
3
L IGHT

We’ll start adding “realism” to our render-
ing of the scene by introducing light. Light

is a vast and complex topic, so we’ll present
a simplified model that is good enough for our

purposes. This model is, for the most part, inspired
by how light works in the real world, but it also takes
some liberties with the aim of making the rendered
scenes look good.

We’ll start with some simplifying assumptions that will make our lives
easier, then we’ll introduce three types of light sources: point lights, direc-
tional lights, and ambient light. We’ll end the chapter by discussing how
these lights affect the appearance of surfaces, including diffuse and specu-
lar reflection.

Simplifying Assumptions
Let’s make a few assumptions to make things simpler. First, we declare that
all light is white. This lets us characterize any light using a single real number,

i, called the intensity of the light. Simulating colored lights isn’t that com-
plicated (we’d just use three intensity values, one per color channel, and
compute all color and lighting channel-wise), but we’ll stick to white lights
to keep things simple.

Second, we’ll ignore the atmosphere. In real life, lights look dimmer the
farther away they are; this is because of particles floating in the air that ab-
sorb part of the light as it travels through them. While this isn’t particularly
complicated to do in a raytracer, we’ll keep it simple and ignore this effect;
in our scene, distance doesn’t make lights any less bright.

Light Sources
Light has to come from somewhere. In this section, we’ll define three differ-
ent types of light sources.

Point Lights
Point lights emit light from a fixed point in 3D space, called their position.
They emit light equally in every direction; this is why they are also called om-
nidirectional lights. A point light is therefore fully described by its position
and its intensity.

A light bulb is a good real-life approximation of a point light. While a
real-life light bulb doesn’t emit light from a single point, and it isn’t perfectly
omnidirectional, it’s a pretty accurate approximation.

Let’s define the vector L⃗ as the direction from a point in the scene, P,
to the light, Q. We can calculate this vector, called the light vector, as Q – P.
Note that since Q is fixed but P can be any point in the scene, L⃗ is different
for every point in the scene, as you can see in Figure 3-1.

Q

x

x

L
1

L
1

P
1

P
1

Figure 3-1: A point light at Q. The L⃗ vector
is different for every point P.

30 Chapter 3

Directional Lights
If a point light is a good approximation of a light bulb, does it also work as
an approximation of the Sun?

This is a tricky question, and the answer depends on what we are trying
to render. At the solar-system scale, the Sun can be approximated as a point
light. After all, it emits light from a point, and it emits in all directions, so it
seems to qualify.

However, if our scene represents something happening on Earth, it’s
not such a good approximation. The Sun is so far away that every ray of light
that reaches us has almost exactly the same direction. We could approximate
this with a point light located very, very, very far away from the objects in
the scene. However, the distance between the light and the objects would be
orders of magnitude greater than the distance between objects, so we’d start
running into numerical accuracy errors.

To better handle these situations, we define directional lights. Like point
lights, directional lights have an intensity, but unlike them, they don’t have
a position; instead, they have a fixed direction. You can think of them as in-
finitely distant point lights located in the specified direction.

While in the case of point lights we need to compute a different light
vector L⃗ for every point P in the scene, in this case L⃗ is given. In the Sun-to-
Earth scene example, L⃗ would be (center of Sun) – (center of Earth). Figure 3-2
shows what this looks like.

x

x

P
1

P
2

L

L

L

Figure 3-2: A directional light. The L⃗ vector is the
same for every point P.

As we can see here, the light vector of a directional light is the same for
every point in the scene. Compare this with Figure 3-1, where the light vec-
tor of a point light is different for every point in the scene.

Light 31

Ambient Light
Can every real-life light be modeled as a point or directional light? Pretty
much. Are these two types of light enough to light a scene? Unfortunately
not.

Consider what happens to the Moon. The only significant light source
nearby is the Sun. So the “front half” of the Moon with respect to the Sun
gets all its light, and its “back half” is in complete darkness. We see this from
different angles from Earth, creating what we call the “phases” of the Moon.

However, the situation down here on Earth is a bit different. Even points
that don’t receive light directly from a light source aren’t completely in the
dark (just look at the floor under your chair). How do rays of light reach
these points if their “view” of the light sources is obstructed by something
else?

As mentioned in “Color Models” in Chapter 1, when light hits an ob-
ject, part of it is absorbed, but the rest is scattered back into the scene. This
means that light can come not only from light sources, but also from objects
that get light from light sources and scatter part of it back into the scene.
But why stop there? The scattered light will in turn hit some other object,
part of it will be absorbed, and part of it will be scattered back into the scene.
And so on, until all of the energy of the original light has been absorbed by
the surfaces in the scene.

This means we should treat every object as a light source. As you can imag-
ine, this would add a lot of complexity to our model, so we won’t explore
that mechanism in this book. If you’re curious, search for global illumination
and marvel at the pretty pictures.

But we still don’t want every object to be either directly illuminated or
completely dark (unless we’re actually rendering a model of the solar sys-
tem). To overcome this limitation, we’ll define a third type of light source,
called ambient light, which is characterized only by its intensity. We’ll declare
that an ambient light contributes some light to every point in the scene, re-
gardless of where it is. It’s a gross oversimplification of the very complex
interaction between the light sources and the surfaces in the scene, but it
works well enough.

In general, a scene will have a single ambient light (because ambient
lights only have an intensity value, any number of them can be trivially com-
bined into a single ambient light) and an arbitrary number of point and di-
rectional lights.

Illumination of a Single Point
Now that we know how to define the lights in a scene, we need to figure out
how the lights interact with the surfaces of the objects in the scene.

32 Chapter 3

In order to compute the illumination of a single point, we’ll compute
the amount of light contributed by each light source and add them together
to get a single number representing the total amount of light the point re-
ceives. We can then multiply the color of the surface at that point by this
amount to get the shade of color that represents how much light it receives.

So, what happens when a ray of light, be it from a directional light or a
point light, hits a point on some object in our scene?

We can intuitively classify objects into two broad classes, depending
on how they reflect light: “matte” and “shiny” objects. Since most objects
around us can be classified as matte, we’ll focus on this group first.

Diffuse Reflection
When a ray of light hits a matte object, the ray is scattered back into the
scene equally in every direction, a process called diffuse reflection; this is what
makes matte objects look matte.

To verify this, look at some matte object around you, such as a wall. If
you move with respect to the wall, its color doesn’t change. That is, the light
you see reflected from the object is the same no matter where you’re looking
from.

On the other hand, the amount of light reflected does depend on the
angle between the ray of light and the surface. Intuitively, this happens be-
cause the energy carried by the ray has to spread over a smaller or bigger
area depending on the angle, so the energy reflected to the scene per unit
of area is higher or lower, respectively, as shown in Figure 3-3.

Figure 3-3: The energy of a ray of light spreads over areas of different size, depending on
its angle to the surface.

In Figure 3-3, we can see two rays of light of the same intensity (repre-
sented by having the same width) hitting a surface head-on and at an angle.
The energy carried by the rays of light spreads uniformly across the areas
they hit. The energy of the ray on the right spreads across a bigger area than

Light 33

that of the ray on the left, and therefore each point in its area receives less
energy than in the left-hand case.

To explore this mathematically, let’s characterize the orientation of a
surface by its normal vector. The normal vector of a surface at point P, or sim-
ply “the normal,” is a vector perpendicular to the surface at P. It’s also a unit
vector, meaning its length is 1. We’ll call this vector N⃗.

Modeling Diffuse Reflection
A ray of light with direction L⃗ and intensity I hits a surface with normal N⃗.
What fraction of I is reflected back to the scene, as a function of I, N⃗, and L⃗?

As a geometric analogy, let’s represent the intensity of the light as the
“width” of the ray. Its energy spreads over a surface of size A. When N⃗ and L⃗
have the same direction—when the ray is perpendicular to the surface—then
I = A, which means the energy reflected per unit of area is the same as the
incident energy per unit of area: I

A = 1. On the other hand, as the angle
between L⃗ and N⃗ approaches 90◦, A approaches ∞, so the energy per unit of
area approaches 0; limA→∞

I
A = 0. But what happens in between?

The situation is depicted in Figure 3-4. We know N⃗, L⃗, and P ; I have
added the angles α and β, and the points Q, R, and S to make writing about
the diagram easier.

N

L

I

A

P

Q

S

R

β
α

Figure 3-4: The vectors and angles involved in the diffuse
reflection calculations

Since a ray of light technically has no width, we can assume that every-
thing happens in a flat, infinitesimally small patch of the surface. Even if it’s
the surface of a sphere, the area we’re considering is so infinitesimally small
that it’s almost flat in comparison with the size of the sphere, just like Earth
looks flat at small scales.

The ray of light, with a width of I, hits the surface at P, at an angle β.
The normal at P is N⃗, and the energy carried by the ray spreads over A. We
need to compute I

A .
Consider RS, the “width” of the ray. By definition, it’s perpendicular

to L⃗, which is also the direction of PQ. Therefore, PQ and QR form a right
angle, making PQR a right triangle.

34 Chapter 3

One of the angles of PQR is 90◦, and another is β. The remaining angle
is therefore 90◦ – β. But note that N⃗ and PR also form a right angle, which
means α + β must also be 90◦. Therefore, Q̂RP = α.

Let’s focus on the triangle PQR (Figure 3-5). Its angles are α, β, and 90◦.
The side QR measures I

2 , and the side PR measures A
2 .

P

Q

R

α

P

Q
R

α

Figure 3-5: The PQR triangle in a trigonometry context

And now, trigonometry to the rescue! By definition, cos(α) = QR
PR ; substi-

tuting QR with I
2 and PR with A

2 , we get

cos(α) =
I
2
A
2

which becomes

cos(α) =
I
A

We’re almost there. α is the angle between N⃗ and L⃗. We can use the
properties of the dot product (feel free to consult the Linear Algebra ap-
pendix) to express cos(α) as

cos(α) =
⟨N⃗, L⃗⟩
|N⃗||L⃗|

And finally

I
A

=
⟨N⃗, L⃗⟩
|N⃗||L⃗|

We have arrived at a simple equation that gives us the fraction of light
that is reflected as a function of the angle between the surface normal and
the direction of the light.

Note that the value of cos(α) becomes negative for angles over 90◦. If
we blindly use this value, we can end up with a light source that makes a

Light 35

surface darker! This doesn’t make any physical sense; an angle over 90◦ just
means the light is actually illuminating the back of the surface, and therefore
it doesn’t contribute any light to the point we’re illuminating. So if cos(α)
becomes negative, we need to treat it as if it was 0.

The Diffuse Reflection Equation
We can now formulate an equation to compute the full amount of light re-
ceived by a point P with normal N⃗ in a scene with an ambient light of inten-
sity IA and n point or directional lights with intensity In and light vectors L⃗n
either known (for directional lights) or computed for P (for point lights):

IP = IA +
n∑
i=1

Ii
⟨N⃗, L⃗i⟩
|N⃗||L⃗i|

It’s worth repeating that the terms where ⟨N⃗, L⃗i⟩ < 0 shouldn’t be added to
the point’s illumination.

Sphere Normals
There’s only a small detail missing: where do the normals come from? The
answer to this general question is far more complex than it might seem, as
we’ll see in the second part of this book. Fortunately, at this point we’re only
dealing with spheres, and there’s a very simple answer for them: the normal
vector of any point of a sphere lies on a line that goes through the center of
the sphere. As you can see in Figure 3-6, if the sphere center is C, the direc-
tion of the normal at point P is P – C.

C

P

N

Figure 3-6: The normal of a sphere at P has
the same direction as CP.

Why “the direction of the normal” and not “the normal”? A normal
vector needs to be perpendicular to the surface, but it also needs to have

36 Chapter 3

length 1. To normalize this vector and turn it into a true normal, we need to
divide it by its own length, thus guaranteeing the result has length 1:

N⃗ =
P – C

|P – C|

Rendering with Diffuse Reflection
Let’s translate all of this to pseudocode. First, let’s add a couple of lights to
the scene:

light {

type = ambient

intensity = 0.2

}

light {

type = point

intensity = 0.6

position = (2, 1, 0)

}

light {

type = directional

intensity = 0.2

direction = (1, 4, 4)

}

Note that the intensities conveniently add up to 1.0; because of the way
the lighting equation works, this ensures that no point can have a light in-
tensity greater than this value. This means we won’t have any “overexposed”
spots.

The lighting equation is fairly straightforward to translate to pseudocode
(Listing 3-1).

ComputeLighting(P, N) {

i = 0.0

for light in scene.Lights {

if light.type == ambient {

¶ i += light.intensity

} else {

if light.type == point {

· L = light.position - P

} else {

¸ L = light.direction

}

Light 37

n_dot_l = dot(N, L)

¹ if n_dot_l > 0 {

º i += light.intensity * n_dot_l/(length(N) * length(L))

}

}

}

return i

}

Listing 3-1: A function to compute lighting with diffuse reflection

In Listing 3-1, we treat the three types of light in slightly different ways.
Ambient lights are the simplest and are handled directly ¶. Point and direc-
tional lights share most of the code, in particular the intensity calculation
º, but the direction vectors are computed in different ways (· and ¸), de-
pending on their type. The condition in ¹ makes sure we don’t add negative
values, which represent lights illuminating the back side of the surface, as we
discussed before.

The only thing left to do is to use ComputeLighting in TraceRay. We replace
the line that returns the color of the sphere:

return closest_sphere.color

with this snippet:

P = O + closest_t * D // Compute intersection

N = P - closest_sphere.center // Compute sphere normal at intersection

N = N / length(N)

return closest_sphere.color * ComputeLighting(P, N)

Just for fun, let’s add a big yellow sphere:

sphere {

color = (255, 255, 0) # Yellow

center = (0, -5001, 0)

radius = 5000

}

We run the renderer and, lo and behold, the spheres now start to look
like spheres (Figure 3-7)!

38 Chapter 3

Figure 3-7: Diffuse reflection adds a sense of depth and volume to the scene.

You can find a live implementation of this algorithm at https://
gabrielgambetta.com/cgfs/diffuse-demo.

But wait, how did the big yellow sphere turn into a flat yellow floor? It
hasn’t; it’s just so big compared to the other three spheres, and the camera
is so close to it, that it looks flat—just like the surface of our planet looks flat
when we’re standing on it.

Specular Reflection
Let’s turn our attention to shiny objects. Unlike matte objects, shiny objects
look slightly different depending on where you’re looking from.

Imagine a billiard ball or a car just out of the car wash. These kinds of
objects exhibit very specific light patterns, usually bright spots, that seem to
move as you move around them. Unlike matte objects, the way you perceive
the surface of these objects does actually depend on your point of view.

Note that a red billiard ball stays red if you walk around it, but the bright
white spot that gives it its shiny appearance moves as you do. This shows that
the new effect we want to model doesn’t replace diffuse reflection, but in-
stead complements it.

To understand why this happens, let’s take a closer look at how surfaces
reflect light. As we saw in the previous section, when a ray of light hits the
surface of a matte object, it’s scattered back to the scene equally in every di-
rection. This happens because the surface of the object is irregular, so at the

Light 39

https://gabrielgambetta.com/cgfs/diffuse-demo
https://gabrielgambetta.com/cgfs/diffuse-demo

microscopic level it behaves like a set of tiny surfaces pointing in random
directions (Figure 3-8).

Figure 3-8: What the rough surface of a matte object might look like through a micro-
scope. The incident rays of light are reflected in random directions.

But what if the surface isn’t that irregular? Let’s go to the other extreme:
a perfectly polished mirror. When a ray of light hits a mirror, it’s reflected in
a single direction. If we call the direction of the reflected light R⃗, and we
keep the convention that L⃗ points toward the light source, Figure 3-9 illus-
trates the situation.

L R

Figure 3-9: Rays of light reflected by a mirror

Depending on how “polished” the surface is, it behaves more or less like
a mirror; this is why it’s called specular reflection, from speculum, the Latin
word for mirror.

For a perfectly polished mirror, the incident ray of light L⃗ is reflected in
a single direction, R⃗. This is why you see reflected objects very clearly: for
every incident ray of light L⃗, there’s a single reflected ray R⃗. But not every

40 Chapter 3

object is perfectly polished; while most of the light is reflected in the direc-
tion of R⃗, some of it is reflected in directions close to R⃗. The closer to R⃗, the
more light is reflected in that direction, as you can see in Figure 3-10. The
“shininess” of the object is what determines how rapidly the reflected light
decreases as you move away from R⃗.

L R

Figure 3-10: For surfaces that aren’t perfectly polished, the closer a
direction is to R⃗, the more rays of light are reflected in that direction.

We want to figure out how much light from L⃗ is reflected back in the
direction of our point of view. If V⃗ is the “view vector” pointing from P to
the camera, and α is the angle between R⃗ and V⃗, we get Figure 3-11.

L R

N

V

α

Figure 3-11: The vectors and angles involved in the specular
reflection calculation

For α = 0◦, all the light is reflected in the direction of V⃗. For α = 90◦, no
light is reflected. As with diffuse reflection, we need a mathematical expres-
sion to determine what happens for intermediate values of α.

Light 41

Modeling Specular Reflection
At the beginning of this chapter, I mentioned that some models aren’t based
on physical models. This is one of them. The following model is arbitrary,
but it’s used because it’s easy to compute and it looks good.

Consider cos(α). It has the nice properties that cos(0) = 1 and cos(±90) =
0, just like we need; and the values become gradually smaller from 0 to 90 in
a very pleasant curve (Figure 3-12).

Figure 3-12: The graph of cos(α).

This means cos(α) matches all of our requirements for the specular re-
flection function, so why not use it?

There’s one more detail. If we used this formula straight away, every
object would be equally shiny. How can we adapt the equation to represent
varying degrees of shininess?

Remember that shininess is a measure of how quickly the reflection
function decreases as α increases. A simple way to obtain different shini-
ness curves is to compute the power of cos(α) to some positive exponent s.
Since 0 ≤ cos(α) ≤ 1, we are guaranteed that 0 ≤ cos(α)s ≤ 1; so cos(α)s is
just like cos(α), only “narrower.” Figure 3-13 shows the graph for cos(α)s for
different values of s.

42 Chapter 3

Figure 3-13: The graph of cos(α)s

The bigger the value of s, the “narrower” the function becomes around
0 and the shinier the object looks. s is called the specular exponent and it’s a
property of the surface. Since the model is not based on physical reality, the
values of s can only be determined by trial and error—essentially, tweaking
the values until they look “right.” For a physically based model, you can look
into bi-directional reflectance functions (BDRFs).

Let’s put all of this together. A ray of light hits a surface with specular
exponent s at point P, where its normal is N⃗, from direction L⃗. How much
light is reflected toward the viewing direction V⃗?

According to our model, this value is cos(α)s, where α is the angle be-
tween V⃗ and R⃗; R⃗ is in turn L⃗ reflected with respect to N⃗. So the first step is
to compute R⃗ from N⃗ and L⃗.

We can decompose L⃗ into two vectors, L⃗P and L⃗N, such that L⃗ = L⃗N + L⃗P,
where L⃗N is parallel to N⃗ and L⃗P is perpendicular to N⃗ (Figure 3-14).

N

L
L

P

L
N

Figure 3-14: Decomposing L⃗ into its
components L⃗P and L⃗N

L⃗N is the projection of L⃗ over N⃗; by the properties of the dot product
and the fact that |N⃗| = 1, the length of this projection is ⟨N⃗, L⃗⟩. We defined
L⃗N to be parallel to N⃗, so L⃗N = N⃗⟨N⃗, L⃗⟩.

Light 43

Since L⃗ = L⃗P + L⃗N, we can immediately get L⃗P = L⃗ – L⃗N = L⃗ – N⃗⟨N⃗, L⃗⟩.
Now let’s look at R⃗. Since it’s symmetrical to L⃗ with respect to N⃗, its

component parallel to N⃗ is the same as L⃗’s, and its perpendicular compo-
nent is the opposite of L⃗’s; that is, R⃗ = L⃗N – L⃗P. You can see this in Figure 3-
15.

N

L
L

P

L
N

R-L
P

Figure 3-15: Computing L⃗R

Substituting with the expressions we found above, we get

R⃗ = N⃗⟨N⃗, L⃗⟩ – L⃗ + N⃗⟨N⃗, L⃗⟩

and simplifying a bit

R⃗ = 2N⃗⟨N⃗, L⃗⟩ – L⃗

The Specular Reflection Term
We’re now ready to write an equation for the specular reflection:

R⃗ = 2N⃗⟨N⃗, L⃗⟩ – L⃗

IS = IL

(
⟨R⃗, V⃗⟩
|R⃗||V⃗|

)s

As with diffuse lighting, it’s possible that cos(α) is negative, and we should
ignore it for the same reason as before. Also, not every object has to be shiny;
for matte objects, the specular term shouldn’t be computed at all. We’ll note
this in the scene by setting their specular exponent to –1 and handling them
accordingly.

The Full Illumination Equation
We can add the specular reflection term to the illumination equation we’ve
been developing and get a single expression that describes illumination at a
point:

44 Chapter 3

IP = IA +
n∑
i=1

Ii ·

[
⟨N⃗, L⃗i⟩
|N⃗||L⃗i|

+

(
⟨R⃗i, V⃗⟩
|R⃗i||V⃗|

)s]
where IP is the total illumination at point P, IA is the intensity of the ambient
light, N is the normal of the surface at P, V is the vector from P to the cam-
era, s is the specular exponent of the surface, Ii is the intensity of light i, Li is
the vector from P to light i, and Ri is the reflection vector at P for light i.

Rendering with Specular Reflections
Let’s add specular reflections to the scene we’ve been working with so far.
First, some changes to the scene itself:

sphere {

center = (0, -1, 3)

radius = 1

color = (255, 0, 0) # Red

specular = 500 # Shiny

}

sphere {

center = (2, 0, 4)

radius = 1

color = (0, 0, 255) # Blue

specular = 500 # Shiny

}

sphere {

center = (-2, 0, 4)

radius = 1

color = (0, 255, 0) # Green

specular = 10 # Somewhat shiny

}

sphere {

center = (0, -5001, 0)

radius = 5000

color = (255, 255, 0) # Yellow

specular = 1000 # Very shiny

}

This is the same scene as before, with the addition of specular expo-
nents to the sphere definitions.

At the code level, we need to change ComputeLighting to compute the
specular term when necessary, and add it to the overall light. Note that the
function now needs V⃗ and s, as you can see in Listing 3-2.

Light 45

ComputeLighting(P, N, V, s) {

i = 0.0

for light in scene.Lights {

if light.type == ambient {

i += light.intensity

} else {

if light.type == point {

L = light.position - P

} else {

L = light.direction

}

// Diffuse

n_dot_l = dot(N, L)

if n_dot_l > 0 {

i += light.intensity * n_dot_l/(length(N) * length(L))

}

// Specular

¶ if s != -1 {

R = 2 * N * dot(N, L) - L

r_dot_v = dot(R, V)

· if r_dot_v > 0 {

i += light.intensity * pow(r_dot_v/(length(R) * length(V)), s)

}

}

}

}

return i

}

Listing 3-2: ComputeLighting that supports both diffuse and specular reflections

Most of the code remains unchanged, but we add a fragment to handle
specular reflections. We make sure it applies only to shiny objects ¶ and
also make sure we don’t add negative light intensity ·, as we did for diffuse
reflection.

Finally, we need to modify TraceRay to pass the new parameters to Compute

Lighting. s is straightforward: it comes directly from the scene definition.
But where does V⃗ come from?

V⃗ is a vector that points from the object to the camera. Fortunately, we
already have a vector that points from the camera to the object at TraceRay—
that’s D⃗, the direction of the ray we’re tracing! So V⃗ is simply –D⃗.

Listing 3-3 gives the new TraceRay with specular reflection.

46 Chapter 3

TraceRay(O, D, t_min, t_max) {

closest_t = inf

closest_sphere = NULL

for sphere in scene.Spheres {

t1, t2 = IntersectRaySphere(O, D, sphere)

if t1 in [t_min, t_max] and t1 < closest_t {

closest_t = t1

closest_sphere = sphere

}

if t2 in [t_min, t_max] and t2 < closest_t {

closest_t = t2

closest_sphere = sphere

}

}

if closest_sphere == NULL {

return BACKGROUND_COLOR

}

P = O + closest_t * D // Compute intersection

N = P - closest_sphere.center // Compute sphere normal at intersection

N = N / length(N)

¶ return closest_sphere.color * ComputeLighting(P, N, -D, closest_sphere.specular)

}

Listing 3-3: TraceRay with specular reflection

The color calculation ¶ is slightly more involved than it looks. Remem-
ber that colors must be multiplied channel-wise and the results must be
clamped to the range of the channel (in our case, [0–255]). Although in the
example scene the light intensities add up to 1.0, now that we’re adding the
contributions of specular reflections, the values could go beyond that range.

You can see the reward for all this vector juggling in Figure 3-16.

Light 47

Figure 3-16: The scene rendered with ambient, diffuse, and specular
reflection. Not only do we get a sense of depth and volume, but
each surface also has a slightly different appearance.

You can find a live implementation of this algorithm at https://
gabrielgambetta.com/cgfs/specular-demo.

Note that in Figure 3-16, the red sphere with a specular exponent of 500
has a more concentrated bright spot than the green sphere with a specular
exponent of 10, exactly as expected. The blue sphere also has a specular ex-
ponent of 500 but no visible bright spot. This is only a consequence of how
the image is cropped and how the lights are placed in the scene; indeed, the
left half of the red sphere also doesn’t exhibit any specular reflection.

Summary
In this chapter, we’ve taken the very simple raytracer developed in the previ-
ous chapter and given it the ability to model lights and the way they interact
with the objects in the scene.

We split lights into three types: point, directional, and ambient. We ex-
plored how each of them can represent a different type of light that you can
find in real life, and how to describe them in our scene definition.

We then turned our attention to the surface of the objects in the scene,
splitting them into two types: matte and shiny. We discussed how rays of
light interact with them and developed two models—diffuse and specular
reflection—to compute how much light they reflect toward the camera.

48 Chapter 3

https://gabrielgambetta.com/cgfs/specular-demo
https://gabrielgambetta.com/cgfs/specular-demo

The end result is a much more realistic rendering of the scene: instead
of seeing just the outlines of the objects, we now get a real sense of depth
and volume and a feel for the materials the objects are made of.

However, we are missing a fundamental aspect of lights: shadows. This
is the focus of the next chapter.

Light 49

