INDEX

Numbers

2D, 9, 18, 203, 204. See also specific objects
3D, scene as, 9. See also specific objects
3D plane, equation for, 138
565 format, 8
888 format, 8

A

acceleration, hardware, 202
acceleration structures, 202
additive color model, 6, 6-7
algebra, linear
matrix operations, 210-213
points, 203-204, 205-210
vectors, 204-210
algorithms. See also
raytracer/raytracing
attribute-mapping, 153, 178
back face culling, 159
basic rays, 27
Bresenham's Algorithm, 90
camera, 67
clipping, 144, 145-147
depth, 153, 170
diffuse, 39
embarrassingly parallelizable, 67
GPUs and, xix
gradient, 102
illumination at a point, 164
instances, 119
level-of-detail, 201
lines and, 85-89
overview of, 15
painter's, 150
perspective, 110
recursive, 58
reflections, 62
scene, 117,118
shading, 171, 174
shadows, 57
sorting, 151
specular, 48
textures, 180
transforms, 120-121, 131
triangles, 96, 114, 116
ambient light, 32, 32, 38, 194, 198
angle(s), 33, 34, 41
ApplyTransform function, 122
assumptions, basic, 16-17
atmospheric effects, 202
attribute-mapping algorithm, 153, 178

B

back face culling, 157-161, 159
back faces, 158, 198
Bézier curve, 202
bilinear filtering, 181-183, 183
bounding sphere, 69-70, 139
brain, color and light within, 3
Bresenham's Algorithm, 90
buffering, depth, 151-157, 152

c

caching, 68, 68
camera
algorithm, 67
coordinate system of, 124
defining, 105
illustration of, 67, 198
mipmap level and, 187
online demonstration of, 67
orientation, 16, 17
point of view of, 18,58, 106
position, 16, 17, 65-67, 130
rotation matrix of, 66
camera (continued)
space, 124, 125
transformation of, 122-124, 125, 131, 132
canonical representation, 126
canvas
as $2 \mathrm{D}, 9$
coordinate system of, 2-3, 9
defined, 1
overview of, 1-3
scene versus, 9
size of, 130
to viewport, 17-18, 24, 66, 108, 129
CanvasToViewport function, 24, 66
Carmack, John, 199
Carmack's Reverse, 199
Cartesian coordinates, 126-127
caustics, 202
center, 19
checkerboard texture, mipmapping of, 183-186
clamping, 9
ClipInstanceAgainstPlane function, 145-146
ClipInstance function, 145
clipping
as 3D operation, 147
algorithm, 144, 145-147
objects, whole, 139-141
online demonstration of, 147
overview of, 134
pseudocode for, 145-147
scene against plane, 135-137
triangles, 142-144
clipping plane, 134, 138-139, 144
clipping volume, 134, 134-135, 139
ClipScene function, 145
ClipTriangle function, 146
ClipTrianglesAgainstPlane function, 146 closed objects, 159
ClosestIntersection code, 54-55
CMYK color model, 5
code, main method of, 24
color
additive model of, 6-7
channel, 8
CMYK model of, 5
defined, 3
depth, 7-8, 8
light and, 3
manipulation of, 8-9
models of, 3-7
pixel assignment of, 2, 151-152
primary, 4
reflection of, 192
representation of, 7-8
RGB model of, 6
subtractive model of, 4-5
composite, 194
computational photography, 202
ComputeLighting function, $46,47,55-56$, 61
computer graphics, introduction to, xvii, xx
computer screens, light and, 6
constructive solid geometry, 71-73
coordinate, 126-129, 203
coordinate systems
3D scenes and, 9
camera and, 124
illustration of, 2
model space, 119
origin within, $2,16,19$
overview of, 2-3
tangent space, 191
transformations and, 122-124
world space, 119
crate, rendering of, 175-181
crayons, 4-5
cross product operation, 160-161, 209-210
cube
camera transformation and, 122-124
illustration of, 114, 131
mapping, 192, 192-193
open versus closed, 159
projecting of, 109-110
representing, 113-117
transformation of, 119-122
triangles and, 114-115, 116-117
CullBackFaces function, 159

D

Death Star, rendering of, 71-72
dependent variable, 87
depth, color and, 7-8
depth buffering, 151-157, 152, 198
diffuse reflection, 33, 33-39
dimension, 203
direction, vector, 205
directional lights, $31,31,38,52-54$, 199-200
division, perspective projection and, 128-129
Doom 3, 199
dot product, 21, 208, 208-209
DrawFilledTriangle function, 94-95, 149-150
drawing
lines, 81-86
triangles, filled, 92-96
triangles, shaded, 97-103
triangles, wireframe, 91-92, 96
DrawLine function
Interpolate function and, 88-89
use of, 81-82, 83, 86-87, 109-110
wireframe triangles, 91-92
DrawShadedTriangle function, 101-102, 165-166
DrawWireframeTriangle function, 91-92, 150
dynamic objects, 193

E

Earth, Sun and, 31, 32
edge shading, 98-100
edges, determination of, 195
effects, atmospheric, 202
Einstein, Albert, xviii
energy, light rays and, 33-34
environment mapping, 192-193
equation
3D plane, 138
clipping plane, 144
diffuse reflection, 36
illumination, 45, 164, 169-170
parametric, 19, 144
perspective projection, 107-109, 133, 156
projection, 107-109, 125, 138, 147
quadratic, 22
ray, 19, 23
sphere, 19-20

F

field of view (FOV), 16
filled triangles, 91-96
filtering, 181-183, 183, 187
first light, illustration of, 194
fixed camera orientation, 16
fixed viewing position, 16
flat shading, 164-165, 165, 169, 174
font rendering, 202
FOV (field of view), 16
frame, dimensions of, 16
frequency, wavelength and, 4
front faces, 158, 198
functions
ApplyTransform function, 122
CanvasToViewport function, 24, 66
ClipInstanceAgainstPlane function, 145-146
ClipInstance function, 145
ClipScene function, 145
ClipTriangle function, 146
ClipTrianglesAgainstPlane function, 146
ComputeLighting function, 46, 47, 55-56, 61
CullBackFaces function, 159
DrawFilledTriangle function, 94-95, 149-150
functions (continued)
DrawLine function, 81-82, 83, 86-87, 88-89, 91-92, 109-110
DrawShadedTriangle function, 101-102, 165-166
DrawWireframeTriangle function, 91-92, 150
GetTexel function, 183
Interpolate function, 87-90, 99
InteresectRaySphere function, 25, 68
linear, 80-81, 87-90, 98-99, 155-156, 157
ProjectVertex function, 109-110
PutPixel function, 3, 10, 80, 199
RenderInstance function, 118, 121
RenderModel function, 130
RenderObject function, 116
RenderScene function, 118, 130-131
RenderTriangle function, 116
SignedDistance function, 146-147
ViewportToCanvas function, 109-110

G

gamma correction, 202
GetTexel function, 183
global illumination, 201
Gouraud, Henri, 166
Gouraud shading, 165-169, 174
GPUs, xix
gradient, 97-103

H

half-spaces, 135
hard shadows, 193
hardware acceleration, 202
high dynamic range, 202
homogeneous coordinates, 126, 126-129
horizontal segments, filled triangles and, 92-96
defined, 163
equation, 45, 164, 169-170
global, 201
shading versus, 163-164
image-based lighting, 202
image compression, 202
image processing, 202
image segmentation, 202
independent variable, 87
infinite hall effect, 58
infrared wavelengths, 4
inner product, 208
instance, 117, 117-119
intensity (i), 30
InteresectRaySphere function, 25, 68
interior shading, 100-102
Interpolate function, 87-90, 99
interpolation, linear
function, 87-90
illustration of, 179, 180
texels and, 178
use of, 155, 182-183
intersection, 135, 144

K

knowledge, benefits of, xix
L
lens, rendering of, 71-72
level-of-detail algorithms, 201
light. See also illumination
ambient, 32, 32, 38, 194, 198
angle of, 33, 34
assumptions of, 29-30
color and, 3
composite, 194
diffuse reflection of, 33-39
directional, 31, 31, 38, 52-54, 199-200
discontinuity of, 165-166
first, 194
image-based, 202
intensity of, 34
introduction of, 29
mirror reflection of, 40, 57-60
omnidirectional, 30
point, 30, 38
reflection of, 40
refraction of, 74
scattered, 32
second, 194
single point illumination of, 32-33
sources of, 18, 30-32, 38
surface reflection of, 39-40
white, 5
light bulb, 30
light vector, 30, 31, 34
linear algebra
matrix operations, 210-213
points, 203-204, 205-210
vectors, 204-210
linear function, 80-81, 87-90, 98-99, 155-156, 157
linear interpolation
function, 87-90
illustration of, 179, 180
texels and, 178
use of, $155,182-183$
lines, 80-89, 108-109

M

magnitude, 205
mapping, 189-193
matrices
adding, 211
defined, 210
multiplying, 211-212
operations of, 210-213
projection, 128-129
rotation, 66, 127
scale, 127
transform, 124-125, 129-131
translation, 127-128
vector multiplication and, 212
viewpoint-to-canvas, 129
matte objects, 33-39, 40
mipmapping, 183-186, 186
mirrors, reflections and, 40, 57-60
models, 117, 117-122, 124-125, 202
model space, 119, 124-125
model transform, 120
Moon, Sun and, 32

N

nearest neighbor filtering, 181
normal mapping, 189-192, 190
normals, 36-37, 167-168, 189
normal vector, 34,210

0

objects. See also specific objects clipping, 139-141
closed, 159
constructive solid geometry and, 71-73
crate, 175-181
dynamic, 193
illustration of, 136, 137, 139
matte, 33-39, 40
open, 159
projection plane and, 134
questions related to, 79
reflecting, 192
shiny, 33, 39-48
solid, 149-150
static, 193
omnidirectional light, 30
orientation, camera, 16,17
origin, 2, 16, 19
orthographic projection, 199, 199-200

P

P^{\prime}, finding, 106-107
painter's algorithm, 150, 150-151
parameter space, 23
parametric equation, 19, 144
particle systems, 202
pass, 193-194
percentage closer filtering, 200
performance optimizations, 67-70
perspective projection
camera and, 125
division and, 128-129
equation of, 107-109, 133, 156
illustration of, 106, 107
limitations of, 147
online demonstration of, 110
overview of, 105-111
Phong, Bui Tuong, 171
Phong shading, 169-173, 171, 174
photography, computational, 202
photon mapping, 18
photon tracing, 18
physically based rendering, 201
pixel(s)
back face culling and, 157
canvas coordinates of, $2,9,17,82$
color assignment to, 2, 80, 151-152
control over, 94
depth buffering and, 151-152
illustration of, 18
mipmapping of, 183-186
normal mapping and, 190
points to, 108
ray from, 58
shading, 191
shadows and, 193-195
stencil buffering of, 199
subsampling of, 70
supersampling of, 75
texels as, 177, 181
plane, projection, 18, 134, 135-137, 138
point lights, 30, 38
points, 203, 203-204, 205-210
position, camera, 16, 17
position, point lights and, 30
PQR triangle, 34-35
precomputing, 186
primary colors, 4, 6
projection. See also perspective projection
of a cube, 109-110
equation of, 107-109, 125, 138, 147
of lines, 108-109
matrix, 128-129
orthographic, 199, 199-200
plane, 18, 23, 66, 134, 135-137, 138
of vertices, 115-116
ProjectVertex function, 109-110
pseudocode
back face culling, 159
clipping, 145-147
diffuse reflection rendering, 37-39
DrawShadedTriangle, 101-102
interpolated color, 183
reflections, 61
scene language of, 26
scene rendering, 130-131
shadow rendering, 54-56
use of, 24
PutPixel function, 3, 10, 80, 199

Q

quadratic equation, 22

R

R5G6B5 format, 8
R8G8B8 format, 8
radius, 19
ranges, PutPixel and, 3
rasterizer. See also PutPixel function
characteristics of, 173
extensions to, 189-200
reference scene by, 172
simple scene by, xviii
textures by, xix
rays. See also light
camera position and, 66
energy from, 33-34
equation of, 19, 23
intersections of, 196-198
mirror reflection of, 57-60
origin of, 25
reflection of, 40
refraction of, 74
shadows and, 52-54
shadow volume and, 196-198
sphere and, 20-22
tracing, 18-22
raytracer/raytracing
algorithm of, 17
challenges of, 79
recursive, xix, 58
scene of, xviii, 27
speed increase of, 67-68
spheres and, 19-20
RBG color model, 6
real-world units, 9
recursion_depth, 61
recursion limit, 58
recursive raytracing, 58
reflections
angles and, 41
illustration of, 58, 59
mirrors and, 57-60
online demonstration of, 62
rasterizer and, 192
recursive, xix
rendering with, 60-62
vectors and, 41
reflective property, 60-61
ReflectRay formula, 60-61
refraction, 74-75
refraction index, 74
rendering
curve, 202
font, 202
objects, solid, 149-150
physically based, 201
shadows, 193-200
of Swiss landscape, 13-15
terrain, 202
voxel, 201
RenderInstance function, 118, 121
RenderModel function, 130
RenderObject function, 116
RenderScene function, 118, 130-131
RenderTriangle function, 116
representation, of color, 7-8
resolution, shadow maps and, 200
rotation, applying, 120-121
rotation matrix, 66,127

S
scale matrix, 127
scene
as $3 \mathrm{D}, 9$
algorithm, 117, 118
clipping against plane, 135-137
coordinate systems for, 9
defined, 9
illustration of, 26, 136, 137
light rendering of, 194
object level of, 136
online demonstration of, 117
overview of, 9-10
raytraced, 27
rendering process of, 15,118 , 130-131
triangle level of, 137
vertex level of, 137
second light, illustration of, 194
segment-plane intersection, 144
segments, horizontal, filled triangles and, 92-96
shaded triangles, 97-103, 98
shaders, xix, xix
shading
algorithm, 171, 174
defined, 163
edge, 98-100
flat, 164-165, 169, 174
Gouraud, 165-169, 174
illumination versus, 163-164
interior, 100-102
online demonstration of, 171
Phong, 169-173, 171, 174
shadow coherence, 68,69
shadow mapping, 199-200
shadows
algorithm, 57
ambient light and, 198
defined, 51
hard, 193
illustration of, 52, 56
online demonstration of, 57
optimizations of, 68-69
shadows (continued)
overview of, 193-200
rendering with, 54-57
soft, 199
stencil, 193-199
understanding, 51-54
volumes of, 195-196
shadow volumes, 195, 196-198
shiny objects, 33, 39-48
signed distance, 138
SignedDistance function, 146-147
single point, illumination of, 32-33
slope, 82, 82-87
Snell's Law, 74
soft shadows, 199
software, shaders as, xix
solid objects, rendering of, 149-150
sorting algorithm, 151
spatial structures, 69-70
specular exponent, 43
specular highlight, 172
specular reflection, 39-48, 40
sphere
bounding, 69-70, 139
defined, 19
equation for, 19-20
illustration of, 20, 172, 173
intersection of, 73
light discontinuity of, 165-169
normals of, 36-37
as primitive, 70
ray and, 20-22
rendering of, 22-27
shadows and, 52-54
subtraction of, 73
union of, 73
splines, 202
static objects, 193
stencil buffer, 195, 198-199
stencil shadows, 193-199
structures, acceleration, 202
subsampling, 70, 70
subtractive color model, 4, 4-5, 6
Sun, approximation of, 31
supersampling, 75, 75
Swiss landscape, rendering of, 13-15

T

tangent space, 191
terrain rendering, 202
texels, 177, 181-183
texture mapping, 189
textures
bilinear filtering and, 181-183
checkerboard, 183-186
crate painting, 175-181
cube map, 192
defined, 176
illustration of, 178, 182
mapping of, 189
mipmapping and, 183-186
online demonstration of, 180
precomputing of, 186
procedural generation of, 202
rasterized, xix
trilinear filtering of, 187
TraceRay method
computing requirements of, 71
mirror reflection and, 57-60
recursion limit to, 61
shadow rendering and, 54-55
specular reflection and, 47
transparency and, 73
triangles and, 71
use of, 24-25
transform, online demonstration of, 131
transform matrix, 124-125, 129-131
translation, applying, 120-121
translation matrix, 127-128
transparency, 73-75
triangles
algorithm, 96, 114, 116
back face culling of, 157-161
back faces of, 158, 198
classifying, 159-161
clipping and, 136-137, 142-144
cubes and, 114-115, 116-117
filled, 91-96
front faces of, 158, 198
illustration of, 137, 142, 143
normal map to, 190
online demonstration of, 96
as primitive, 71
shaded, 97-103
shading of, 163-173
solid objects rendering and, 150-151
wireframe, 91-92, 96
Triangles list, 115
trilinear filtering, 187

U

ultraviolet wavelengths, 4

V

values, caching, 68
vectors
adding, 206-207
colors as, 8
cross product, 160-161, 209-210
defined, 204
direction of, 205
dot product of, 21, 208-209
illustration of, 34
length of, 20
light, 31
magnitude of, 205
manipulation of, 126
matrix multiplying and, 212
multiplying by number, 207-208
normal, 34, 36-37, 210
normal mapping and, 190
operations of, 205-210
reflection, 41
representing, 204-205
Vertex list, 115
verticies. See also cube; triangles
clipping and, 142-144
projection of, 115-116
sorting of, 93,102
sphere normals for, 167-168
transformation of, 119
video games, rendering process within, 147
viewport. See also CanvasToViewport function
canvas to, 17-18
coordinates of, 125
defined, 16
defining, 105-106
illustration of, 18
rays through, $18,23,70$
size of, 130
visibility within, 134-135
viewport-to-canvas, 108, 129
ViewportToCanvas function, 109-110
visible range, 4
voxel rendering, 201

W

wavelength, frequency and, 4
w-coordinate, 127-128. See also coordinate systems
websites
camera position demo, 67
clipping demo, 147
depth buffering demo, 153
diffuse demo, 39
gradient demo, 102
instances demo, 119
lines demo, 89
perspective demo, 110
raytraced scene demo, 27
reflection demo, 62
scene demo, 117
shading demo, 171
shadow rendering demo, 57
specular reflection demo, 48
texture demo, 180
transform demo, 131
triangle demo, 96
white light, 5
wireframe, 91
wireframe triangles, 91-92, 96
wooden texture, 175-183
world space, 119, 124-125

X

x-coordinate, 2, 3, 81. See also coordinate systems

Y

y-coordinate, 2, 3, 81. See also coordinate systems

Z

z-coordinate, 128, 152. See also coordinate systems

