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R E F E R E N C E  T Y P E S

Reference types store the memory addresses 
of objects. These types enable efficient pro-

gramming, and many elegant design patterns 
feature them. In this chapter, I’ll discuss the two 

kinds of reference types: pointers and references. I’ll 
also discuss this, const, and auto along the way.

Pointers
Pointers are the fundamental mechanism used to refer to memory addresses. 
Pointers encode both pieces of information required to interact with another 
object—that is, the object’s address and the object’s type.

Everyone knows that debugging is twice as hard as writing a 
program in the first place. So if you’re as clever as you can be 

when you write it, how will you ever debug it? 
—Brian Kernighan
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You can declare a pointer’s type by appending an asterisk (*) to the 
pointed-to type. For example, you declare a pointer to int called my_ptr as 
follows:

int* my_ptr;

The format specifier for a pointer is %p. For example, to print the value 
in my_ptr, you could use the following:

printf("The value of my_ptr is %p.", my_ptr);

Pointers are very low-level objects. Although they play a central role 
in most C programs, C++ offers higher-level, sometimes more efficient, 
constructs that obviate the need to deal with memory addresses directly. 
Nonetheless, pointers are a foundational concept that you’ll no doubt 
come across in your system-programming travels.

In this section, you’ll learn how to find the address of an object and 
how to assign the result to a pointer variable. You’ll also learn how to per-
form the opposite operation, which is called dereferencing: given a pointer, 
you can obtain the object residing at the corresponding address.

You’ll learn more about arrays, the simplest construct for managing an 
object collection, as well as how arrays relate to pointers. As low-level con-
structs, arrays and pointers are relatively dangerous. You’ll learn about what 
can go wrong when pointer- and array-based programs go awry. 

This chapter introduces two special kinds of pointers: void pointers and 
std::byte pointers. These very useful types have some special behaviors that 
you’ll need to keep in mind. Additionally, you’ll learn how to encode empty 
pointers with nullptr and how to use pointers in Boolean expressions to 
determine whether they’re empty.

Addressing Variables
You can obtain the address of a variable by prepending the address-of 
operator (&). You might want to use this operator to initialize a pointer so it 
“points to” the corresponding variable. Such programming requirements 
arise very often in operating systems programming. For example, major 
operating systems, such as Windows, Linux, and FreeBSD, have interfaces 
that use pointers heavily.

Listing 3-1 demonstrates how to obtain the address of an int.

#include <cstdio>

int main() {
  int gettysburg{}; u
  printf("gettysburg: %d\n", gettysburg); v
  int *gettysburg_address = &gettysburg; w
  printf("&gettysburg: %p\n", gettysburg_address); x
}

Listing 3-1: A program featuring the address-of operator & and a terrible pun
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First, you declare the integer gettysburg u and print its value v. 
Then you declare a pointer, called gettysburg_address, to that integer’s 
address w; notice that the asterisk prepends the pointer and the amper-
sand prepends gettysburg. Finally, you print the pointer to the screen x 
to reveal the  gettysburg integer’s address.

If you run Listing 3-1 on Windows 10 (x86), you should see the follow-
ing output:

gettysburg: 0
&gettysburg: 0053FBA8

Running the same code on Windows 10 x64 yields the following output:

gettysburg: 0
&gettysburg: 0000007DAB53F594

Your output should have an identical value for gettysburg, but gettysburg 
_address should be different each time. This variation is due to address space 
layout randomization, which is a security feature that scrambles the base 
address of important memory regions to hamper exploitation.

A DDR E SS SPACE L AYOU T R A NDOMI Z AT ION

Why does address space layout randomization hamper exploitation? When a 
hacker finds an exploitable condition in a program, they can sometimes cram 
a malicious payload into user-provided input. One of the first security features 
designed to prevent a hacker from getting this malicious payload to execute is 
to make all data sections non-executable. If the computer attempts to execute 
data as code, then the theory is that it knows something’s amiss and should 
terminate the program with an exception. 

Some exceedingly clever hackers figured out how to repurpose execut-
able code instructions in totally unforeseen ways by carefully crafting exploits 
containing so-called return-oriented programs. These exploits could arrange 
to invoke the relevant system APIs to mark their payload executable, hence 
defeating the non-executable-memory mitigation.

Address space layout randomization combats return-oriented program-
ming by randomizing memory addresses, making it difficult to repurpose exist-
ing code because the attacker doesn’t know where it resides in memory.

Also note that in the outputs for Listing 3-1, gettysburg_address contains 
8 hexadecimal digits (4 bytes) for an x86 architecture and 16 hexadecimal 
digits (8 bytes) for an x64 architecture. This should make some sense 
because on modern desktop systems, the pointer size is the same as the 
CPU’s general-purpose register. An x86 architecture has 32-bit (4-byte) 
general-purpose registers, whereas an x64 architecture has 64-bit (8-byte) 
general-purpose registers.
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Dereferencing Pointers
The dereference operator (*) is a unary operator that accesses the object to which 
a pointer refers. This is the inverse operation of the address-of operator. Given 
an address, you can obtain the object residing there. Like the address-of 
operator, system programmers use the dereference operator very often. Many 
operating system APIs will return pointers, and if you want to access the 
referred-to object, you’ll use the dereference operator.

Unfortunately, the dereference operator can cause a lot of notation-
based confusion for beginners because the dereference operator, the pointer 
declaration, and multiplication all use asterisks. Remember that you append 
an asterisk to the end of the pointed-to object’s type to declare a pointer; 
however, you prepend the dereference operator—an asterisk—to the pointer, 
like this:

*gettysburg_address

After accessing an object by prepending the dereference operator to a 
pointer, you can treat the result like any other object of the pointed-to type. 
For example, because gettysburg is an integer, you can write the value 17325 
into gettysburg using gettysburg_address. The correct syntax is as follows:

*gettysburg_address = 17325;

Because the dereferenced pointer—that is, *gettysburg_address—
appears on the left side of the equal sign, you’re writing to the address 
where gettysburg is stored.

If a dereferenced pointer appears anywhere except the left side of an 
equal sign, you’re reading from the address. To retrieve the int pointed 
to by gettysburg_address, you just tack on the dereference operator. For 
instance, the following statement will print the value stored in gettysburg:

printf("%d", *gettysburg_address);

Listing 3-2 uses the dereference operator to read and write.

#include <cstdio>

int main() {
  int gettysburg{};
  int* gettysburg_address = &gettysburg; u
  printf("Value at gettysburg_address: %d\n", *gettysburg_address); v
  printf("Gettysburg Address: %p\n", gettysburg_address); w
  *gettysburg_address = 17325; x
  printf("Value at gettysburg_address: %d\n", *gettysburg_address); y
  printf("Gettysburg Address: %p\n", gettysburg_address); z
}

Value at gettysburg_address: 0 v
Gettysburg Address: 000000B9EEEFFB04 w
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Value at gettysburg_address: 17325 y
Gettysburg Address: 000000B9EEEFFB04 z

Listing 3-2: An example program illustrating reads and writes using a pointer (output is 
from a Windows 10 x64 machine)

First, you initialize gettysburg to zero. Then, you initialize the pointer 
gettysburg_address to the address of gettysburg u. Next, you print the int 
pointed to by gettysburg_address v and the value of gettysburg_address 
itself w.

You write the value 17325 into the memory pointed to by gettysburg 
_address x and then print the pointed-to value y and address z again.

Listing 3-2 would be functionally identical if you assigned the value 
17325 directly to gettysburg instead of to the gettysburg_address pointer, 
like this:

  gettysburg = 17325;

This example illustrates the close relationship between a pointed-
to object (gettysburg) and a dereferenced pointer to that object 
(*gettysburg_address).

The Member-of-Pointer Operator
The member-of-pointer operator, or arrow operator (->), performs two simultaneous 
operations: 

•	 It dereferences a pointer. 

•	 It accesses a member of the pointed-to object.

You can use this operator to reduce notational friction, the resistance a 
programmer feels in expressing their intent in code, when you’re handling 
pointers to classes. You’ll need to handle pointers to classes in a variety of 
design patterns. For example, you might want to pass a pointer to a class 
as a function parameter. If the receiving function needs to interact with 
a member of that class, the member-of-pointer operator is the tool for 
the job.

Listing 3-3 employs the arrow operator to read the year from a 
ClockOfTheLongNow object (which you implemented in Listing 2-22 on 
page 58).

#include <cstdio>

struct ClockOfTheLongNow {
  --snip--
};

int main() {
  ClockOfTheLongNow clock;
  ClockOfTheLongNow* clock_ptr = &clock; u
  clock_ptr->set_year(2020); v
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  printf("Address of clock: %p\n", clock_ptr); w
  printf("Value of clock's year: %d", clock_ptr->get_year()); x
}

Address of clock: 000000C6D3D5FBE4 w
Value of clock's year: 2020 x

Listing 3-3: Using a pointer and the arrow operator to manipulate the ClockOfTheLongNow 
object (output is from a Windows 10 x64 machine)

You declare a clock and then store its address in clock_ptr u. Next, you 
use the arrow operator to set the year member of clock to 2020 v. Finally, 
you print the address of clock w and the value of year x.

You could achieve an identical result using the dereference (*) and 
member of (.) operators. For example, you could have written the last line 
of Listing 3-3 as follows:

  printf("Value of clock's year: %d", (*clock_ptr).get_year());

First, you dereference clock_ptr, and then you access the year. Although 
this is equivalent to invoking the pointer-to-member operator, it’s a more 
verbose syntax and provides no benefit over its simpler alternative.

N O T E  For now, use parentheses to emphasize the order of operations. Chapter 7 walks 
through the precedents rules for operators.

Pointers and Arrays
Pointers share several characteristics with arrays. Pointers encode object loca-
tion. Arrays encode the location and length of contiguous objects.

At the slightest provocation, an array will decay into a pointer. A decayed 
array loses length information and converts to a pointer to the array’s first 
element. For example:

int key_to_the_universe[]{ 3, 6, 9 }; 
int* key_ptr = key_to_the_universe; // Points to 3

First, you initialize an int array key_to_the_universe with three elements. 
Next, you initialize the int pointer key_ptr to key_to_the_universe, which decays 
into a pointer. After initialization, key_ptr points to the first element of 
key_to_the_universe.

Listing 3-4 initializes an array containing College objects and passes the 
array to a function as a pointer.

#include <cstdio>

struct College {
  char name[256];
};
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void print_name(College* college_ptru) {
  printf("%s College\n", college_ptr->namev);
}

int main() {
  College best_colleges[] = { "Magdalen", "Nuffield", "Kellogg" };
  print_name(best_colleges);
}

Magdalen College v

Listing 3-4: A program illustrating array decay into a pointer

The print_name function takes a pointer-to-College argument u, so the 
best_colleges array decays into a pointer when you call print_name. Because 
arrays decay into pointers to their first element, college_ptr at u points to 
the first College in best_colleges.

There’s another array decay in Listing 3-4 v as well. You use the arrow 
operator (->) to access the name member of the College pointed to by college 
_ptr, which is itself a char array. The printf format specifier %s expects a 
C-style string, which is a char pointer, and name decays into a pointer to sat-
isfy printf.

Handling Decay

Often, you pass arrays as two arguments: 

•	 A pointer to the first array element 

•	 The array’s length

The mechanism that enables this pattern is square brackets ([]), which 
work with pointers just as with arrays. Listing 3-5 employs this technique.

#include <cstdio>

struct College {
  char name[256];
};

void print_names(College* collegesu, size_t n_collegesv) {
  for (size_t i = 0; i < n_colleges; i++) { w
    printf("%s College\n", colleges[i]x.namey);
  }
}

int main() {
  College oxford[] = { "Magdalen", "Nuffield", "Kellogg" };
  print_names(oxford, sizeof(oxford) / sizeof(College));
}
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Magdalen College
Nuffield College
Kellogg College

Listing 3-5: A program illustrating a common idiom for passing arrays to functions

The print_names function accepts an array in two arguments: a pointer to 
the first College element u and the number of elements n_colleges v. Within 
print_names, you iterate with a for loop and an index i. The value of i iterates 
from 0 to n_colleges-1 w.

You extract the corresponding college name by accessing the ith ele-
ment x and then get the name member y.

This pointer-plus-size approach to passing arrays is ubiquitous in C-style 
APIs, for example, in Windows or Linux system programming.

Pointer Arithmetic

To obtain the address of the nth element of an array, you have two options. 
First, you can take the direct approach of obtaining the nth element with 
square brackets ([]) and then use the address-of (&) operator:

College* third_college_ptr = &oxford[2];

Pointer arithmetic, the set of rules for addition and subtraction on point-
ers, provides an alternate approach. When you add or subtract integers to 
pointers, the compiler figures out the correct byte offset using the size of the 
pointed-to type. For example, adding 4 to a uint64_t pointer adds 32 bytes: 
a uint64_t takes up 8 bytes, so 4 of them take up 32 bytes. The following is 
therefore equivalent to the previous option of obtaining the address of the 
nth element of an array:

College* third_college_ptr = oxford + 2; 

Pointers Are Dangerous
It’s not possible to convert a pointer to an array, which is a good thing. You 
shouldn’t need to, and besides it wouldn’t be possible in general for a com-
piler to recover the size of the array from a pointer. But the compiler can’t 
save you from all the dangerous things you might try to do.

Buffer Overflows

For arrays and pointers, you can access arbitrary array elements with the 
bracket operator ([]) or with pointer arithmetic. These are very powerful 
tools for low-level programming because you can interact with memory 
more or less without abstraction. This gives you exquisite control over the 
system, which you need in some environments (for example, in system pro-
gramming contexts like implementing network protocols or with embedded 
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controllers). With great power comes great responsibility, however, and you 
must be very careful. Simple mistakes with pointers can have catastrophic 
and mysterious consequences. 

Listing 3-6 performs low-level manipulation on two strings.

#include <cstdio>
int main() {
  char lower[] = "abc?e";
  char upper[] = "ABC?E";
  char* upper_ptr = upper;     u // Equivalent: &upper[0]

  lower[3] = 'd';              v // lower now contains a b c d e \0
  upper_ptr[3] = 'D';             // upper now contains A B C D E \0

  char letter_d = lower[3];    w // letter_d equals 'd'
  char letter_D = upper_ptr[3];   // letter_D equals 'D'
  
  printf("lower: %s\nupper: %s", lower, upper); x

  lower[7] = 'g';              y // Super bad. You must never do this.
}

lower: abcde x
upper: ABCDE
The time is 2:14 a.m. Eastern time, August 29th. Skynet is now online. y

Listing 3-6: A program containing a buffer overflow

After initializing the strings lower and upper, you initialize upper_ptr 
pointing to the first element u in upper. You then reassign the fourth ele-
ments of both lower and upper (the question marks) to d and D vw. Notice 
that lower is an array and upper_ptr is a pointer, but the mechanism is the 
same. So far, so good.

Finally, you make a major boo-boo by writing out-of-bounds memory y. 
By accessing the element at index 7 x, you’ve gone past the storage allotted 
to lower. No bounds checking occurs; this code compiles without warning.

At runtime, you get undefined behavior. Undefined behavior means the 
C++ language specification doesn’t prescribe what happens, so your pro-
gram might crash, open a security vulnerability, or spawn an artificial gen-
eral intelligence y.

The Connection Between Brackets and Pointer Arithmetic

To understand the ramifications of out-of-bounds access, you must under-
stand the connection between bracket operators and pointer arithmetic. 
Consider that you could have written Listing 3-6 with pointer arithmetic 
and dereference operators rather than bracket operators, as demonstrated 
in Listing 3-7.

#include <cstdio>
int main() {
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  char lower[] = "abc?e";
  char upper[] = "ABC?E";
  char* upper_ptr = &upper[0];
 
  *(lower + 3) = 'd';
  *(upper_ptr + 3) = 'D';
 
  char letter_d = *(lower + 4); // lower decays into a pointer when we add
  char letter_D = *(upper_ptr + 4);  
   
  printf("lower: %s\nupper: %s", lower, upper);

  *(lower + 7) = 'g'; u
}

Listing 3-7: An equivalent program to Listing 3-6 that uses pointer arithmetic

The lower array has length 6 (the letters a–e plus a null terminator). 
It should now be clear why assigning lower[7] u is perilous. In this case, 
you’re writing to some memory that doesn’t belong to lower. This can result 
in access violations, program crashes, security vulnerabilities, and corrupted 
data. These kinds of errors can be very insidious, because the point at which 
the bad write occurs might be far removed from the point at which the bug 
manifests.

void Pointers and std::byte Pointers
Sometimes the pointed-to type is irrelevant. In such situations, you use the 
void pointer void*. The void pointers have important restrictions, the princi-
pal of which is that you cannot dereference a void*. Because the pointed-
to type has been erased, dereferencing makes no sense (recall that the set 
of values for void objects is empty). For similar reasons, C++ forbids void 
pointer arithmetic.

Other times, you want to interact with raw memory at the byte level. 
Examples include low-level operations like copying raw data between files 
and memory, encryption, and compression. You cannot use a void pointer 
for such purposes because bit-wise and arithmetic operations are disabled. 
In such situations, you can use a std::byte pointer. 

nullptr and Boolean Expressions
Pointers can have a special literal value, nullptr. Generally, a pointer that 
equals nullptr doesn’t point to anything. You could use nullptr to indicate, 
for example, that there’s no more memory left to allocate or that some 
error occurred.

Pointers have an implicit conversion to bool. Any value that is not nullptr 
converts implicitly to true, whereas nullptr converts implicitly to false. This 
is useful when a function returning a pointer ran successfully. A common 
idiom is that such a function returns nullptr in the case of failure. The 
canonical example is memory allocation.
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References
References are safer, more convenient versions of pointers. You declare refer-
ences with the & declarator appended to the type name. References cannot 
be assigned to null (easily), and they cannot be reseated (or reassigned). 
These characteristics eliminate some bugs endemic to pointers.

The syntax for dealing in references is much cleaner than for pointers. 
Rather than using the member-of-pointer and dereference operators, you 
use references exactly as if they’re of the pointed-to type.

Listing 3-8 features a reference argument.

#include <cstdio>

struct ClockOfTheLongNow {
  --snip--
};

void add_year(ClockOfTheLongNow&u clock) {
  clock.set_year(clock.get_year() + 1); v // No deref operator needed
}

int main() {
  ClockOfTheLongNow clock;
  printf("The year is %d.\n", clock.get_year()); w
  add_year(clock); x // Clock is implicitly passed by reference!
  printf("The year is %d.\n", clock.get_year()); y
}

The year is 2019. w
The year is 2020. y

Listing 3-8: A program using references

You declare the clock argument as a ClockOfTheLongNow reference using the 
ampersand rather than the asterisk u. Within add_year, you use clock as if it 
were of type ClockOfTheLongNow v: there’s no need to use clumsy dereference 
and pointer-to-reference operators. First, you print the value of year w. Next, 
at the call site, you pass a ClockOfTheLongNow object directly into add_year x: 
there’s no need to take its address. Finally, you print the value of year again 
to illustrate that it has incremented y.

Usage of Pointers and References
Pointers and references are largely interchangeable, but both have trade-
offs. If you must sometimes change your reference type’s value—that is, 
if you must change what your reference type refers to—you must use a 
pointer. Many data structures (including forward-linked lists, which are 
covered in the next section) require that you be able to change a pointer’s 
value. Because references cannot be reseated and they shouldn’t generally 
be assigned to nullptr, they’re sometimes not suitable.



78   Chapter 3

Forward-Linked Lists: The Canonical Pointer-Based Data Structure
A forward-linked list is a simple data structure made up of a series of ele-
ments. Each element holds a pointer to the next element. The last element 
in the linked list holds a nullptr. Inserting elements into a linked list is very 
efficient, and elements can be discontinuous in memory. Figure 3-1 illus-
trates their layout.

Element 0:

Element* next;
...

Element 1:

Element* next;
...

Element 2:

Element* next;
...

(nullptr)

Figure 3-1: A linked list

Listing 3-9 demonstrates a possible implementation of a singly linked 
list element.

struct Element {
  Element* next{}; u
  void insert_after(Element* new_element) { v
    new_element->next = next; w
    next = new_element; x
  }
  char prefix[2]; y
  short operating_number; z
};

Listing 3-9: An implementation of a linked list Element with an operating number

Each element has a pointer to the next element in the linked list u, 
which initializes to nullptr. You insert a new element using the insert_after 
method v. It sets the next member of new_element to the next of this w and 
then sets next of this to new_element x. Figure 3-2 illustrates this insertion. 
You haven’t changed the memory location of any Element objects in this list-
ing; you’re only modifying pointer values.

Element 0:

Element* next;
...

Element 1:

Element* next;
...

New Element:

Element* next;
...

�

�

�

Figure 3-2: Inserting an element into a linked list

Each Element also contains a prefix array y and an operating_number 
pointer z.
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Listing 3-10 traverses a linked list of stormtroopers of type Element, 
printing their operating numbers along the way.

#include <cstdio>

struct Element {
  --snip--
};

int main() {
  Element trooper1, trooper2, trooper3; u
  trooper1.prefix[0] = 'T';
  trooper1.prefix[1] = 'K';
  trooper1.operating_number = 421;
  trooper1.insert_after(&trooper2); v
  trooper2.prefix[0] = 'F';
  trooper2.prefix[1] = 'N';
  trooper2.operating_number = 2187;
  trooper2.insert_after(&trooper3); w
  trooper3.prefix[0] = 'L';
  trooper3.prefix[1] = 'S';
  trooper3.operating_number = 005; x

  for (Element *cursor = &trooper1y; cursorz; cursor = cursor->next{) {
    printf("stormtrooper %c%c-%d\n",
           cursor->prefix[0],
           cursor->prefix[1],
           cursor->operating_number); |
  }
}

stormtrooper TK-421 |
stormtrooper FN-2187 |
stormtrooper LS-5 |

Listing 3-10: A program illustrating a forward-linked list

Listing 3-10 initializes three stormtroopers u. The element trooper1 is 
assigned the operating number TK-421, and then you insert it as the next 
element in the list v. The elements trooper2 and trooper3 have operating 
numbers FN-2187 and LS-005 and are also inserted into the list wx.

The for loop iterates through the linked list. First, you assign the cursor 
pointer to the address of trooper1 y. This is the beginning of the list. Before 
each iteration, you make sure that cursor is not nullptr z. After each itera-
tion, you set cursor to the next element {. Within the loop, you print each 
stormtrooper’s operating number |.

Employing References
Pointers provide a lot of flexibility, but this flexibility comes at a safety cost. 
If you don’t need the flexibility of reseatability and nullptr, references are 
the go-to reference type.
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Let’s drive home the point that references cannot be reseated. Listing 3-11 
initializes an int reference and then attempts to reseat it with a new_value.

#include <cstdio>

int main() {
  int original = 100;
  int& original_ref = original;
  printf("Original:  %d\n", original); u
  printf("Reference: %d\n", original_ref); v

  int new_value = 200;
  original_ref = new_value; w
  printf("Original:  %d\n", original); x
  printf("New Value: %d\n", new_value); y
  printf("Reference: %d\n", original_ref); z
}

Original:  100 u
Reference: 100 v
Original:  200 x
New Value: 200 y
Reference: 200 z

Listing 3-11: A program illustrating that you cannot reseat references

This program initializes an int called original to 100. Then it declares a 
reference to original called original_ref. From this point on, original_ref will 
always refer to original. This is illustrated by printing the value of  original u 
and the value referred to by original_ref v. They’re the same.

Next, you initialize another int called new_value to 200 and assign original 
to it w. Read that carefully: this assignment w doesn’t reseat original_ref so 
that it points to new_value. Rather, it assigns the value of new_value to the object 
it points to (original).

The upshot is that all of these variables—original, original_ref, and 
new_value—evaluate to 200 xyz.

this Pointers
Remember that methods are associated with classes and that instances of 
classes are objects. When you program a method, sometimes you need to 
access the current object, which is the object that is executing the method.

Within method definitions, you can access the current object using the 
this pointer. Usually, this isn’t needed, because this is implicit when access-
ing members. But sometimes you might need to disambiguate—for example, 
if you declare a method parameter whose name collides with a member 
variable. For example, you can rewrite Listing 3-9 to make explicit which 
Element you’re referring to, as demonstrated in Listing 3-12.

struct Element {
  Element* next{};
  void insert_after(Element* new_element) {
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    new_element->next = this->next; u
    this->next v = new_element;
  }
  char prefix[2];
  short operating_number;
};

Listing 3-12: A rewriting of Listing 3-9 using the this pointer

Here, next is replaced with this->next uv. The listings are functionally 
identical.

Sometimes, you need this to resolve ambiguity between members and 
arguments, as demonstrated in Listing 3-13.

struct ClockOfTheLongNow {
  bool set_year(int yearu) {
    if (year < 2019) return false;
    this->year = year; v
    return true;
  }
--snip--
private:
  int year; w
};

Listing 3-13: A verbose ClockOfTheLongNow definition using this

The year argument u has the same name as the year member w. Method 
arguments will always mask members, meaning when you type year within 
this method, it refers to the year argument u, not the year member w. That’s 
no problem: you disambiguate with this v.

const Correctness
The keyword const (short for “constant”) roughly means “I promise not to 
modify.” It’s a safety mechanism that prevents unintended (and potentially 
catastrophic) modifications of member variables. You’ll use const in func-
tion and class definitions to specify that a variable (usually a reference or 
a pointer) won’t be modified by that function or class. If code attempts to 
modify a const variable, the compiler will emit an error. When used cor-
rectly, const is one of the most powerful language features in all modern 
programming languages because it helps you to eliminate many kinds of 
common programming mistakes at compile time.

Let’s look at a few common usages of const.

const Arguments

Marking an argument const precludes its modification within a function’s 
scope. A const pointer or reference provides you with an efficient mecha-
nism to pass an object into a function for read-only use. The function in 
Listing 3-14 takes a const pointer.
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void petruchio(const char* shrewu) {
  printf("Fear not, sweet wench, they shall not touch thee, %s.", shrewv);
  shrew[0] = "K"; w // Compiler error! The shrew cannot be tamed.
}

Listing 3-14: A function taking a const pointer (This code doesn’t compile.)

The petruchio function takes a shrew string by const reference u. You can 
read from shrew v, but attempting to write to it results in a compiler error w.

const Methods

Marking a method const communicates that you promise not to modify the 
current object’s state within the const method. Put another way, these are 
read-only methods.

To mark a method const, place the const keyword after the argu-
ment list but before the method body. For example, you could update 
the ClockOfTheLongNow object’s get_year with const, as demonstrated in 
Listing 3-15.

struct ClockOfTheLongNow {
  --snip--
  int get_year() const u{
      return year;
  }
private:
  int year;
};

Listing 3-15: Updating ClockOfTheLongNow with const

All you need to do is place const between the argument list and the 
method body u. Had you attempted to modify year within get_year, the 
compiler would have generated an error.

Holders of const references and pointers cannot invoke methods that 
are not const, because methods that are not const might modify an object’s 
state.

The is_leap_year function in Listing 3-16 takes a const ClockOfTheLongNow 
reference and determines whether it’s a leap year.

bool is_leap_year(const ClockOfTheLongNow& clock) {
  if (clock.get_year() % 4 > 0) return false;
  if (clock.get_year() % 100 > 0) return true;
  if (clock.get_year() % 400 > 0) return false;
  return true;
}

Listing 3-16: A function for determining leap years

Had get_year not been marked a const method, Listing 3-16 would not 
compile because clock is a const reference and cannot be modified within 
is_leap_year.
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const Member Variables
You can mark member variables const by adding the keyword to the mem-
ber’s type. The const member variables cannot be modified after their 
initialization.

In Listing 3-17, the Avout class contains two member variables, one const 
and one not const.

struct Avout {
  constu char* name = "Erasmas";
  ClockOfTheLongNow apert; v
};

Listing 3-17: An Avout class with a const member

The name member is const, meaning the pointed-to value cannot be 
modified u. On the other hand, apert is not const v.

Of course, a const Avout reference cannot be modified, so the usual 
rules would still apply to apert:

void does_not_compile(const Avout& avout) {
  avout.apert.add_year(); // Compiler error: avout is const
}

Sometimes you want the safety of marking a member variable const but 
would also like to initialize the member with arguments passed into a con-
structor. For this, you employ member initializer lists.

Member Initializer Lists
Member initializer lists are the primary mechanism for initializing class mem-
bers. To declare a member initializer list, place a colon after the argument 
list in a constructor. Then insert one or more comma-separated member 
initializers. A member initializer is the name of the member followed by a 
braced initialization { }. Member initializers allow you to set the value of 
const fields at runtime.

The example in Listing 3-18 improves Listing 3-17 by introducing a 
member initialization list.

#include <cstdio>

struct ClockOfTheLongNow {
  --snip--
};

struct Avout {
  Avout(const char* name, long year_of_apert) u
    :v namew{ name }x, aperty{ year_of_apert }z {
  }
  void announce() const { {
    printf("My name is %s and my next apert is %d.\n", name, apert.get_year());
  }
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  const char* name;
  ClockOfTheLongNow apert;
};

int main() {
  Avout raz{ "Erasmas", 3010 };
  Avout jad{ "Jad", 4000 };
  raz.announce();
  jad.announce();
}

My name is Erasmas and my next apert is 3010.
My name is Jad and my next apert is 4000.

Listing 3-18: A program declaring and announcing two Avout objects

The Avout constructor takes two arguments, a name and the year_of 
_apert u. A member initializer list is added by inserting a colon v followed 
by the names of each member you’re initializing wy and braced initializa-
tions xz. A const method announce is also added to print the Avout construc-
tor’s status {.

All member initializations execute before the constructor’s body. This 
has two advantages:

•	 It ensures validity of all members before the constructor executes, 
so you can focus on initialization logic rather than member error 
checking.

•	 The members initialize once. If you reassign members in the construc-
tor, you potentially do extra work.

N O T E  You should order the member initializers in the same order they appear in the class 
definition, because their constructors will be called in this order.

Speaking of eliminating extra work, it’s time to meet auto.

auto Type Deduction
As a strongly typed language, C++ affords its compiler a lot of information. 
When you initialize elements or return from functions, the compiler can 
divine type information from context. The auto keyword tells the compiler 
to perform such a divination for you, relieving you from inputting redun-
dant type information.

Initialization with auto
In almost all situations, the compiler can determine the correct type of an 
object using the initialization value. This assignment contains redundant 
information:

int answer = 42;
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The compiler knows answer is an int because 42 is an int.
You can use auto instead:

auto the_answer { 42 };            // int
auto foot { 12L };                 // long
auto rootbeer { 5.0F };            // float
auto cheeseburger { 10.0 };        // double
auto politifact_claims { false };  // bool
auto cheese { "string" };          // char[7]

This also works when you’re initializing with parentheses () and the 
lone =:

auto the_answer = 42;
auto foot(12L);
--snip--

Because you’ve committed to universal initialization with {} as much as 
possible, this section will say no more of these alternatives.

Alone, all of this simple initialization help doesn’t buy you much; how-
ever, when types become more complicated—for example, dealing with itera-
tors from stdlib containers—it really saves quite a bit of typing. It also makes 
your code more resilient to refactoring.

auto and Reference Types
It’s common to add modifiers like &, *, and const to auto. Such modifications 
add the intended meanings (reference, pointer, and const, respectively):

auto year { 2019 };              // int
auto& year_ref = year;           // int&
const auto& year_cref = year;    // const int&
auto* year_ptr = &year;          // int*
const auto* year_cptr = &year;   // const int*

Adding modifiers to the auto declaration behaves just as you’d expect: if 
you add a modifier, the resulting type is guaranteed to have that modifier.

auto and Code Refactorings
The auto keyword assists in making code simpler and more resilient to refac-
toring. Consider the example in Listing 3-19 with a range-based for loop.

struct Dwarf {
  --snip--
};

Dwarf dwarves[13];

struct Contract {
  void add(const Dwarf&);
};
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void form_company(Contract &contract) {
  for (const auto& dwarf : dwarves) { u
    contract.add(dwarf);
  }
}

Listing 3-19: An example using auto in a range-based for loop

If ever the type of dwarves changes, the assignment in the range-based 
for loop u doesn’t need to change. The dwarf type will adapt to its surround-
ings, in much the same way that the dwarves of Middle Earth don’t.

As a general rule, use auto always.

N O T E  There are some corner cases to using braced initialization where you might get surpris-
ing results, but these are few, especially after C++17 fixed some pedantic nonsense 
behavior. Prior to C++17, using auto with braces {} specified a special object called a 
std::initializer_list, which you’ll meet in Chapter 13.

Summary
This chapter covered the two reference types: references and pointers. 
Along the way, you learned about the member-of-pointer operator, how 
pointers and arrays interplay, and void/byte pointers. You also learned 
about the meaning of const and its basic usage, the this pointer, and 
member initializer lists. Additionally, the chapter introduced auto type 
deduction.

E X E RCISE S

3-1. Read about CVE-2001-0500, a buffer overflow in Microsoft’s Internet 
Information Services. (This vulnerability is commonly referred to as the Code 
Red worm vulnerability.)

3-2. Add a read_from and a write_to function to Listing 3-6. These functions 
should read or write to upper or lower as appropriate. Perform bounds check-
ing to prevent buffer overflows.

3-3. Add an Element* previous to Listing 3-9 to make a doubly linked list. Add 
an insert_before method to Element. Traverse the list from front to back, then 
from back to front, using two separate for loops. Print the operating_number 
inside each loop.

3-4. Reimplement Listing 3-11 using no explicit types. (Hint: use auto.)

3-5. Scan the listings in Chapter 2. Which methods could be marked const? 
Where could you use auto?
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