
I N T R O D U C T I O N

Few open source software developers would
deny that GNU Autoconf, Automake, and

Libtool (the Autotools) have revolutionized the
open source software world. However, although

there are many thousands of Autotools advocates,
there are also many software developers who hate the
Autotools—with a passion. I believe the reason for
this dread of the Autotools is that when you use them without understand-
ing the underlying infrastructure they manage, you find yourself fighting
against the system.

This book solves this problem by first providing a framework for under-
standing the underlying infrastructure of the Autotools and then building
on that framework with a tutorial-based approach to teaching Autotools
concepts in a logically ordered fashion.

xxviii Introduction

Who Should Read This Book
This book is primarily for the open source software package maintainer
who wants to become an Autotools expert. That said, this book also pro-
vides instructions to end users who wish to understand what’s happening
during the process of downloading, unpacking, and building software pack-
ages whose build processes are managed by the Autotools. Existing material
on the subject is limited to the GNU Autotools manuals and a few internet-
based tutorials. For years, most real-world questions have been answered
on the Autotools mailing lists, but mailing lists are an inefficient form of
teaching because the same answers to the same questions are given time
and again. This book provides a cookbook-style approach, covering real
problems found in real projects.

How This Book Is Organized
The book starts with an end-user perspective on the Autotools and then
moves from high-level development build concepts to mid-level use
cases and examples, finally finishing with more advanced details and
examples. As though you were learning arithmetic, we’ll begin with some
basic math—algebra and trigonometry—and then move on to analytic
geometry and calculus.

Chapter 1 provides an end-user perspective on the Autotools. It cov-
ers topics that a Linux power user, who is not necessarily a software devel-
oper, needs to understand in order to take full advantage of the features
of Autotools-managed source packages (so-called “tarballs”) downloaded
from project websites containing perhaps the latest beta version of some
software the user would like to try out. Often, Linux users find that the
solution to a software problem involves updating to a version that contains
the fix for that problem, only to discover that the version they need is so
new there is no RPM or Debian package for that version in any of the pack-
age repositories for their Linux distribution of choice. Chapter 1 provides
relief to the newbie who needs to know what to do with that tar.gz file con-
taining that configure script and all those .c source files.

Chapter 2 begins the discussion of concepts of interest to software devel-
opers. It presents a general overview of the packages considered part of the
GNU Autotools. This chapter describes the interaction between these pack-
ages and the files consumed by and generated by each one. In each case, fig-
ures depict the flow of data from hand-coded input to final output files.

Chapter 3 covers open source software project structure and organiza-
tion. This chapter also goes into some detail about the GNU Coding Standards
(GCS) and the Filesystem Hierarchy Standard (FHS), both of which have played
vital roles in the design of the GNU Autotools. This chapter presents some
fundamental tenets upon which the design of each of the Autotools is based.
With these concepts, you’ll better understand the theory behind the architec-
tural decisions made by the Autotools designers.

In this chapter, we’ll also design a simple project, Jupiter, from start
to finish using hand-coded makefiles. We’ll add to Jupiter in a stepwise

Introduction xxix

fashion as we discover functionality that we can use to simplify tasks and to
provide features that open source software users have come to expect.

Chapters 4 and 5 present the framework designed by the GNU Autoconf
engineers to ease the burden of creating and maintaining portable, func-
tional project configuration scripts. The GNU Autoconf package provides the
basis for creating complex configuration scripts with just a few lines of infor-
mation provided by the project maintainer.

In these chapters, we’ll quickly convert our hand-coded makefiles into
Autoconf Makefile.in templates and then begin adding to them in order to
gain some of the most significant Autoconf benefits. Chapter 4 discusses
the basics of generating configuration scripts, while Chapter 5 moves on to
more advanced Autoconf topics, features, and uses.

Chapter 6 begins by converting the Jupiter project Makefile.in templates
into Automake Makefile.am files. Here, you’ll discover that Automake is to
makefiles what Autoconf is to configuration scripts. This chapter presents
the major features of Automake in a manner that will not become outdated
as new versions of Automake are released.

Chapters 7 and 8 explain the basic concepts behind shared librar-
ies and show how to build shared libraries with Libtool—a standalone
abstraction for shared-library functionality that can be used with the other
Autotools. Chapter 7 begins with a shared-library primer and then covers
some basic Libtool extensions that allow Libtool to be a drop-in replace-
ment for the more basic library generation functionality provided by
Automake. Chapter 8 covers library versioning and the runtime dynamic
module management abstraction provided by Libtool.

Chapter 9 presents a relatively new addition to the Autotools—autotest.
The autotest functionality in Autoconf allows you to easily create and manage
integration test execution frameworks for your projects. In previous chapters,
we will have covered unit testing in individual makefiles. Autotest provides a
mechanism for adding more global testing that depends on multiple compo-
nents in your project. Honestly, autotest can be used to do about any sort of
testing you want. We’ll focus on adding autotest suites that ensure your proj-
ect works the way you believe it should—automatically.

Chapter 10 discusses the concepts of finding compile- and link-time
dependencies and adding the appropriate references to build tool com-
mand lines. Specifically, this chapter introduces pkg-config, which has
become a de facto standard in Linux software development, providing the
framework for easily finding and consuming components that your pack-
age depends on. This chapter shows you how to both consume pkg-config
.pc files to find your dependencies and how to play nicely in the sandbox by
providing .pc files for your projects.

Chapters 11 and 12 discuss internationalization (abbreviated i18n)
and localization (l10n), respectively—the ability to easily manage text
strings and other locale-specific attributes (such as references to numbers,
money, and dates) within your project that should be different for local-
ized releases of your project.

Chapter 13 talks about obtaining maximum portability in your projects
by using Gnulib.

xxx Introduction

Chapters 14 and 15 illustrate the transformation of an existing, fairly
complex open source project (FLAIM) from using a hand-built build system
to using an Autotools build system. This example will help you to understand
how you might autoconfiscate one of your own existing projects.

Chapter 16 provides an overview of the features of the M4 macro proces-
sor that are relevant to obtaining a solid understanding of Autoconf. This
chapter also considers the process of writing your own Autoconf macros.

Chapter 17 discusses using the Autotools to build software designed to
run on Microsoft Windows platforms. I’ll show you how to cross compile
on Linux for Windows, and how to install and use the three most popular
Windows-based POSIX platforms—Cygwin, Msys2, and MinGW—to build
Windows software using GNU tools, including the Autotools.

Microsoft has a great set of free tools for building Windows software,
but if your package is already working on Linux and being built with POSIX
build tools, using the Autotools to build for Windows can be a great way to
get you up and running there fast. From there, you can decide whether what
you have is good enough for your project or if you need to provide a native
build environment for Windows.

Chapter 18 is a compilation of tips, tricks, and reusable solutions to
Autotools problems. The solutions in this chapter are presented as a set of
individual topics or items. Each can be understood without context from
the surrounding items.

Chapters 3 through 9 are built around the Jupiter project. Chapters 14
and 15 cover the FLAIM project. Chapters 11 and 12 cover the gettext proj-
ect and Chapter 13 covers the b64 project. These projects are found on the
GitHub NSP-Autotools site at https://github.com/NSP-Autotools.

Except for the FLAIM project, each of these repositories are tagged at
commits representing topic transitions. The tags are called out within the
margins of the chapters pertaining to these projects. You can easily follow
along by checking out the tagged commit in the repository when you see
one in the book.

Conventions Used in This Book
This book contains hundreds of program listings in roughly two categories:
console examples and file listings. Console examples have no captions, and
user input is bolded.

Often, I’ll use the Linux ls command with various options to show the
contents of a directory before or after changes are made. Different Linux
distributions often ship with an alias for ls enabled by default. I’m using
Linux Mint 18 with the Cinnamon desktop to write this book; my pre-
defined alias for ls is:

$ alias
--snip--
alias ls='ls --color=auto'
$

https://github.com/NSP-Autotools

Introduction xxxi

You may find you have an ls alias on your system that provides a dif-
ferent default set of functionality that will defeat your attempts to exactly
duplicate my console examples. Just be aware of the reasons for these
possible differences.

File listings contain full or partial listings of the files discussed in the
text. All named listings are provided in the associated git repositories. I’ve
tried to provide enough context around modified portions of partial list-
ings so that you can easily see where lines are added or changed. However,
there are a few listings where lines are deleted. In these cases, I’ve called
out the deleted lines in the text near the listing.

Listings without filenames are entirely contained in the printed listing
itself, are meant to be considered independently without context, and are
not part of the provided source repositories. In general, text that remains
the same as a previously listed version of the file will be grayed out, whereas
modified areas will be in black text.

For listings that do relate to the Jupiter and FLAIM projects, the caption
first specifies the path of the file relative to the project root directory and
then provides a description of the changes made to that file in the listing.

Throughout this book, I refer to the GNU/Linux operating system
simply as Linux. It should be understood that by the use of the term Linux,
I’m referring to GNU/Linux, its actual official name. I use Linux simply as
shorthand for the official name.

Autotools Versions Used in This Book
The Autotools are always being updated—on average, a significant update of
each of the three most important tools, Autoconf, Automake, and Libtool, is
released every year and a half, and minor updates are released every three to
six months. The Autotools developers attempt to maintain a reasonable level
of backward compatibility with each new release, but occasionally something
significant is broken, and older documentation simply becomes out-of-date.
More recently, the Autotools have been considered mature and complete;
release cycles have slowed and major changes seldom happen anymore. This
is good for the community and for you, the reader, as it means that the mate-
rial you find in this book will remain relevant for a long time to come.

Although I describe new, major features of recent releases of the
Autotools, in my efforts to make this book more evergreen, I’ve tried to stick
to descriptions of Autotools features (Autoconf macros, for instance) that
have been in widespread use for several years. Minor details change occasion-
ally, but the general use has stayed the same through many releases.

At appropriate places in the text, I mention the versions of the Autotools
I used for this book, but I’ll summarize here. I used version 2.69 of Autoconf,
version 1.15 of Automake (the latest version as of this writing is actually
1.16.1), and version 2.4.6 of Libtool. Through the publication process, I
was able to make minor corrections and update to new releases as they
became available.

xxxii Introduction

Additionally, I used version 0.19.7 of GNU gettext (the latest is 0.20.1)
and version 0.29.1 of pkg-config (the latest is 0.29.2). The GNU portability
library, Gnulib, is not distributed as a package but rather as a set of code
snippets that are downloaded directly from the GNU website (https://www
.gnu.org/software/gnulib/).

https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/

