
I N D E X

Note: Italicized page numbers locate definitions of terms.

NUMBERS AND SYMBOLS
7×7 magic square, testing code

for, 33
% (modulo) operator

Euclid’s algorithm, 21
Kurushima’s algorithm, 27–28
RPM (Russian peasant

multiplication), 19
rules, 32

[] (square brackets)
using with list comprehension,

152
using with loc functionality, 19

A
acceleration

estimating for thrown ball, 10
observing for thrown ball, 9

AI (artificial intelligence). See also
decision trees; game trees;
random forests

adding enhancements, 199
drawing the board, 187–188
game trees and winning games,

190–199
la pipopipette, 186–187
representing games, 188–189
scoring games, 189–190

algebra, 5
algorithmic approach

Chapman’s algorithm, 9–10
thinking with your neck, 6–9

algorithms, 13
adding theoretical

precision, 63–64
alpha–beta pruning, 199
avoiding use of, 48–49
Babylonian, 90
Bowyer-Watson, 136
comparing to functions, 60–63
counting steps, 57–60
divide and conquer, 69
doing more with, 202–203
finding maximum, 42
gaining expertise, 209
measuring efficiency, 55–57
measuring time, 57
merging sorted lists, 67
minimax, 195–198
performing “by hand,” 14–18,

20–21
perturb search, 112
refraining from using, 48–49
solving problems with, 10–11
tax rates, 39
using big O notation, 64–65
within algorithms, 17

Al-Khwarizmi, 5, 10
alpha–beta pruning algorithm, 199
analytic approach

Galilean model, 2–4
inner physicist, 5–6
solve-for-x strategy, 4–5

angle, tangent of, 8–9

216 Index

annealing, process of, 117
antidiagonal of square matrix, 26–27
append() method, RPM (Russian

peasant multiplication), 18
arguments, magic squares, 31–34
artificial intelligence (AI), 185–186

adding enhancements, 199
drawing the board, 187–188
game trees and winning games,

190–199
la pipopipette, 186–187
representing games, 188–189
scoring games, 189–190

asymptote, relationship to
maximum, 39–40

B
Babylonian algorithm, 90
ball. See also the outfielder problem

horizontal position of, 7
plotting trajectory of, 1–2, 4, 7
tangent calculation, 8–9

ball_trajectory() function, 3–4
baseball, scientific features of, 6
bell curve, 95–96
between_spaces variable, creating, 154
big O notation

sleep sort’s runtime, 72
using, 64–65

billiard balls and randomness, 91
binary branching process, using

with decision trees,
166–167

binary expansion, 17
binary search, 73–75
bisect, geometric terminology, 130
bits, string of, 97–98
board, drawing for dots and boxes

game, 187–189
bootstrapping, 91
Bowyer-Watson algorithm, 136.

See also DT (Delaunay
triangulation);
triangulation

brain, “wetware” of, 5
branching process, using with

decision trees, 166–167

brute force solution, using in
TSP (traveling salesman
problem), 107

Bush, Vannevar, 6

C
calculus, rules of, 38
centroid of triangle, finding,

131–133
Chapman, Seville, 6
Chapman’s algorithm, 9–11. See also

the outfielder problem
chatbot, building, 203–208
chess, solving eight queens

puzzle, 209–212
Chesterton, G. K., 151
circles, drawing, 133
circumcenters

finding for triangles, 131–133
plotting, 145
relationship to triangles, 134

circumcircles
plotting, 145
relationship to triangles,

132, 134
combinatorial explosion, using in

TSP (traveling salesman
problem), 108

compound words, dealing with,
152–153. See also words

constructive methods of Euclid, 20
continued fractions. See also

fractions to radicals
algorithm for generating,

82–85
compressing and

communicating Phi, 79–80
versus decimals, 86–88
overview, 78, 80–82
to radicals, 88

continued square roots, 88
corpus, 149, 160. See also imported

corpus
cosine similarity, 206–208
Counter() function, using with

n + 1-gram, 161
counting steps, 57–60

Index 217

D
decimals to continued

fractions, 86–88
decision trees. See also AI (artificial

intelligence) game trees;
machine learning; random
forests

adding depth to, 175–177
building, 167
calculating happiness

levels, 170
choosing split points, 182
choosing splitting variables,

173–175, 182
downloading datasets, 168
evaluating, 178–182
looking at data, 168–169
nodes, 167
out-of-sample observations, 180
overfitting, 181–182
overview, 165–166
prediction errors, 171–172
problem of overfitting, 179–181
pruning, 182, 199
in-sample observations, 180
simplifying, 181–182
split points, 171
splitting data, 169–173
test sets, 180
training sets, 180
underfitting, 181–182
using nested lists with, 176

Delaunay triangulation (DT).
See also geometry

generating, 136–139
implementing, 139–143
overview, 134–136
purpose of, 136
returning from points, 142
to Voronoi, 143–147

derivative, calculating, 38
Devlin, Keith, 5–6
dictionary object, creating for

chatbot, 203
Diehard tests for randomness,

95–97
divide and conquer algorithm, 69

dogs, catching Frisbees, 6
dots and boxes game. See also games

drawing board for, 187–188
playing, 186–187
scoring, 190

doubling column, RPM (Russian
peasant multiplication),
14–20

down_left, Kurushima’s algorithm,
28–29

drawgame() function, using with
games, 188–189

drawing circles, 133
drawlattice() function, using with

games, 188–189
DT (Delaunay triangulation).

See also Bowyer-Watson
algorithm; triangulation

generating, 136–139
implementing, 139–143
overview, 134–136
purpose of, 136
returning from points, 142
to Voronoi, 143–147

E
education and lifetime

income, 42–45
Elements, 20
equilateral, geometric

terminology, 130
ESS (European Social Survey),

using with decision
trees, 168

Euclid’s algorithm, 20–22, 84–85
exclusive OR operation, 98
exponential function, 60–61

F
False, Kurushima’s algorithm, 27
feedback shift register, 98
file-sorting method, 52–54. See also

sorted filing cabinets
fillsquare() function, Kurushima’s

algorithm, 31–32
finding words, 151–152
finditer() function, using with

words, 152

218 Index

findnearest() function, using in
TSP (traveling salesman
problem), 109

float('nan') function, using with
Kurushima’s algorithm, 24

floor() function, using for binary
search, 73–74

for loop, using with words and
spaces, 157

fractions to radicals, 88. See also
continued fractions

Franklin, Benjamin, 126
Frisbee, trajectory vectors, 6
functions

inverting, 75
recursion, 22

G
Galilean model, 2–5
game trees. See also AI (artificial

intelligence); decision
trees; random forests

building, 192–195
and winning games, 190–192

games. See also dots and boxes game
choosing moves, 195–198
minimax algorithm, 195–198
representing, 188–189
scoring, 189–190
winning, 195–198

Gaussian normal curve, 96
gen_delaunay() function, passing x

and y values to, 143
generate_tree() function, using with

games, 194
genlines function, using with

triangles, 129
genlines function, TSP (traveling

salesman problem), 104
geometry. See also DT (Delaunay

triangulation)
postmaster problem, 126–128
representing points, 128
tangent of angle, 8–9
terminology, 130
triangles, 128–134

get_number() function, using with
continued fractions, 85

get_prediction() function, using with
decision trees, 178–179

get_split() function, using with
decision trees, 174–176

get_splitpoint() function, using with
decision trees, 174

git bisect software, using for binary
search, 75

global variables, defining for
simulated annealing, 122

golden ratio, 78–79
gradient ascent, 35

climbing income hill, 44–45
implementing, 40–41
local extrema, 42–44
objections, 41–42
using, 49

gradient descent, 35, 47
Gravity’s Rainbow, 3
greedy algorithms, TSP (traveling

salesman problem),
112–113

guided search, using in TSP
(traveling salesman
problem), 112

H
half_double dataframe, RPM (Russian

peasant multiplication), 18
halving column, RPM (Russian

peasant multiplication),
14–20

happiness levels, calculating with
decision trees, 170

hill climbing, 47–48
howfull argument, Kurushima’s

algorithm, 31–32

I
if statement

inserting pop() function into,
66–67

using with words and
spaces, 151

imported corpus, using to check for
valid words, 154–155. See
also corpus

Index 219

inner physicist theory, 5–6
in-sample observations, using with

decision trees, 180
insert() function, using with bits, 98
insertion sort, 52–55

comparing to exponential
function, 61

counting steps in, 63–64
step counter, 58

installing, matplotlib module, 3
integers, dividing to get

quotient, 84
inverse_sin(0.9) function, using for

binary search, 75
inverting functions, 75
irrational number, 79

J
Japanese magic squares. See also

magic squares; squares
Kurushima’s algorithm in

Python, 24–30
Luo Shu square in Python,

22–23

K
Kepler, Johannes, 78
k-means machine-learning

method, 56
k-NN machine-learning method, 56
Kurushima’s algorithm

function, 30–31
rules, 25–28

L
la pipopipette, 186–187
language algorithms

difficulty, 150
phrase completion, 159–163
space insertion, 150–158

lattice, using with la pipopipette,
186–187

LCGs (linear congruential
generators), 92–93

left and right variables, Python, 66
Leibniz, Gottfried Wilhelm,

130–131

LFSRs (linear feedback shift
registers), 97–99

lifetime income and education,
42–45

lines of sight, plotting for thrown
ball, 7–8

list comprehensions, 149, 156
list indexing syntax, Python, 68–69
lists, sorting, 153
loc functionality, RPM (Russian

peasant multiplication), 19
local extrema, problem, 42–45
loops, RPM (Russian peasant

multiplication), 18
lower bound, defining for binary

search, 73
lower() method, using with

chatbot, 203
Lucas, Édouard, 186
Luo Shu square, creating in

Python, 22–23

M
machine learning. See also decision

trees
overview, 165
random forests, 182–183

machine-learning methods,
k-means clustering and
k-NN, 56

magic eye, 147
magic squares, 22–23. See also

Japanese magic squares;
squares

arguments, 31–34
Kurushima’s algorithm, 30–31
of odd dimension, 24
patterns, 34
“walk” through, 28

The Math Instinct: Why You’re a
Mathematical Genius (Along
with Lobsters, Birds, Cats, and
Dogs), 5–6

math library, Python, 73–74
mathematical physics,

interpretation of, 92
math.floor(), RPM (Russian peasant

multiplication), 18

220 Index

matplotlib module
setting tax rates, 36–37
using with dots and boxes

game, 187–188
matplotlib module, installing, 3
max() function, using with numpy, 162
maxima and minima, 35
maximization and minimization,

45–48
maximum

and asymptote approach,
39–40

education and lifetime income,
44–45

and minimum of step values,
60–61

revenue, 39
solving first-order

conditions, 42
taxation/revenue curve, 41–42

maxitin argument, adding, 122
merging to sorting, 65, 68–70. See

also sorting
Mersenne Twister PRNG, 99
metaheuristics, metaphor based,

117–118
Mikami, Yoshio, 22
Millennium Prize Problems, 212
minimax algorithm

using to make decisions, 199
using to win games, 195–198

minimax() function, calling, 198
modulo (%) operator

Euclid’s algorithm, 21
Kurushima’s algorithm, 27–28
RPM (Russian peasant

multiplication), 19
rules, 32

Monte Carlo methods, 199
mystery number and continued

fraction, 81

N
n + 1-grams, finding, 161–163
n queens completion problem,

solving for chess, 210–211
nan entries, filling in, 25–28, 30–31
Navier-Stokes equations, 5

nearest neighbor algorithm,
TSP (traveling salesman
problem), 108–110

nested lists, using with decision
trees, 176

nested radicals, 88
next_random() function, 93
n-gram, tokenizing and getting,

159–160
Norvig, Peter, 160
NP (nondeterministic polynomial)

complexity class, 212–213
numbered file, inserting, 54
numpy module

importing, 60
using to select phrases, 162
using with decision trees,

180–181

O
optimization, 101–102. See also

simulated annealing;
TSP (traveling salesman
problem)

the outfielder problem, 1–2, 6–9.
See also ball; Chapman’s
algorithm

out-of-sample observations, using
with decision trees, 180

overfitting decision trees, 181–182
overlapping sums test, 95–96

P
P complexity class of problems,

212–213
pandas module, using in Python, 19
percentile, using with decision

trees, 172–173
perpendicular, geometric

terminology, 130
perturb() function

modifying, 116
showing end of, 121
updating, 119
using for simulated

annealing, 123
using in TSP (traveling salesman

problem), 111–112

Index 221

perturb search algorithm, 112. See
also simulated annealing

phi
compressing and

communicating, 79–80
and golden ratio, 78

phrase completion, 159–163
plot() function, using with dots and

boxes game, 187–188
plot_triangle() function

defining, 129
improving, 133–134

plotitinerary() function, using in
TSP (traveling salesman
problem), 105

plotting capabilities, Galilean
model, 3

.png file, saving to, 129–130
points, representing, 128–130
points_to_triangle() function

defining, 128
using in triangulation, 134

polynomial, Galilean model, 3
polynomial time, verifying

solutions in, 212
pop() method

inserting into if statements,
66–67

using with bits, 98
pop() method, sorting via

insertion, 55
postmaster problem, 126–128
potential words. See also words

checking for, 153–154
finding halves of, 156–158

prediction errors, decision trees,
171–172

print(cities) function, TSP
(traveling salesman
problem), 103

print(lines) function, TSP (traveling
salesman problem), 104

print(square) function, using with
Kurushima’s algorithm,
24–25

PRNGs (pseudorandom number
generators), 92–99

problems, solving with algorithms,
10–11

Project Gutenberg, 160
pruning decision trees, 182, 199
pseudorandomness, 92–93
Pynchon, Thomas, 3
Pythagorean theorem

using, 105
using with triangles, 130
using in TSP (traveling

salesman problem),
108–109

Python
creating Luo Shu square, 22–23
Euclid’s algorithm, 20–22
feedback shift register, 98
Galilean model, 3
implementing RPM (Russian

peasant multiplication),
18–20

Kurushima’s algorithm, 24
left and right variables, 66
list indexing syntax, 68
math library, 73–74
ordered pairs in, 152
overlapping sums test, 95–96
pandas module, 19
random module, 58–59
random.choice() function, 28
rules for Kurushima’s

algorithm, 27–28, 30–31
square roots in, 90–91
timeit module, 57
using tuples with words and

spaces, 152

Q
quotient, getting by dividing

integers, 84

R
radicals and fractions, 88
radius, returning for triangle,

132–133
Ramanujan, Srinivasa, 88
random forests, 182–183. See also

decision trees; game trees

222 Index

random model, Python, 58–59
random number generators

judging PRNGs
(pseudorandom number
generators), 93–95

LCDs (linear congruential
generators), 92–93

LFSRs (linear feedback shift
registers), 97–99

overview, 91
random.choice() function, Python, 28
randomness

Diehard tests for, 95–97
possibility of, 91–92

random.seed() function, 59
recursion

of functions, 22
implementing merge sort

with, 69
using with Euclid’s algorithm, 85

re.finditer() function, using with
words, 152

reindex() method, using with
decision trees, 181

remove() function, using with words
and spaces, 155

replace() function, using with words
and spaces, 155

resetthresh variable, adding, 122
revenue

maximum, 39
showing for tax rates, 36–37

right and left variables, Python, 66
RPM (Russian peasant

multiplication), 13–20
rules, applying with Kurushima’s

algorithm, 27, 30–31

S
science, laws of, 130–131
scoring games, 189–190
search suggestions, strategy for

generating, 160, 162–163
searching versus sorting, 72–75
Shakespeare’s works, accessing,

160–161, 163
siman() function, using for simulated

annealing, 122–123

Simmons, Joseph, 179
simulated annealing, 115–124. See

also optimization; perturb
search; TSP (traveling
salesman problem)

sleep sort, 70–72. See also sorting
Smith, David Eugene, 22
solve-for-x strategy, 4–5, 10–11
sorted filing cabinets, merging, 62,

64–65. See also file-sorting
method

sorting. See also merging to sorting;
sleep sort

lists, 153
via insertion, 54–55
to searching, 72–75

space insertion
checking for potential words,

153–154
checking for valid words,

154–156
dealing with compound words,

152–153
defining word lists, 151–152
finding halves of potential

words, 156–158
finding words, 151–152
overview, 150–151

spaces
getting substrings between,

153–154
inserting into texts, 158
words ending with, 156

split points, choosing for decision
trees, 171, 182

splitting variables, choosing for
decision trees, 182

square brackets ([])
using with list

comprehension, 152
using with loc functionality, 19

square matrix, antidiagonal of, 26–27
square roots, 89–91
squares, filling in, 30–34. See also

Japanese magic squares;
magic squares

start() function, using with
words, 153

Index 223

statistical methods, bootstrapping
as, 91

steps
counting in insertion sort,

57–60, 63–64
exponential growth, 60–61

stochastic gradient ascent, 45
strings, splitting into words,

159–160
substrings, getting between spaces,

153–154
sudoku puzzles, solving, 211–212

T
tangent of angle, 8–9
tax rates, setting, 36–41
taxation/revenue curve, gradient

ascent, 41
tax/revenue curve, flipping, 46–47
temperature function, TSP

(traveling salesman
problem), 113–115

test sets, using with decision
trees, 180

text normalization, using with
chatbot, 203

text vectorization, 204–206
TFIDF (term frequency-inverse

document frequency)
method, 204–205, 207–208

theta, applying to thrown ball, 8–9
thinking with your neck, 6–9
time, measuring precisely, 57
timeit module, Python, 57
Titanic lifeboat example, using

sleep sort with, 71–72
tokenization, performing with

chatbot, 204
tokenizing n-grams, 159–160
training sets, using with decision

trees, 180
translate() method, using with

chatbot, 203–204
triage and decision trees, 166
triangles

centroid, 131–133
creating for postmaster

problem, 128–134

finding circumcenter of,
131–133

plotting, 129, 145–146
replacing, 140–143

triangulation. See also Bowyer-
Watson algorithm; DT
(Delaunay triangulation)

defined, 134
of seven points, 135

True, Kurushima’s algorithm, 27
TSP (traveling salesman problem).

See also optimization;
simulated annealing

greedy algorithms, 112–113
improving, 110–112
nearest neighbor algorithm,

108–110
overview, 102–103
versus postmaster problem, 127
setting up, 103–108
temperature function, 113–115

tuples, using with words and
spaces, 152

U
underfitting decision trees, 181–182
up_right, Kurushima’s algorithm,

28–29
upper bound, defining for binary

search, 73

V
vector similarity, determining,

206–208
vertex, geometric terminology, 130
Voronoi diagram

generating, 143–147
for postmaster problem, 128

W
while loop, Kurushima’s

algorithm, 31
while loop

using for binary search, 74
using with bits, 99
using with continued

fractions, 85

224 Index

using with merge sort, 67
using with square roots, 90–91

while loop, RPM (Russian peasant
multiplication), 18

winning games, 195–198
word list, defining, 151–152
words. See also compound words;

potential words
checking validity with imported

corpus, 154–156

ending with spaces, 156
finding, 151–152
tokenizing, 159–160

X
XOR operation, 98

