
In the previous chapter, we covered 
conditional probability and arrived at 

a very important idea in probability, Bayes’ 
theorem, which states: 

P A B
P B A P A

P B
|( ) = |( ) ( )

( )

Notice that here we’ve made a very small change from Chapter 6, writ-
ing P(B | A)P(A) instead of P(A)P(B | A); the meaning is identical, but some-
times changing the terms around can help clarify different approaches 
to problems.

With Bayes’ theorem, we can reverse conditional probabilities—so 
when we know the probability P(B | A), we can work out P(A | B). Bayes’ 
theorem is foundational to statistics because it allows us to go from having 
the probability of an observation given a belief to determining the strength 
of that belief given the observation. For example, if we know the probability 
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of sneezing given that you have a cold, we can work backward to determine 
the probability that you have a cold given that you sneezed. In this way, we 
use evidence to update our beliefs about the world.

In this chapter, we’ll use LEGO to visualize Bayes’ theorem and help 
solidify the mathematics in your mind. To do this, let’s pull out some LEGO 
bricks and put some concrete questions to our equation. Figure 7-1 shows a 
6 × 10 area of LEGO bricks; that’s a 60-stud area (studs are the cylindrical 
bumps on LEGO bricks that connect them to each other). 

Figure 7-1: A 6 × 10-stud LEGO area to help  
us visualize the space of possible events

We can imagine this as the space of 60 possible, mutually exclusive 
events. For example, the blue studs could represent 40 students who passed 
an exam and the red studs 20 students who failed the exam in a class of 60. 
In the 60-stud area, there are 40 blue studs, so if we put our finger on a ran-
dom spot, the probably of touching a blue brick is defined like this: 

P blue( ) = =
40
60

2
3

We would represent the probability of touching a red brick as follows: 

P red( ) = =
20
60

1
3
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The probability of touching either a blue or a red brick, as you would 
expect, is 1:

P Pblue red( ) + ( ) = 1

This means that red and blue bricks alone can describe our entire set 
of possible events. 

Now let’s put a yellow brick on top of these two bricks to represent some 
other possibility—for example, the students that pulled an all-nighter study-
ing and didn’t sleep—so it looks like Figure 7-2. 

Figure 7-2: Placing a 2 × 3 LEGO brick  
on top of the 6 × 10-stud LEGO area

Now if we pick a stud at random, the probability of touching the yellow 
brick is:

P yellow( ) = =
6
60

1
10

But if we add P(yellow) to P(red) + P(blue), we’d get a result greater 
than 1, and that’s impossible! 

The issue, of course, is that our yellow studs all sit on top of the space of 
red and blue studs, so the probability of getting a yellow brick is conditional 
on whether we’re on a blue or red space. As we know from the previous 
chapter, we can express this conditional probability as P(yellow | red), or 
the probability of yellow given red. Given our example from earlier, this would 
be the probability that a student pulled an all-nighter, given that they had 
failed an exam.
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Working out conditional Probabilities visually
Let’s go back to our LEGO bricks and work out P(yellow | red). Figure 7-3 
gives us a bit of visual insight into the problem.

Figure 7-3: Visualizing P(yellow | red) 

Let’s walk through the process for determining P(yellow | red) by 
working with our physical representation:

1. Split the red section off from the blue.

2. Get the area of the entire red space; it’s a 2 × 10-stud area, so that’s 
20 studs.

3. Get the area of the yellow block on the red space, which is 4 studs.

4. Divide the area of the yellow block by the area of the red block.

This gives us P(yellow | red) = 4/20 = 1/5.
Great—we have arrived at the conditional probability of yellow given 

red! So far, so good. So what if we now reverse that conditional probability 
and ask what is P(red | yellow)? In plain English, if we know we are on a yel-
low space, what is the probability that it’s red underneath? Or, in our test 
example, what is the probability that a student failed the exam, given that 
they pulled an all-nighter?

Looking at Figure 7-3, you may have intuitively figured out P(red | yellow)
by reasoning, “There are 6 yellow studs, 4 of which are over red, so the prob-
ability of choosing a yellow that’s over a red block is 4/6.” If you did follow 
this line of thinking, then congratulations! You just independently discovered 
Bayes’ theorem. But let’s quantify that with math to make sure it’s right.
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Working through the math
Getting from our intuition to Bayes’ theorem will require a bit of work. 
Let’s begin formalizing our intuition by coming up with a way to calculate 
that there are 6 yellow studs. Our minds arrive at this conclusion through 
spatial reasoning, but we need to use a mathematical approach. To solve 
this, we just take the probability of being on a yellow stud multiplied by the 
total number of studs:

numberOfYellowStuds yellow totalStuds= ( ) × = × =P
1

10
60 6

The next part of our intuitive reasoning is that 4 of the yellow studs are 
over red, and this requires a bit more work to prove mathematically. First, 
we have to establish how many red studs there are; luckily, this is the same 
process as calculating yellow studs:

numberOfRedStuds red totalStuds= ( ) × = × =P
1
3

60 20

We’ve also already figured out the ratio of red studs covered by yellow 
as P(yellow | red). To make this a count—rather than a probability—we mul-
tiply it by the number of red studs that we just calculated:

numberOfRedStuds yellow red numberOfRedStuds= |( ) × = × =P
1
5

20 4

Finally, we get the ratio of the red studs covered by yellow to the total 
number of yellow: 

P red yellow
numberOfRedUnderYellow

numberOfYellowStuds
|( ) = =

4
6
==

2
3

This lines up with our intuitive analysis. However, it doesn’t quite look 
like a Bayes’ theorem equation, which should have the following structure:

P A B
P B A P A

P B
|( ) = |( ) ( )

( )

To get there we’ll have to go back and expand the terms in this equa-
tion, like so:

P
P

P
red yellow

yellow red numberOfRedStuds

yellow tota
|( ) =

|( ) ×
( ) × llStuds

We know that we calculate this as follows:

P
P P

P
red yellow

yellow red red totalStuds

yellow tota
|( ) =

|( ) ( ) ×
( ) × llStuds
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Finally, we just need to cancel out totalStuds from the equation, which 
gives us:

P
P P

P
red yellow

yellow red red

yellow
|( ) =

|( ) ( )
( )

From intuition, we have arrived back at Bayes’ theorem!

Wrapping up
Conceptually, Bayes’ theorem follows from intuition, but that doesn’t mean 
that the formalization of Bayes’ theorem is obvious. The benefit of our 
mathematical work is that it extracts reason out of intuition. We’ve con-
firmed that our original, intuitive beliefs are consistent, and now we have 
a powerful new tool to deal with problems in probability that are more com-
plicated than LEGO bricks.

In the next chapter, we’ll take a look at how to use Bayes’ theorem to 
reason about and update our beliefs using data.

exercises
Try answering the following questions to see if you have a solid understand-
ing of how we can use Bayes’ Theorem to reason about conditional prob-
abilities. The solutions can be found at https://nostarch.com/learnbayes/.

1. Kansas City, despite its name, sits on the border of two US states: 
Missouri and Kansas. The Kansas City metropolitan area consists of 
15 counties, 9 in Missouri and 6 in Kansas. The entire state of Kansas 
has 105 counties and Missouri has 114. Use Bayes’ theorem to calcu-
late the probability that a relative who just moved to a county in the 
Kansas City metropolitan area also lives in a county in Kansas. Make 
sure to show P(Kansas) (assuming your relative either lives in Kansas or 
Missouri), P(Kansas City metropolitan area), and P(Kansas City metro-
politan area | Kansas).

2. A deck of cards has 52 cards with suits that are either red or black. 
There are four aces in a deck of cards: two red and two black. You 
remove a red ace from the deck and shuffle the cards. Your friend 
pulls a black card. What is the probability that it is an ace?




