INDEX

A
ABAC (attribute-based access control), 17
Accept Security Responsibility pattern, 69
access control list (ACL), 55
access controls, 48
access policy
 custom, 48
 fine-grained, 49
 “relief valve”, 49
Advanced Encryption Standard (AES), 82
adversaries, 24
 attacker’s advantage, 25
 targets, 25
Agarkov, Dmitry, 175
allowlists, 60. See also blocklists
Allowlists over Blocklists pattern, 60
anti-patterns
 Backflow of Trust, 73
 Confused Deputy, 71, 224
 Intention and Malice, 72
 Trustworthy Deputy, 73
 Security by Obscurity, 135
 Third-Party Hooks, 74
 Unpatchable Components, 74
antivirus, 61, 225
“Are you sure?” dialog, 70
Ariane 5, 223
arithmetic
 32-bit, 149
 64-bit, 154
 binary, 148
 floating-point vs. integer, 146
 modular, 147
 safe, 155
 vulnerabilities, 146–156
assessment report. See security design review (SDR)
assets, 26
 aggregation, 29
 differing valuation, 29
 identification, 28
 isolation of, 120
 removal, 38
 valuation, 25
atomicity, 140
attacks
 denial-of-service (DoS), 13, 216
 distributed denial-of-service (DDoS), 219
 injection, 175
 preimage, 79
 replay, 79, 82
 side-channel, 11, 30, 141
 timing, 141–142
attack surfaces, 26, 101, 113, 119
 hardening, 45
 identification, 30
 internet, 30
 minimization, 45
attribute-based access control (ABAC), 17
auditing, 14
 inside jobs, 18
 shared account problem, 19
audit logs, 14
 Goldilocks principle, 19
 need for monitoring, 19
 non-repudiability, 19
 private information problem, 19
 tamper-resistant, 18
authentication, 14
 binding attacks, 17
 binding the principal, 16
authentication (continued)
separation from authorization, 15
something you are, 15
something you have, 15
something you know, 15
somewhere you are, 15
authN. See authentication
authorization, 14
anonymous, 17
attribute-based access control (ABAC), 17
guards, 17
minimal access, 18
multiple principals, 18
no self-service, 18
policy-based access control (PBAC), 17
rate-limited, 18
role-based access control (RBAC), 17
time of day, 18
authZ. See authorization
availability, 11, 13
availability testing, 216–218
Avoid Predictability pattern, 61

B
Backflow of Trust anti-pattern, 73
backups, 13
BeautifulSoup parser, 214
binary math refresher, 148
Bloch, Josh, 97
blocklists, 60. See also allowlists
bottleneck. 63
bridge (between user processes), 64
brute-force guessing, 16
buffer overflow, 157
example, 158
buffer overrun, 157, 158

C
California Senate Bill No. 327 (2018), 59
CAS. See Code Access Security (CAS)
case study
difficult SDR, 122
GotoFail vulnerability, 137
Heartbleed vulnerability, 162
The Most Dangerous Code in the World, 226
certificate authority (CA), 87
chosen plaintext attack, 84
C-I-A, 11–14, 99
principles. See also information security
ciphertext, 81, 84
Code Access Security (CAS), 73, 243
.NET Framework, 46
permission, 46
code examples, 130
code quality
code hygiene, 222
documentation, 224
exception handling, 223
security reviews, 224
collision attack, 78
competence and imperfection, 7
compiler warnings, 139, 222
Complete Mediation pattern, 63
degrees of compliance, 63
components
security considerations, 225
selecting, 225
confidentiality, 11–13
compromise of, 12
Confused Deputy anti-pattern,
71, 224
Intention and Malice, 72
Trustworthy Deputy, 73
cookies. See HTTP protocol
C programming language, 130, 138
credentials, 14. See also authentication
Cross-Origin Resource Sharing (CORS), 196
cross-site request forgery (CSRF or XSRF), 201. See also web security
eexample, 199
mitigation, 200
cross-site scripting (XSS). See also web security
DOM-based, 199
eexample, 197
mitigation, 199, 202
reflected, 198
stored, 198
testing, 212–214
cryptocurrency, 86
cryptographically secure pseudo-random number generators
(CSPRNG), 77
cryptography. See encryption
crypto toolbox, 76, 89
CSRF. See cross-site request forgery
(CSRF or XSRF)
Cuban, Mark, 121

D
data
 backups, 13
 invisibility of, 6
 private, 12
 provenance, 13
 tampering, 13
data flow diagrams (DFD), 27
data hiding, 73
data protection
 backups, 51
 data at rest, 51
 minimizing data exposure, 47
 offline backups, 48
DDoS (distributed denial-of-service) attacks, 219
deanonymization, 12–13
default password, 59
Defense in Depth pattern, 65
denial of service (DoS). See availability
testing, STRIDE
denial-of-service (DoS) attacks, 13, 181, 206
dependencies, 228
 choosing components, 225
 legacy code, 227
 libraries and frameworks,
 use of, 227
 secure design, 99
 secure interfaces, 226
 software supply chain, 225
 deprecation, 226
 DES encryption algorithm, 56
deserialization, 143
design. See also secure design
 common assumptions, 98
documents, 97
 importance of assumptions, 98
 integrating security, 96
 scope, 98
 consequences of not defining, 99
 looking beyond, 99
 security considerations, 97
design pattern groupings, 54
DFD (data flow diagrams), 27
dialog fatigue, 70
Diffie–Hellman key exchange algorithm, 88
Diffie, Whitfield, 87
digest for integrity, 13
digital certificate. See HTTPS protocol
digital signature
 algorithm, 85
 for integrity, 13
 signature verification, 85
distributed denial-of-service (DDoS) attacks, 219
documentation for security, 224
Document Object Model (DOM), 193
Domain Name System (DNS), 189
DoS (denial-of-service), 13
downgrade attack, 192
DREAD model
 example, 229
 T-shirt sizes, 229
dynamic memory allocation, 157

E
Economy of Design pattern, 54, 108
electronic code book (ECB) mode, 82
elevation of privilege. See STRIDE
elliptic curve algorithms, 85
e-mail retention, 21
encryption
 asymmetric
 elliptic curve, 85
 private key, 83
 public key, 83
 RSA, 84
 backup data application, 90
ciphertext, 81
encryption (continued)
communication, 50
cryptocurrency application, 90
digital signatures, 85
ECB mode, 82
exclusive-or, 81
financial data application, 90
foundations, 91
limitations of, 91
plaintext, 81
symmetric, 81
 AES, 82
 block cipher, 82
 key establishment, 83
 key secrecy, 83
 key size, 83
 limitations of, 83
entropy, 136
 sources, 78
Equifax breach, 107
error handling, 223
eval function, 184
examples
 accountant, 64
 Ariane 5, 223
 backing up photos, 51
 bank vault, 33–35
 child-proofing, 40
 COVID-19 stay-at-home emergency order, 60
 credit card contract, 175
 customer relationship
 management (CRM), 58
 endianness mix-up, 97
 floating-point underflow, 151
 generating random numbers using
 lava lamps, 78
 HTTP cookies, 68
 iMessage, 64
 integer overflow, 153
 LEGO, 55
 memory allocation
 vulnerabilities, 158
 Norman Bates, 71
 Ocean’s Eleven, 37
 online shopping app with bugs, 134
 plywood, 65
 predictable account IDs, 61
 Reddit user, 64
 safe deposit box, 67
 Star Wars, 56
 Superman, 57
 tax ID privacy, 63
 traveling sales staff, 101
exception handling, 223

F
Facebook Beacon, 30
Fail Securely pattern, 62
floating point
 equality test problematic, 150
 precision, 149
 Python example, 151
footguns, 138–139
Four Questions, 25, 98–99, 103
 as guidance for a security design review, 116–119
free function, 157
functional testing, 209
 with GotoFail vulnerability, 209
fuzz testing, 215
 example, 214

G
Garg, Praerit, 35
GCC compiler, 139
General Data Protection Regulation (GDPR), 12
Goldilocks principle, 28
Gold Standard, 11, 16–19, 37
 auditing, 14
 authentication, 14
 authorization, 14
 meaning of name, 14
 relation to C-I-A, 15
GotoFail vulnerability, 137, 140
 lessons, 139
 source code, 138
guard, 63

H
hardware random number generators (HRNG), 78
hash. See message digest
 SHA-256, 200
heap, 157
heartbeat, TLS, 162
Heartbleed vulnerability, 47
Hellman, Martin, 87
homomorphs, 174
HTTP over TLS/SSL. See HTTPS protocol
HTTP protocol, 188
 cookie attributes
 httponly, 195
 SameSite, 201
 secure, 195
cookies
 session, 194–195, 198, 200
 sharing, 195
Cross-Origin Resource Sharing (CORS), 196
GET, 189, 199
POST, 189, 199–200
request headers, 189
 REFERER, 189, 202
response headers, 189
 Content-Security-Policy, 202
 Referrer-Policy, 190, 202
 security-related, 202
verbs, 189
HTTPS protocol
 adoption of, 190
 cipher suites, 193
digital certificates
 Let’s Encrypt, 192
 types of, 192
downgrade attacks, 192
security properties, 191
Strict-Transport-Security directive, 193

I
identity management, 16
IEEE 754. See floating point
IMDb, 13
implementation from design, 129
influencing code, 131
information collection, 20
information disclosure. See STRIDE
information security, 5
 principles (C-I-A), 11–14
 relation to authorization, 11
injection attacks, 175
 avoiding, 183
 backtracking regex, 181, 217
 cross-site scripting, 196–199
 mitigation, 183
 “No Game Scheduled”, 176
 path traversal, 179
 shell command, 183
 SQL, 176–179
 XML entities, 182
input validation, 168
 character string length, 173
 correcting invalid input, 172
 range check, 169
 rejecting invalid input, 171
 requirements, 170
 size check, 170
 Unicode issues, 174
 valid for a purpose, 171
inside jobs, 18
insurance, 38
integer overflow, 146
 mitigation, 155
 security testing, 206
integration testing
 data leak detection, 220
integrity, 11, 13
Intention and Malice. See Confused Deputy anti-pattern
interfaces
 between components, 225
 intraprocess, 50
 kinds of, 49
 secure design, 103
 securing, 226
Internet Explorer, 35

K
keyed hash function, 79
key exchange, 87
 Diffie–Hellman algorithm, 88
 randomness requirement, 89
 secure communication establishment, 89
L
last mile, 240
leaks, memory, 160
Least Common Mechanism pattern, 64, 108
Least Information pattern, 57, 104
Least Privilege pattern, 56, 178
legacy security, 227
Let’s Encrypt, 192
loopholes, 62
low-level programming, 146

M
malloc function, 157, 160
managing complexity, 237
math.isclose function, 150
Meltdown, 141
memory
access vulnerabilities, 156–162
buffer overflow, 157
heap, 157
leaks, 160
management, 156
message authentication code
(MAC), 78
nonce, 80
replay attacks, 79
secure communications use, 80
tamper prevention, 79
message digest, 78-80
collision, 78
replay attacks, 79
Microsoft Windows, 35
Minsky, Marvin, 136
misleading indentation warning, 139
mitigation, 38, 43–52
definition of, 44
minimizing attack surfaces, 45
minimizing data exposure, 47
narrowing windows of vulnerability, 46
partial, 39
protecting communications, 50
protecting interfaces, 49
protecting storage, 51
real-world examples of, 43
structural, 45–48
mobile data security, 241
models
Code Access Security (CAS), 46, 73
data flow diagrams (DFD), 27
Unified Modeling Language (UML), 27
Morris worm, 233

N
National Security Agency (NSA), 100
National Transportation Safety Board (NTSB), 239
Netflix, 13
.NET Framework, 46, 243
Netscape Navigator, 35
nonce, 80, 201

O
obsolescence
software support, 52
storage media, 51
one-time pad, 81
reuse problem, 82
use restrictions, 82
OpenSSL, 162
opportunistic protection, 29
overflow
buffer, 157
integer, 146
commom vulnerabilities, 149
example, 153
mitigation, 155

P
padding, 80
path traversal, 179
patterns
Accept Security Responsibility, 69
Allowlists over Blocklists, 60
Avoid Predictability, 61
Complete Mediation
degrees of compliance, 63
Defense in Depth, 65
design attributes, 54–56
Economy of Design, 54, 108
exposure minimization, 56–62
Fail Securely, 62
general use of, 54
Least Common Mechanism, 64, 108
Least Information, 57, 104
Least Privilege, 56
redundancy, 65–68
Reluctance to Trust, 68
Secure by Default, 59, 226
Separation of Duty, 232
Separation of Privilege, 67
strong enforcement, 62–65
Transparent Design, 56, 77
trust and responsibility, 68–70
personal data
collection, 39
disclosure mitigation, 40
personally identifiable information (PII), 102
plaintext, 81, 84
policy-based access control (PBAC), 17
preimage attack, 79
principal, 14
principles of information security
availability, 11, 13
confidentiality, 11
integrity, 11, 13
privacy, 39
e-mail retention, 21
human factors, 20
information collection, 20
policy, 21
relation to security, 19
software security challenges, 20
privacy policy, 120
auditing, 105
explicit protection, 105
owner, 105
privacy reviews, 120
private data, 12
private key, 83
provenance, 13, 240
pseudo-random number generators (PRNG), 77
pseudo-random numbers, 77. See also random numbers
cryptographically secure, 77
public key, 83
Pwn2Own competitive hacking contest, 135
Python programming language, 130
structuring by indentation, 138
R
random numbers
applications, 77
classes, 77
cryptographically secure pseudo-random number generators, 77
entropy sources, 78
hardware random number generators, 78
pseudo-random number generators, 77
unpredictability, 77
RBAC (role-based access control), 17
regular expressions (regex)
backtracking, 181, 217
reidentification, 13
Reluctance to Trust pattern, 68
replay attacks, 79, 82
repudiation, 37. See also STRIDE
risk acceptance, 38
risk assessment, 29
T-shirt sizes, 29, 229–230
risk transfer, 38
role-based access control (RBAC), 17
root certificate, 87
RSA cryptosystem
algorithm, 84
history, 84
mathematical basis, 84
S
Same Origin Policy (SOP), 193–196
CSRF vulnerability, 199
sample design document, 19, 96, 245
sandbox, 65
SDR. See security design review (SDR)
Secure by Default pattern, 59, 226
secure design, 95–108
balanced approach, 102
cache implications, 102
data handling, 104
secure design (continued)
dependencies, 99
design assumptions, 97
e xamples, 98
importance of making
explicit, 97
end of life, 106
exploring alternatives, 107
high security requirements, 100
interfaces, 103
minimal security requirements, 100
mitigation, 103
privacy, 105
requirements statements, 100
sample design document, 19,
96, 245
scope definition
importance, 98
iterative design, 99
software lifecycle, 106
trade-offs, 106
secure development environment, 231
securely random IDs, 62
secure programming, 130
security
goals, 36
information, 5
mindset, 23
physical, 4
software, 5
trust but verify, 8
understanding, 4
Security by Obscurity anti-pattern,
56, 135
security code reviews, 224
security design review (SDR), 109–125
assessment report, 114
minimal, 115
organization, 115
Recommendations Declined
section, 123
benefits of, 110
collaboration with designer, 113
design updates, 120
documentation, 111
guidance, 116–119
importance of context, 117
incremental updates, 120
independent reviewer, 109
logistics, 110
managing disagreements, 121–124
escalation, 123
meeting preparation, 123
missing mitigations, 118
practicing, 124
problem solving, 122
process, 111
progress tracking, 116
recommendation ranking, 114
relation to secure design, 95
reviewer role, 115
sandwich method feedback, 122
separate from functional
review, 110
showing versus telling, 123
stages, 111–116
summary statement, 119
tactful communication, 117
timing, 110
ways to practice, 124
where to dig, 119
security regression tests
Heartbleed example, 216
how to write, 216
importance, 215
security requirements
data collection, 101
high-value private key, 101
top-secret document, 100
security testing, 205–220
best practices, 219
catching up, 220
cross-site scripting, 212
denial-of-service attacks, 216
exception handling, 206
GotoFail vulnerability, 207, 209
importance of, 207
input validation, 211
integer overflow, 211
limits of, 210
memory management, 206
resource consumption, 217
threshold testing, 218
untrusted inputs, 206
web security, 206
writing test cases, 211
Separation of Duty pattern, 67, 232
Separation of Privilege pattern, 67
serialization, 143
SHA-256 hash, 200
Shostack, Adam, 25
side-channel attack, 11, 30, 141
Snowden, Edward, 100
software quality, 237
software security, 5
software supply chain, 225
SOP (Same Origin Policy), 193–196
Spectre, 141
speculative execution, 141
spoofing, 36. See also STRIDE
SQL injection, 176–179
stories
 auto salesman, 4
driver’s ed, 75
 “No Game Scheduled”, 176
 street crossing, 6
strcpy function, 161
STRIDE, 35–38
 definition, 35
 origins, 35
 relation to information security principles, 37
 repudiation, 37
strlcpy function, 161
strtol function, 160
sudo, 57

T
tainting, 132
tampering, 13, 37, 78, 143. See also STRIDE
 prevention with MAC, 79
Taylor, Jason, 229
test-driven development (TDD), 219
The Most Dangerous Code in the World, 226
Third-Party Hooks anti-pattern, 74. See also Backflow of Trust anti-pattern
Thompson, Ken, 240

threat modeling, 78, 101–103
 asset prioritization, 29
 balancing security needs, 102
 definition, 26
 early efforts, 24
 essential threat model, 102
 granularity, 28
 incorporating into design, 101
 iterative process, 27
 methodology varieties, 27
 overview, 26
 personally identifiable information, 102
 real-life applications, 41
 real world, 40
 real world versus digital, 27
 working from a model, 27
threats, 23–41 See also attacks
 addressing, 44
 availability, 13
 brute-force guessing, 16
 categorizing with STRIDE, 35
 fact of communication, 50
 identifying, 33
 mitigation, 38, 43–52
 privacy, 39
threat taxonomy. See STRIDE
timing attack
 forgot password example, 142
 Meltdown, 141
 mitigation, 142
 Spectre, 141
 speculative execution example, 141
toolbox. See crypto toolbox
 transparency, 238
Transparent Design pattern, 56, 77
Transport Layer Security (TLS), 89, 162
 Heartbeat Extension, 162
triage. See vulnerability triage
trust, 5
 actions, 10
 being trustworthy, 10
 decisions, 8
 decision tree, 8
 features, 10
 feeling trust, 6
trust (continued)
 independent third-party, 10
 spectrum, 8
 transparency, 10
 trust but verify, 8
trust boundaries, 26, 101, 120
 identification, 30
 kernel/userland interface, 31
trust level
 aggregating or splitting, 32
 trust vs. privilege, 31
Trustworthy Deputy. See also Confused Deputy anti-pattern
Twitter, 19

U
underflow, 150
 mitigation, 152
understanding security, 4–5
Unicode
 case, changing, 175
 combining characters, 175
 homomorphs, 174
Unified Modeling Language (UML), 27
uniform resource locator (URL), 188
Unpatchable Components
 anti-pattern, 74
unpickling, 143
untrusted input, 132, 143, 167–168
userland. See trust boundaries

V
vulnerabilities, 130, 133.
 buffer overflow, 160
 character string, 173–175
 countermeasures, 140
 cross-site request forgery (CSRF or XSRF), 199
 cross-site scripting, 196
 example of a chain, 134
 fixed-width integer, 147
 floating point, 149
 GotoFail, 137
 Heartbleed, 162, 216
 injection, 175, 199
 path traversal, 179
 regular expressions, 181
 relation to bugs, 133
 SQL injection, 176–179
 Unicode, 174
 XML entities, 182
vulnerability, narrowing windows of, 46
vulnerability chains, 134
vulnerability triage, 228–231
 crafting working exploits, 230
 decision making, 231
 DREAD assessments, 229

W
web security, 185–203
 client/server model, 187
 common vulnerabilities, 196–201
 CSS visited selector, 202
 frameworks, 186
 HTML5, 196
 HTTP header injection, 202
 HTTP response headers, 202
 model, 187
 redirects, 202
 rel="noopener" attribute, 202
 rel="noreferrer" attribute, 202
 session cookies, 194–195, 200
 X-Frame-Options header, 202
 XML external entity attacks, 202
 window.open, 193
World Wide Web, 185. See also web security

X
xkcd comics
 Epoch fail (376), 219
 Exploits of a Mom (327), 176
 Heartbleed Explanation (1354), 165
 Security versus the $5 wrench (538), 90
XSRF. See cross-site request forgery (CSRF or XSRF)
XSS. See cross-site scripting (XSS)