1) (x2, y2) = (y1 - y2) / (x1 - x2)

Equality Semantics

Despite the fact that they’re formally reference types, each of the built-in 
tuple types implements the IStructuralEquatable interface. This ensures 
that all equality comparisons involve comparing the individual component 
values rather than checking that two tuple instances reference the same 
Tuple object in memory. In other words, two tuple instances are considered 
equal when the corresponding component values in each instance are the 
same, as shown here:

> (1, 2) = (1, 2);;
val it : bool = true
> (2, 1) = (1, 2);;
val it : bool = false

For the same reasons that the fst and snd functions work only with pairs, 
comparing tuples of different lengths will cause an error.

Syntactic Tuples

So far, all of the tuples we’ve looked have been concrete ones, but F# also 
includes syntactic tuples. For the most part, syntactic tuples are how F# works 
around noncurried functions in other languages. Because F# functions 
always accept a single parameter, but functions in C# and Visual Basic can 
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accept more than one, in order to call functions from libraries written in 
other languages you can use a syntactic tuple and let the compiler work out 
the details.

For example, the String class’s Format method accepts both a format string 
and a params array of values. If String.Format were a curried function, you’d 
expect its signature to be something like Format : format:string -> params 
args : obj [] -> string, but it’s not. Instead, if you hover your cursor over 
the function name in Visual Studio, you’ll see that its signature is actually 
Format(format:string, params args : obj []) : string. This distinction is sig-
nificant because it means that the arguments must be applied as a group 
rather than individually as they would with curried functions. If you were to 
try invoking the method as a curried F# function, you’d get an error like this:

> System.String.Format "hello {0}" "Dave";;

  System.String.Format "hello {0}" "Dave";;
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

stdin(3,1): error FS0003: This value is not a function and cannot be applied

The correct way to call String.Format in F# is with a syntactic tuple, like this:

> System.String.Format ("hello {0}", "Dave");;
val it : string = "hello Dave"

You’ve probably noticed that F# generally doesn’t require parentheses 
around arguments when calling a function; it uses parentheses primarily 
to establish precedence. Because functions are applied from left to right, 
you’ll mainly use parentheses in a function call to pass the result of another 
function as an argument. In this case, the parentheses around the argu-
ments are necessary. Without them, the left-to-right evaluation would cause 
the compiler to essentially treat the expression as ((System.String.Format 
"hello {0}"), "Dave"). In general, it’s good practice to include parentheses 
around syntactic tuples in order to remove any ambiguity.

Out Parameters

F# doesn’t directly support out parameters—parameters passed by refer-
ence with values assigned in the method body so they can be returned to 
the caller. To fully support the .NET Framework, however, F# needs a way to 
access out parameter values. For example, the TryParse methods on the vari-
ous numeric data type classes attempt to convert a string to the correspond-
ing numeric type and return a Boolean value indicating success or failure. 
If the conversion succeeds, the TryParse methods set the out parameter to 
the appropriate converted value. For instance, calling System.Int32.TryParse 
with "10" would return true and set the out parameter to 10. Similarly, calling 
the same function with "abc" would return false and leave the out param-
eter unchanged.
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In C#, calling System.Int32.TryParse would look like this:

// C#
u int v;

var r = System.Int32.TryParse("10", out v);

The problem with out parameters in a functional language is that 
they require a side effect, as shown by the uninitialized variable at u. To 
work around this problem, the F# compiler converts the return value and 
out parameter to a pair. Therefore, when you invoke a method with an out 
parameter in F#, you treat it exactly like any other tuple-returning function.

Calling the same Int32.TryParse method in F# looks like this:

// F#
let r, v = System.Int32.TryParse "10"

For a behind-the-scenes look at the generated class, we can once again 
turn to ILSpy to see how it’s represented in C#.

// C#
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
namespace <StartupCode$Samples>
{
  internal static class $Samples
  {
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    internal static readonly Tuple<bool, int> patternInput@3;
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    internal static readonly int v@3;
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    internal static readonly bool r@3;
    [DebuggerBrowsable(DebuggerBrowsableState.Never), DebuggerNonUserCode, CompilerGenerated]
    internal static int init@;
  ustatic $Samples()
    {
      int item = 0;
      $Samples.patternInput@3 = vnew Tuple<bool, int>(wint.TryParse("10", out item), item);
      x$Samples.v@3 = Samples.patternInput@3.Item2;
      y$Samples.r@3 = Samples.patternInput@3.Item1;
    }
  }
}

Here, the F# compiler wrapped the Int32.TryParse call inside a static 
class. The generated class’s static constructor u invokes TryParse at w and 
wraps the results in a tuple at v. Then, the internal v@3 and r@3 fields are 
assigned to the out parameter value and the return value at x and y, 
respectively. In turn, the v and r values defined by the let binding are 
compiled to read-only properties that return the v@3 and r@3 values.
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Record Types
Like tuples, record types allow you to group values in a single immutable 
construct. You might think of them as bridging the functional gap between 
tuples and your own classes. Record types provide many of the same con-
veniences as tuples, like simple syntax and value equality semantics, while 
offering you some control over their internal structure and allowing you to 
add custom functionality.

Defining Record Types

Record type definitions consist of the type keyword, an identifier, and a list 
of labels with type annotations all enclosed in braces. For example, this list-
ing shows a simple record type representing an RGB color.

> type rgbColor = { R : byte; G : byte; B : byte };;

type rgbColor =
  {R: byte;
   G: byte;
   B: byte;}

If you take a peek at what the compiler generates from this definition, 
you’ll see a sealed class with read-only properties, equality semantics, and a 
single constructor to initialize all values.

n o T e  When defining record types on a single line, you must separate each label and type 
annotation pair by semicolons. If you place each pair on a separate line, you can 
safely omit the semicolons.

Creating Records

New records are created via record expressions. Record expressions allow you 
to specify a value for each label in the record type. For example, you could 
create a new rgbColor instance using a record expression, as shown next. 
(Note that, as when defining a record type, you must separate each label 
or assignment pair by semicolons or place it on a line of its own.)

> let red = { R = 255uy; G = 0uy; B = 0uy };;

val red : rgbColor = {R = 255uy;
                      G = 0uy;
                      B = 0uy;}

Notice that nowhere in the record expression do we include an explicit 
reference to the rgbColor type. This is another example of F#’s type infer-
ence engine at work. Based on the labels alone, the compiler was able to 
infer that we were creating an instance of rgbColor. Because the compiler 
relies on the labels rather than position to determine the correct type, order 
doesn’t matter. This means that you can place the label and value pairs in any 
order. Here, we create an rgbColor instance with the labels in G, B, R order.



Let’s Get Functional   119

> let red = { G = 0uy; B = 0uy; R = 255uy };;

val red : rgbColor = {R = 255uy;
                      G = 0uy;
                      B = 0uy;}

Unlike with tuples, we don’t need to use special value extraction func-
tions like fst or snd with record types, because each value can be accessed 
by its label. For instance, a function that converts an rgbColor value to its 
hexadecimal string equivalent might look like this:

let rgbColorToHex (c : rgbColor) =
  sprintf "#%02X%02X%02X" c.R c.G c.B

Avoiding Naming Conflicts

The compiler can usually infer the correct type, but it’s possible to define 
two record types with the same structure. Consider what happens when 
you add a color type with the same structure as rgbColor.

> type rgbColor = { R : byte; G : byte; B : byte }
type color = { R : byte; G : byte; B : byte };;

type rgbColor =
  {R: byte;
   G: byte;
   B: byte;}
type color =
  {R: byte;
   G: byte;
   B: byte;}

> let red = { R = 255uy; G = 0uy; B = 0uy };;

val red : ucolor = {R = 255uy;
                     G = 0uy;
                     B = 0uy;}

Despite having two record types with the same structure, type inference 
still succeeds, but notice at u that the resulting type is color. Due to F#’s 
top-down evaluation, the compiler uses the most recently defined type that 
matches the labels. If your goal was to define red as color you’d be fine, but 
if you wanted rgbColor instead you’d have to be a bit more explicit in your 
record expression and include the type name, as shown here:

> let red = { urgbColor.R = 255uy; G = 0uy; B = 0uy };;

val red : vrgbColor = {R = 255uy;
                        G = 0uy;
                        B = 0uy;}
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By qualifying one of the names with the type name at u, you bypass 
type inference and the correct type is resolved v. (Although you can tech-
nically qualify the type on any name, the convention is to do it on either the 
first one or all of them.)

Copying Records

Not only can you use record expressions to create new record instances from 
scratch, but you can also use them to create new record instances from 
existing ones by copying values forward and setting new values for one or 
more properties. The alternate syntax, called a copy and update record expres-
sion, makes it easy to create yellow from red, as shown here:

> let red = { R = 255uy; G = 0uy; B = 0uy }
let yellow = { red with G = 255uy };;

val red : color = {R = 255uy;
                   G = 0uy;
                   B = 0uy;}
val yellow : color = {R = 255uy;
                      G = 255uy;
                      B = 0uy;}

To specify new values for multiple properties, separate them with 
semicolons.

Mutability

Like virtually everything else in F#, record types are immutable by default. 
However, because their syntax is so convenient, they’re commonly used in 
place of classes. In many cases, though, these scenarios require mutability. 
To make record type properties mutable within F#, use the mutable keyword 
just as with a let binding. For instance, you could make all of rgbColor’s 
members mutable like this:

> type rgbColor = { mutable R : byte
                  mutable G : byte
                  mutable B : byte };;

type rgbColor =
  {mutable R: byte;
   mutable G: byte;
   mutable B: byte;}

When a record type property is mutable, you can change its value with 
the standard assignment operator (<-) like this:

let myColor = { R = 255uy; G = 255uy; B = 255uy }
myColor.G <- 100uy
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Cl iMu Ta Bl e

Although record types support binary serialization by default, other forms of 
serialization require a default constructor and writable properties . To allow 
for more situations where record types can be used in favor of classes, the F# 
team introduced the CLIMutable attribute in F# 3 .0 .

Decorating a record type with this attribute instructs the compiler to 
include a default constructor and to make the generated properties read/write, 
but the compiler doesn’t expose those capabilities within F# . Even though the 
generated properties are writable, unless they’re explicitly marked as mutable 
with the mutable keyword in the record type definition, their values can’t be 
changed in F# code . For this reason, be careful when using CLIMutable record 
types across language boundaries to ensure that you don’t inadvertently 
change something . 

Additional Members

Because record types are really just syntactic sugar for classes, you can 
define additional members just as you would on a class. For example, you 
could augment rgbColor with a method that returns its hexadecimal string 
equivalent like this:

type rgbColor = { R : byte; G : byte; B : byte }
                member x.ToHexString() =
                  sprintf "#%02X%02X%02X" x.R x.G x.B

Now you can call the ToHexString method on any rgbColor instance.

> red.ToHexString();;
val it : string = "#FF0000"

Additional members on record types can also be static. For example, 
suppose you wanted to expose a few common colors as static properties on 
a record type. You could do this:

type rgbColor = { R : byte; G : byte; B : byte }
                -- snip --
                static member Red = { R = 255uy; G = 0uy; B = 0uy }
                static member Green = { R = 0uy; G = 255uy; B = 0uy }
                static member Blue = { R = 0uy; G = 0uy; B = 255uy }

The static Red, Green, and Blue properties behave like any other static 
member and can be used anywhere you need an rgbColor instance.

> rgbColor.Red.ToHexString();;
val it : string = "#FF0000"
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You can also create custom operators for your record types as static 
members. Let’s implement the addition operator to add two rgbColor 
instances.

open System
type rgbColor = { R : byte; G : byte; B : byte }
                -- snip --
                static member (+) (l : rgbColor, r : rgbColor) =
                  { R = Math.Min(255uy, l.R + r.R)
                    G = Math.Min(255uy, l.G + r.G)
                    B = Math.Min(255uy, l.B + r.B) }

The operator overload on rgbColor is defined and invoked like any other 
operator:

> let yellow = { R = 255uy; G = 0uy; B = 0uy } +
             { R = 0uy; G = 255uy; B = 0uy };;

val yellow : rgbColor = {R = 255uy;
                         G = 255uy;
                         B = 0uy;}

discriminated unions
Discriminated unions are user-defined data types whose values are restricted 
to a known set of values called union cases. There are no equivalent struc-
tures in the other popular .NET languages.

At first glance, you might mistake some simple discriminated unions for 
enumerations because their syntax is so similar, but they’re entirely differ-
ent constructs. For one, enumerations simply define labels for known inte-
gral values, but they aren’t restricted to those values. By contrast, the only 
valid values for discriminated unions are their union cases. Furthermore, 
each union case can either stand on its own or contain associated immu-
table data. 

The built-in Option<'T> type highlights each of these points. We’re really 
only interested in its definition here, so let’s take a look at that.

type Option<'T> =
| None
| Some of 'T

Option<'T> defines two cases, None and Some. None is an empty union case, 
meaning that it doesn’t contain any associated data. On the other hand, 
Some has an associated instance of 'T as indicated by the of keyword.
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To demonstrate how discriminated unions enforce a specific set of val-
ues, let’s define a simple function that accepts a generic option and writes out 
the associated value when the option is Some, or "None" when the option is None:

let showValue (v : _ option) =
  printfn "%s" (match v with
                | Some x -> x.ToString()
                | None -> "None")

When we invoke this function, we simply need to provide one of the 
option cases:

> Some 123 |> showValue;;
123
val it : unit = ()
> Some "abc" |> showValue;;
abc
val it : unit = ()
> None |> showValue;;
None
val it : unit = ()

Notice how in each of the three calls to showValue, we specified only the 
union case names. The compiler resolved both Some and None as Option<'T>. 
(In the event of a naming conflict, you can qualify the case names with the 
discriminated union name just as you would with a record type.) However, 
if you were to call showValue with a value other than Some or None, the com-
piler will raise an error like this:

> showValue "xyz";;

  showValue "xyz";;
  ----------^^^^^

stdin(9,11): error FS0001: This expression was expected to have type
    Option<'a>    
but here has type
    string  

Defining Discriminated Unions
Like other types, discriminated union definitions begin with the type key-
word. Union cases are delimited with bars. The bar before the first union 
case is optional, but omitting it when there’s only one case can be confusing 
because it will make the definition look like a type abbreviation. In fact, if 
you omit the bar in a single-case discriminated union and there is no data 
associated with the case, the compiler will treat the definition as a type 
abbreviation when there is a naming conflict with another type.
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The normal rules for identifiers apply when you are defining union cases, 
with one exception: Union case names must begin with an uppercase letter 
to help the compiler differentiate union cases from other identifiers in pat-
tern matching. If a case name does not begin with an uppercase letter, the 
compiler will raise an error.

In practice, discriminated unions typically serve one of three purposes:

•	 Representing simple object hierarchies

•	 Representing tree structures

•	 Replacing type abbreviations

Simple Object Hierarchies

Discriminated unions are commonly used to represent simple object hier-
archies. In fact, they excel at this task so much that they’re often used as a 
substitute for formal classes and inheritance.

Imagine working on a system that needs some basic geometry function-
ality. In an object-oriented environment, such functionality would probably 
consist of an IShape interface and a number of concrete shape classes like 
Circle, Rectangle, and Triangle, with each implementing IShape. A possible 
implementation might look like this:

type IShape = interface end

type Circle(r : float) =
  interface IShape
  member x.Radius = r  
  
type Rectangle(w : float, h : float) =
  interface IShape
  member x.Width = w
  member x.Height = h
  
type Triangle(l1 : float, l2 : float, l3 : float) =
  interface IShape
  member x.Leg1 = l1
  member x.Leg2 = l2
  member x.Leg3 = l3

Discriminated unions offer a cleaner alternative that is less prone to 
side effects. Here’s what that same object hierarchy might look like as a dis-
criminated union:

type Shape =
/// Describes a circle by its radius
| Circle of float
/// Describes a rectangle by its width and height
| Rectangle of ufloat * float
/// Describes a triangle by its three sides
| Triangle of vfloat * float * float
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The Shape type defines three cases: Circle, Rectangle, and Triangle. Each 
case has at least one attached value specific to the shape it represents. Notice 
at u and v how the tuple syntax is used to associate multiple data values 
with a case. But despite using the tuple syntax, cases don’t actually compile 
to tuples. Instead, each associated data item compiles to an individual prop-
erty that follows the tuple naming pattern (that is, Item1, Item2, and so on). 
This distinction is important because there’s no direct conversion from a 
union case to a tuple, meaning that you can’t use them interchangeably. 
The only real exception to this rule is that when the types are wrapped in 
parentheses the compiler will interpret the grouping as a tuple. In other 
words, the compiler treats of string * int and of (string * int) differently; 
the former is tuple-like, while the latter actually is a tuple. Unless you really 
need a true tuple, though, use the default format.

As you’d expect, creating Shape instances is the same as creating 
Option<'T> instances. For example, here’s how to create an instance of 
each case:

let c = Circle(3.0)
let r = Rectangle(10.0, 12.0)
let t = Triangle(25.0, 20.0, 7.0)

One of the major annoyances with the tuple syntax for multiple associ-
ated values is that it’s easy to forget what each position represents. To work 
around the issue, include XML documentation comments—like those pre-
ceding each case in this section’s Shape definition—as a reminder. 

Fortunately, relief is available. One of the language enhancements in 
F# 3.1 is support for named union type fields. The refined syntax resembles 
a hybrid of the current tupled syntax and type-annotated field definitions. 
For example, under the new syntax, Shape could be redefined as follows.

i T’s Bigge r on T he insiDe

Discriminated unions are much more complex than their syntax might lead you 
to believe . Each discriminated union compiles to an abstract class responsible 
for handling equality and comparison semantics as well as type checking and 
union case creation . Similarly, each union case compiles to a class that is both 
nested within and inherits from the union class . The union case classes define 
the properties and backing stores for each of their associated values along 
with an internal constructor .

Although it’s possible to replicate some of the discriminated union function-
ality within other languages, doing so is nontrivial . Proving just how complex 
discriminated unions really are, inspecting the compiled Shape type we just 
defined in ILSpy reveals nearly 700 lines of C# code!
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type Shape =
| Circle of Radius : float
| Rectangle of Width : float * Height : float
| Triangle of Leg1 : float * Leg2 : float * Leg3 : float

For discriminated unions defined with the F# 3.1 syntax, creating new 
case instances is significantly more developer friendly—not only because 
the labels appear in IntelliSense, but also because you can use named argu-
ments like this:

let c = Circle(Radius = 3.0) 
let r = Rectangle(Width = 10.0, Height = 12.0)
let t = Triangle(Leg1 = 25.0, Leg2 = 20.0, Leg3 = 7.0)

Tree Structures

Discriminated unions can also be self-referencing, meaning that the data 
associated with a union case can be another case from the same union. 
This is handy for creating simple trees like this one, which represents a 
rudimentary markup structure:

type Markup =
| ContentElement of string * uMarkup list
| EmptyElement of string
| Content of string

Most of this definition should be familiar by now, but notice that the 
ContentElement case has an associated string and list of Markup values.

The nested Markup list u makes it trivial to construct a simple HTML 
document like the following. Here, ContentElement nodes represent elements 
(such as html, head, and body) that contain additional content, while Content 
nodes represent raw text contained within a ContentElement.

let movieList =
  ContentElement("html",
    [ ContentElement("head", [ ContentElement("title", [ Content "Guilty Pleasures" ])])
      ContentElement("body",
        [ ContentElement("article",
            [ ContentElement("h1", [ Content "Some Guilty Pleasures" ])
              ContentElement("p",
                [ Content "These are "
                  ContentElement("strong", [ Content "a few" ])
                  Content " of my guilty pleasures" ])
              ContentElement("ul",
                [ ContentElement("li", [ Content "Crank (2006)" ])
                  ContentElement("li", [ Content "Starship Troopers (1997)" ])
                  ContentElement("li", [ Content "RoboCop (1987)" ])])])])])
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To convert the preceding tree structure to an actual HTML document, 
you could write a simple recursive function with a match expression to 
handle each union case, like this:

let rec toHtml markup =
  match markup with
  | uContentElement (tag, children) ->
        use w = new System.IO.StringWriter()
        children
          |> Seq.map toHtml
          |> Seq.iter (fun (s : string) -> w.Write(s))
        sprintf "<%s>%s</%s>" tag (w.ToString()) tag
  | vEmptyElement (tag) -> sprintf "<%s />" tag
  | wContent (c) -> sprintf "%s" c

The match expression is used here roughly like a switch statement in C# or 
a SELECT CASE statement in Visual Basic. Each match case, denoted by a verti-
cal pipe (|), matches against an Identifier pattern that includes the union 
case name and identifiers for each of its associated values. For instance, the 
match case at u matches ContentElement items and represents the associated 
values with the tag and children identifiers within the case body (the part after 
the arrow). Likewise, the match cases at v and w match the EmptyElement and 
Content cases, respectively. (Note that because match expressions return a value, 
each match case’s return type must be the same.)

Invoking the toHtml function with movieList results in the following 
HTML (formatted for readability). As you look over the resulting HTML, 
try tracing each element back to its node in movieList.

<html>
  <head>
    <title>Guilty Pleasures</title>
  </head>
  <body>
    <article>
        <h1>Some Guilty Pleasures</h1>
        <p>These are <strong>a few</strong> of my guilty pleasures</p>
        <ul>
            <li>Crank (2006)</li>
            <li>Starship Troopers (1997)</li>
            <li>RoboCop (1987)</li>
        </ul>
    </article>
  </body>
</html>

Replacing Type Abbreviations

Single-case discriminated unions can be a useful alternative to type abbre-
viations, which, while nice for aliasing existing types, don’t provide any 
additional type safety. For instance, suppose you’ve defined UserId as an 
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alias for System.Guid and you have a function UserId -> User. Although the 
function accepts UserId, nothing prevents you from sending in an arbitrary 
Guid, no matter what that Guid actually represents. 

Let’s extend the markup examples from the previous section to show 
how single-case discriminated unions can solve this problem. If you wanted 
to display the generated HTML in a browser, you could define a function 
like this:

open System.IO

u type HtmlString = string

let displayHtml (html v: HtmlString) =
  let fn = Path.Combine(Path.GetTempPath(), "HtmlDemo.htm")
  let bytes = System.Text.UTF8Encoding.UTF8.GetBytes html
  using (new FileStream(fn, FileMode.Create, FileAccess.Write))
        (fun fs -> fs.Write(bytes, 0, bytes.Length))
  System.Diagnostics.Process.Start(fn).WaitForExit()
  File.Delete fn

The actual mechanics of the displayHtml function aren’t important 
for this discussion. Instead, focus your attention on u the HtmlString type 
abbreviation and v the type annotation explicitly stating that the html 
parameter is an HtmlString.

It’s clear from the signature that the displayHtml function expects the 
supplied string to contain HTML, but because HtmlString is merely a type 
abbreviation there’s nothing ensuring that it actually is HTML. As written, 
both movieList |> toHtml |> displayHtml and "abc123" |> displayHtml are valid.

To introduce a bit more type safety, we can replace the HtmlString defini-
tion with a single-case discriminated union, like this:

type HtmlString = | HtmlString of string

Now that HtmlString is a discriminated union, we need to change the 
displayHtml function to extract the associated string. We can do this in one 
of two ways. The first option requires us to change the function’s signature 
to include an Identifier pattern. Alternatively, we can leave the signature 
alone and introduce an intermediate binding (also using an Identifier 
pattern) for the associated value. The first option is cleaner, so that’s the 
approach we’ll use.

let displayHtml (HtmlString(html)) =
  let fn = Path.Combine(Path.GetTempPath(), "HtmlDemo.htm")
  let bytes = System.Text.UTF8Encoding.UTF8.GetBytes html
  using (new FileStream(fn, FileMode.Create, FileAccess.Write))
        (fun fs -> fs.Write(bytes, 0, bytes.Length))
  System.Diagnostics.Process.Start(fn).WaitForExit()
  File.Delete fn
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To call the displayHtml function, we only need to wrap the string from 
the toHtml function in an HtmlString instance and pass it to displayHtml as 
follows:

HtmlString(movieList |> toHtml) |> displayHtml

Finally, we can further simplify this code by revising the toHtml func-
tion to return an HtmlString instead of a string. One approach would look 
like this:

let rec toHtml markup =
  match markup with
  | ContentElement (tag, children) ->
        use w = new System.IO.StringWriter()
        children
          |> Seq.map toHtml
          |> Seq.iter (fun u(HtmlString(html)) -> w.Write(html))
        HtmlString (sprintf "<%s>%s</%s>" tag (w.ToString()) tag)
  | EmptyElement (tag) -> HtmlString (sprintf "<%s />" tag)
  | Content (c) -> HtmlString (sprintf "%s" c)

In this revised version, we’ve wrapped each case’s return value in an 
HtmlString instance. Less trivial, though, is u, which now uses an Identifier 
pattern to extract the HTML from the recursive result in order to write the 
raw text to the StringWriter.

With the toHtml function now returning an HtmlString, passing its result 
to displayHtml is simplified to this:

movieList |> toHtml |> displayHtml

Single-case discriminated unions can’t guarantee that any associated 
values are actually correct, but they do offer a little extra safety in that they 
force developers to make conscious decisions about what they’re passing to 
a function. Developers could create an HtmlString instance with an arbitrary 
string, but if they do they’ll be forced to think about whether the data is 
correct.

Additional Members
Like record types, discriminated unions also allow additional members. 
For example, we could redefine the toHtml function as a method on the 
Markup discriminated union as follows:

type Markup =
| ContentElement of string * Markup list
| EmptyElement of string
| Content of string
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  member x.toHtml() =
    match x with
    | ContentElement (tag, children) ->
          use w = new System.IO.StringWriter()
          children
            |> Seq.map (fun m -> m.toHtml())
            |> Seq.iter (fun (HtmlString(html)) -> w.Write(html))
          HtmlString (sprintf "<%s>%s</%s>" tag (w.ToString()) tag)
    | EmptyElement (tag) -> HtmlString (sprintf "<%s />" tag)
    | Content (c) -> HtmlString (sprintf "%s" c)

Calling this method is like calling a method on any other type:

movieList.toHtml() |> displayHtml

Lazy evaluation
By default, F# uses eager evaluation, which means that expressions are evalu-
ated immediately. Most of the time, eager evaluation will be fine in F#, but 
sometimes you can improve perceived performance by deferring execution 
until the result is actually needed, through lazy evaluation.

F# supports a few mechanisms for enabling lazy evaluation, but one of 
the easiest and most common ways is through the use of the lazy keyword. 
Here, the lazy keyword is used in conjunction with a series of expressions 
that includes a delay to simulate a long-running operation.

> let lazyOperation = lazy (printfn "evaluating lazy expression"
                          System.Threading.Thread.Sleep(1000)
                          42);;

val lazyOperation : Lazy<int> = Value is not created.

You can see the lazy keyword’s impact. If this expression had been 
eagerly evaluated, evaluating lazy expression would have been printed and 
there would have been an immediate one-second delay before it returned 
42. Instead, the expression’s result is an instance of the built-in Lazy<'T> 
type. In this case, the compiler inferred the return type and created an 
instance of Lazy<int>.

n o T e  Be careful using the lazy type across language boundaries. Prior to F# 3.0, the 
Lazy<'T> class was located in the FSharp.Core assembly. In .NET 4.0, Lazy<'T> 
was moved to mscorlib.
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The Lazy<'T> instance created by the lazy keyword can be passed around 
like any other type, but the underlying expression won’t be evaluated until 
you force that evaluation by either calling the Force method or accessing 
its Value property, as shown next. Convention generally favors the Force 
method, but it doesn’t really matter whether you use it or the Value property 
to force evaluation. Internally, Force is just an extension method that wraps 
the Value property.

> lazyOperation.Force() |> printfn "Result: %i";;
evaluating lazy expression
Result: 42
val it : unit = ()

Now that we’ve forced evaluation, we see that the underlying expression 
has printed its message, slept, and returned 42. The Lazy<'T> type can also 
improve application performance through memoization. Once the associ-
ated expression is evaluated, its result is cached within the Lazy<'T> instance 
and used for subsequent requests. If the expression involves an expensive or 
time-consuming operation, the result can be dramatic.

To more effectively observe memoization’s impact, we can enable timing 
in FSI and repeatedly force evaluation as follows:

> let lazyOperation = lazy (System.Threading.Thread.Sleep(1000); 42)
#time "on";;

val lazyOperation : Lazy<int> = Value is not created.

--> Timing now on

> lazyOperation.Force() |> printfn "Result: %i";;
Result: 42
Real: u00:00:01.004, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()
> lazyOperation.Force() |> printfn "Result: %i";;
Result: 42
Real: v00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()
> lazyOperation.Force() |> printfn "Result: %i";;
Result: 42
Real: w00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()

As you can see at u, the first time Force is called we incur the expense 
of putting the thread to sleep. The subsequent calls at v and w complete 
instantaneously because the memoization mechanism has cached the result.
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Summary
As you’ve seen in this chapter, functional programming requires a different 
mindset than object-oriented programming. While object-oriented pro-
gramming emphasizes managing system state, functional programming is 
more concerned with program correctness and predictability through the 
application of side-effect-free functions to data. Functional languages like 
F# treat functions as data. In doing so, they allow for greater composability 
within systems through concepts like higher-order functions, currying, par-
tial application, pipelining, and function composition. Functional data types 
like tuples, record types, and discriminated unions help you write correct 
code by letting you focus on the problem you’re trying to solve instead of 
attempting to satisfy the compiler.


	Foreword
	Preface
	Acknowledgments
	Introduction
	Whom Is This Book For?
	How Is This Book Organized?
	Additional Resources

	Chapter 1: Meet F#
	F# in Visual Studio
	Project Templates
	Project Organization

	Significance of Whitespace
	Grouping Constructs
	Namespaces
	Modules

	Expressions Are Everywhere
	Application Entry Point
	Implicit Return Values
	Your First F# Program
	Summary

	Chapter 2: F# Interactive
	Running F# Interactive
	F# Interactive Output
	The it Identifier
	Playing in the Sandbox
	#help
	#quit
	#load
	#r
	#I
	#time

	Scripting
	F# Interactive Options
	--load
	--use
	--reference
	--lib
	--define
	--exec
	--
	--quiet
	--optimize
	--tailcalls

	Summary

	Chapter 3: Fundamentals
	Immutability and Side Effects
	Functional Purity
	Bindings
	let Bindings
	use Bindings
	do Bindings

	Identifier Naming
	Core Data Types
	Boolean Values and Operators
	Numeric Types
	Characters
	Strings

	Type Inference
	Nullability
	Options
	Unit Type

	Enumerations
	Flags Enumerations
	Reconstructing Enumeration Values

	Flow Control
	Looping
	Branching

	Generics
	Automatic Generalization
	Explicit Generalization
	Flexible Types
	Wildcard Pattern
	Statically Resolved Type Parameters

	When Things Go Wrong
	Handling Exceptions
	Raising Exceptions
	Custom Exceptions

	String Formatting
	Type Abbreviations
	Comments
	End-of-Line Comments
	Block Comments
	XML Documentation

	Summary

	Chapter 4: Staying Objective
	Classes
	Constructors
	Fields
	Properties
	Methods
	Events

	Structures
	Inheritance
	Casting
	Overriding Members
	Abstract Classes
	Abstract Members
	Virtual Members
	Sealed Classes

	Static Members
	Static Initializers
	Static Fields
	Static Properties
	Static Methods

	Mutually Recursive Types
	Interfaces
	Implementing Interfaces
	Defining Interfaces

	Custom Operators
	Prefix Operators
	Infix Operators
	New Operators
	Global Operators

	Object Expressions
	Type Extensions
	Summary

	Chapter 5: Let’s Get Functional
	What Is Functional Programming?
	Programming with Functions
	Functions as Data
	Interoperability Considerations

	Currying
	Partial Application
	Pipelining
	Function Composition

	Recursive Functions
	Tail-Call Recursion
	Mutually Recursive Functions

	Lambda Expressions
	Closures
	Functional Types
	Tuples
	Record Types

	Discriminated Unions
	Defining Discriminated Unions
	Additional Members

	Lazy Evaluation
	Summary

	Chapter 6: Going to Collections
	Sequences
	Creating Sequences
	Working with Sequences

	Arrays
	Creating Arrays
	Working with Arrays
	Multidimensional Arrays
	Jagged Arrays

	Lists
	Creating Lists
	Working with Lists

	Sets
	Creating Sets
	Working with Sets

	Maps
	Creating Maps
	Working with Maps

	Converting Between Collection Types
	Summary

	Chapter 7: Patterns, Patterns, Everywhere
	Match Expressions
	Guard Clauses
	Pattern-Matching Functions

	Exhaustive Matching
	Variable Patterns
	The Wildcard Pattern

	Matching Constant Values
	Identifier Patterns
	Matching Union Cases
	Matching Literals

	Matching Nulls
	Matching Tuples
	Matching Records
	Matching Collections
	Array Patterns
	List Patterns
	Cons Patterns

	Matching by Type
	Type-Annotated Patterns
	Dynamic Type-Test Patterns

	As Patterns
	Combining Patterns with And
	Combining Patterns with OR
	Parentheses in Patterns
	Active Patterns
	Partial Active Patterns
	Parameterized Active Patterns
	Summary

	Chapter 8: Measuring Up
	Defining Measures
	Measure Formulas
	Applying Measures
	Stripping Measures
	Enforcing Measures
	Ranges
	Converting Between Measures
	Static Conversion Factors
	Static Conversion Functions

	Generic Measures
	Custom Measure-Aware Types
	Summary

	Chapter 9: Can I Quote You on That?
	Comparing Expression Trees and Quoted Expressions
	Composing Quoted Expressions
	Quoted Literals
	.NET Reflection
	Manual Composition
	Splicing Quoted Expressions

	Decomposing Quoted Expressions
	Parsing Quoted Expressions
	Substituting Reflection

	Summary

	Chapter 10: Show Me the Data
	Query Expressions
	Basic Querying
	Filtering Data
	Accessing Individual Items
	Sorting Results
	Grouping
	Paginating
	Aggregating Data
	Detecting Items
	Joining Multiple Data Sources
	Extending Query Expressions

	Type Providers
	Available Type Providers
	Using Type Providers
	Example: Accessing an OData Service
	Example: Parsing a String with RegexProvider

	Summary

	Chapter 11: Asynchronous and Parallel Programming
	Task Parallel Library
	Potential Parallelism
	Data Parallelism
	Task Parallelism

	Asynchronous Workflows
	Creating and Starting Asynchronous Workflows
	Cancelling Asynchronous Workflows
	Exception Handling
	Asynchronous Workflows and the Task Parallel Library

	Agent-Based Programming
	Getting Started
	Scanning for Messages
	Replying to Messages
	Example: Agent-Based Calculator

	Summary

	Chapter 12: Computation Expressions
	Anatomy of a Computation Expression
	Example: FizzBuzz
	Example: Building Strings
	Summary

	Index



