
2
W E B A S S E M B LY T E X T B A S I C S

In this chapter, we’ll dive into the basics
of WAT code. We’ll write most of the code

in this book in WAT, the lowest level of pro-
gramming you can write for deployment to

WebAssembly (although for experienced assembly
coders, it might seem rather high level).

This chapter covers a lot of ground. We’ll begin by showing you the
two comment styles in WebAssembly. Next, we’ll write the traditional hello
world! application. We don’t start with hello world! because working with
strings from within WAT is more challenging than you might expect.

Then we’ll discuss how to import data from JavaScript into our
WebAssembly module using an import object. We’ll look at named
and unnamed global and local variables, as well as the data types that
WebAssembly supports. We’ll discuss the S-Expression syntax and how
the wat2wasm compiler unpacks those S-Expressions when it compiles your
code. You’ll delve into conditional logic, including if/else statements and
branch tables, and you’ll learn how to use loops and blocks in conjunction
with conditional logic.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

20 Chapter 2

By the end of this chapter, you should be able to write simple
WebAssembly apps that you can execute from the command line using
Node.js.

Writing the Simplest Module
Every WAT application must be a module, so we’ll first look at the module
syntax. We declare a module in a block, like the one in Listing 2-1.

(module
 ;; This is where the module code goes.
)

Listing 2-1: Single line WAT comment

We declare a module with the module keyword, and anything inside the
surrounding parentheses is part of the module. To add a comment, we use
two semicolons ;; , and everything on the line that follows is a comment.
WAT also has block comment syntax; you open the block comment with (;
and close it with ;) , as shown in Listing 2-2.

(module
 (;
 This is a module with a block comment.
 Like the /* and */ comments in JavaScript
 you can have as many lines as you like inside
 between the opening and closing parenthesis
 ;)
)

Listing 2-2: Multi-line WAT comment

Because this module doesn’t do anything, we won’t bother to compile it.
Instead, we’ll move on to writing our hello world! application.

Hello World! in WebAssembly
WAT doesn’t have any native string support, so working with strings
requires you to work directly with the memory as an array of character data.
That memory data then must be converted into a string in JavaScript code,
because manipulating strings from within JavaScript is much simpler.

When working with strings in WAT, you need to declare an array of
character data that is stored within WebAssembly linear memory. Linear
memory is a topic we’ll discuss in detail in Chapter 5, but for now know that
linear memory is similar to a memory heap in native applications, or a giant
Uint8Array in JavaScript.

You’ll also need to call an imported JavaScript function from Web-
Assembly to handle I/O operations. Unlike in a native application where
the operating system usually handles I/O, in a WebAssembly module, I/O

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 21

must be handled by the embedding environment, whether that environ-
ment is a web browser, an operating system, or runtime.

Creating Our WAT Module
In this section, we’ll create a simple WebAssembly module that creates a
hello world! string in linear memory and calls JavaScript to write that string
to the console. Create a new WAT file and name it helloworld.wat. Open that
file and add the WAT code in Listing 2-3.

helloworld.wat (module
 (import "env" "print_string" (func $print_string(param i32)))
)

Listing 2-3: Importing a function

This code tells WebAssembly to expect the import object env from our
embedding environment, and that, within that object we’re expecting the
function print_string. When we write our JavaScript code later, we’ll create
this env object with the print_string function, which will be passed to our
WebAssembly module when we instantiate it.

We also set up the signature as requiring a single i32 parameter repre-
senting the length of our string. We name this function $print_string so we
can access it from our WAT code.

Next, we’ll add an import for our memory buffer. Add the line in bold
in Listing 2-4; the grayed out code indicates that it’s repeated from the pre-
vious listing.

helloworld.wat (module
 (import "env" "print_string" (func $print_string(param i32)))
 (import "env" "buffer" (memory 1))
)

Listing 2-4: Importing a function and memory buffer

This new import tells our WebAssembly module that we’ll be importing
a memory buffer from the object env and the buffer will be called buffer.
The (memory 1) statement indicates that the buffer will be a single page of
linear memory: a page is the smallest chunk of memory you can allocate
at one time to linear memory. In WebAssembly, a page is 64KB, which is
more than we need for this module, so we need just one page. Next, in
Listing 2-5, we add a few global variables to helloworld.wat.

helloworld.wat (module
 (import "env" "print_string" (func $print_string(param i32)))
 (import "env" "buffer" (memory 1))
1 (global $start_string (import "env" "start_string") i32)
2 (global $string_len i32 (i32.const 12))
)

Listing 2-5: Adding global variables

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

22 Chapter 2

The first global 1 variable is a number imported from our JavaScript
import object; it maps to a variable with the name env in JavaScript (which
we’ve yet to create). That value will be the starting memory location of our
string and can be any location in our linear memory page up to the maxi-
mum 65,535. Of course, you wouldn’t want to choose a value close to the
end of linear memory because it would limit the length of the string you
could store. If the value passed in is 0, you can use the entire 64KB for your
string. If you passed in the value 65,532, you would only be able to use the
last four bytes to store character data. If you try to write to a memory loca-
tion that is greater than what was allocated, you’ll get a memory error in
your JavaScript console. The second global variable, $string_len 2, is a con-
stant that represents the length of the string we’ll define, and we set it to 12.

In Listing 2-6, we define our string in linear memory using a data
expression.

helloworld.wat (module
 (import "env" "print_string" (func $print_string(param i32)))
 (import "env" "buffer" (memory 1))
 (global $start_string (import "env" "start_string") i32)
 (global $string_len i32 (i32.const 12))
 (data (global.get $start_string) "hello world!")
)

Listing 2-6: Adding a data string

We first pass the location in memory where the module will write data.
The data is stored in the $start_string global variable that the module will
import from JavaScript. The second parameter is the data string, which we
define as the string "hello world!".

Now we can define our "helloworld" function and add it to the module,
as shown in Listing 2-7.

helloworld.wat (module
 (import "env" "print_string" (func $print_string (param i32)))
 (import "env" "buffer" (memory 1))
 (global $start_string (import "env" "start_string") i32)
 (global $string_len i32 (i32.const 12))
 (data (global.get $start_string) "hello world!")
1 (func (export "helloworld")
 2 (call $print_string (global.get $string_len))
)
)

Listing 2-7: Adding a "hello world" function to the WebAssembly module

We define and export our function as "helloworld" for use in
JavaScript 1. The only thing this function does is call the imported $print_
string 2 function, passing it the length of the string we defined as a global.
We can now compile our WebAssembly module, like so:

wat2wasm helloworld.wat

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 23

Running wat2wasm generates a helloworld.wasm module. To execute the
WebAssembly module, we’ll need to create a JavaScript file that executes it.

Creating the JavaScript File
Now we’ll create helloworld.js to run our WebAssembly module. Create and
open the JavaScript file in your text editor, and add the Node.js file con-
stants as well as three variables, as shown in Listing 2-8.

helloworld.js const fs = require('fs');
const bytes = fs.readFileSync(__dirname + '/helloworld.wasm');

1 let hello_world = null; // function will be set later
2 let start_string_index = 100; // linear memory location of string
3 let memory = new WebAssembly.Memory ({ initial: 1 }); // linear memory
...

Listing 2-8: Declaring the JavaScript variables

N O T E Notice the . . . in the last line of code in Listing 2-8. In this book, we’ll use . . .
to indicate that there is more code to be added to this file in the next few sections. If
the . . . appears at the beginning of a block of code, it indicates that this is a con-
tinuation from code in a previous section that ended with the . . .syntax.

The hello_world 1 variable will eventually point to the helloworld func-
tion exported by our WebAssembly module, so we set it to null for the time
being. The start_string_index 2 variable is the starting location of our
string in the linear memory array. We set it to 100 here, so as not to be close
to the 64KB limit. We chose the address 100 arbitrarily. You can choose any
address as long as none of the memory you’re using extends past the 64KB
limit.

The last variable holds the WebAssembly.Memory 3 object. The number
passed represents the number of pages you want to allocate. We initialize
it with a size of one page by passing in {initial: 1} as the only parameter.
You can allocate up to two gigabytes this way, but setting this value too high
can result in an error if the browser is unable to find enough contiguous
memory to fulfill the request.

Listing 2-9 shows the next variable we need to declare, importObject,
which will be passed into our WebAssembly module when we instantiate it.

helloworld.js ...
let importObject = {
1 env: {
 2 buffer: memory,
 3 start_string: start_string_index,
 4 print_string: function (str_len) {
 const bytes = new Uint8Array (memory.buffer,
 start_string_index, str_len);
 const log_string = new TextDecoder('utf8').decode(bytes);
 console.log (log_string);
 }

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

24 Chapter 2

 }
};
...

Listing 2-9: Declaring the importObject in JavaScript

Inside our importObject, we add an object named env 1 an abbreviation
of environment, although you can call this object anything you like as long
as it matches the name inside the WebAssembly import declaration. These
are the values that will be passed into the WebAssembly module when it’s
instantiated. If there is any function or value from the embedding environ-
ment you want to make available to the WebAssembly module, pass them in
here. The env object contains the memory buffer 2 and the starting loca-
tion 3 of our string within buffer. The third property in env 4 contains
our JavaScript function, print_string, which our WebAssembly module will
call as we instructed in Listing 2-9. This function retrieves the length of
the string in our memory buffer and uses it in combination with our start-
ing string index to create a string object. The app then displays the string
object on the command line.

Additionally, we add the IIFE that asynchronously loads our Web-
Assembly module and then calls the helloworld function, as shown in
Listing 2-10.

helloworld.js ...
(async () => {
 let obj = await
1 WebAssembly.instantiate(new Uint8Array (bytes), importObject);
2 ({helloworld: hello_world} = obj.instance.exports);
3 hello_world();
})();

Listing 2-10: Instantiating the WebAssembly module in an asynchronous IIFE

The first line of the async module awaits the WebAssembly.instantiate 1
function call, but unlike the simple addition example from Listing 1-1,
we’re passing that function the importObject we declared earlier. We then
pull the helloworld function out of obj.instance.exports using the destruc-
turing syntax to set the hello_world variable to the obj.instance.exports
function 2.

The last line of our IIFE calls the hello_world 3 function. We enclose
our arrow function in parentheses, and then add the function call paren-
theses to the end of our function declaration, which causes this function to
execute immediately.

N O T E We declare asynchronous code using the IIFE async/await syntax in an async func-
tion; alternatively, you can create a named async function that you call immediately
after the function’s declaration.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 25

Once you have the JavaScript and WebAssembly files, run the following
call to node from the command line:

node helloworld.js

You should see the following output on the command line:

hello world!

We’ve built the ubiquitous hello world! application! Now that you have
the hello world! application under your belt, we’ll explore variables and
how they work in WAT.

WAT Variables
WAT treats variables a little differently than other programming lan-
guages, so it’s worth providing you with some details here. However, the
browser manages local or global WAT variables in the same way it manages
JavaScript variables.

WAT has four global and local variable types: i32 (32-bit integer), i64
(64-bit integer), f32 (32-bit floating-point), and f64 (64-bit floating-point).
Strings and other more sophisticated data structures need to be managed
directly in linear memory. We’ll cover linear memory and the use of more
complicated data structures in WAT in Chapter 6. For now, let’s look at each
variable type.

Global Variables and Type Conversion
As you might expect, you can access globals in WAT from any function, and
we generally use globals as constants. Mutable globals can be modified after
they’re set and are usually frowned upon because they can introduce side
effects in functions that use them. Instead, you can import global variables
from JavaScript, allowing the JavaScript portion of your application to set
constant values inside your module.

When importing global variables, keep in mind that, at the time of
this writing, standard JavaScript number variables don’t support 64-bit
integer values. Numbers in JavaScript are 64-bit floating-point variables. A
64-bit floating-point variable can represent every value in a 32-bit integer,
so JavaScript has no trouble making this conversion. However, you can-
not represent all possible 64-bit integer values with a 64-bit floating-point
value. Unfortunately, this means that you can work with 64-bit integers in
WebAssembly, but if you want to send 64-bit values to JavaScript, it requires
additional effort, which is beyond the scope of this book.

N O T E The BigInt WebAssembly proposal will make support for JavaScript BigInt types
available in WebAssembly. That will make it easier for JavaScript to exchange 64-bit
integers with a WebAssembly module. The BigInt proposal is currently in the final
stages of development by the WebAssembly Working Group.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

26 Chapter 2

Another detail you must know about data types and WebAssembly and
JavaScript is that JavaScript treats all numbers as 64-bit floating-point num-
bers. When you call a JavaScript function from WebAssembly, the JavaScript
engine will perform an implicit conversion to a 64-bit float, no matter what
data type you pass. However, WebAssembly will define the imported func-
tion as having a specific data type requirement. Even if you pass the same
function into the WebAssembly module three times, you’ll need to specify a
type that the parameter passed from WebAssembly.

Let’s create a module named globals.wat that imports three numbers
from JavaScript. The WAT file in Listing 2-11 declares global variables for
a 32-bit integer, a 32-bit floating-point, and a 64-bit floating-point numeric
value.

globals.wat (module
1 (global $import_integer_32 (import "env" "import_i32") i32)
 (global $import_float_32 (import "env" "import_f32") f32)
 (global $import_float_64 (import "env" "import_f64") f64)

2 (import "js" "log_i32" (func $log_i32 (param i32)))
 (import "js" "log_f32" (func $log_f32 (param f32)))
 (import "js" "log_f64" (func $log_f64 (param f64)))

 (func (export "globaltest")
 3 (call $log_i32 (global.get $import_integer_32))
 4 (call $log_f32 (global.get $import_float_32))
 5 (call $log_f64 (global.get $import_float_64))
)
)

Listing 2-11: Importing alternative versions of the JavaScript function

We first declare the globals, including their types and import loca-
tion 1. We’re also importing a log function from JavaScript. WebAssembly
requires us to specify data types, so we import three functions, each with
different types for the parameter: a 32-bit integer, a 32-bit float, and a 64-bit
float 2.

The variable passed into $log_f64 is (global.get $import_float_64), which
tells WebAssembly that the variable we’re pushing onto the stack is global. If
you wanted to push a local variable called $x onto the stack, you would need
to execute the expression (local.get $x). We’ll cover local variables later in
this chapter.

In JavaScript, all of these functions take a dynamic variable. The
JavaScript functions will be almost identical. In the function globaltest, we
call the 32-bit integer version of the log function ($log_i32) 3, followed by
the 32-bit float ($log_f32) 4 and the 64-bit float 5. These functions will
log three different messages to demonstrate the perils of moving between
the native 64-bit floating-point values in JavaScript and the data types sup-
ported by WebAssembly. Before we look at the output, we need to create a
JavaScript file to run our WebAssembly module. We’ll start by declaring a
global_test variable followed by a log_message function that will be called for
each of our data types , as shown in Listing 2-12.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 27

globals.js const fs = require('fs');
const bytes = fs.readFileSync('./globals.wasm');
let global_test = null;

let importObject = {
 js: {
 log_i32: (value) => { console.log ("i32: ", value) },
 log_f32: (value) => { console.log ("f32: ", value) },
 log_f64: (value) => { console.log ("f64: ", value) },
 },
 env: {
 import_i32: 5_000_000_000, // _ is ignored in numbers in JS and WAT
 import_f32: 123.0123456789,
 import_f64: 123.0123456789,
 }
};
...

Listing 2-12: Setting importObject functions and values

In Listing 2-12, there are three different JavaScript functions passed to
the WebAssembly module using importObject: log_i32, log_f32, and log_f64.
Each of these functions is a wrapper around the console.log function. The
functions pass a string as a prefix to the value from the WebAssembly mod-
ule. These functions take in only a single parameter called value. JavaScript
doesn’t assign a type to the parameter in the same way WebAssembly does,
so the same function could have been used three times. The only reason we
didn’t use the same function three times is because we wanted to change
the string that prefixed the values to keep the output clear.

We chose the values in Listing 2-12 to demonstrate the limitations
of each data type. We set the global variable import_int32 to a value of
5,000,000,000, which we pass into WebAssembly as a 32-bit integer. That
value is larger than can be held by a 32-bit integer. We set the global vari-
able import_f32 to 123.01234567891, which has a higher level of precision than
is supported by the 32-bit floating-point variable set in our WebAssembly
module. The final global variable set in the importObject is import_f64, which,
unlike the previous two variables, is large enough to hold the value passed
into it.

The code in Listing 2-13 instantiates our WebAssembly module and
executes the globaltest function.

globals.js ...
(async () => {
 let obj = await WebAssembly.instantiate(new Uint8Array (bytes),
 importObject);
 ({globaltest: global_test} = obj.instance.exports);

 global_test();
})();

Listing 2-13: Instantiating the WebAssembly module in the asynchronous IIFE

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

28 Chapter 2

Now that we have all our code in the JavaScript and WAT files, we can
compile the WAT file into globals.wasm using the following wat2wasm call:

wat2wasm globals.wat

After compiling globals.wasm, we run our application using the follow-
ing node command:

node globals.js

When you run this JavaScript file using node, you should see the output
in Listing 2-14 logged to the console.

i32: 705032704
f32: 123.01234436035156
f64: 123.0123456789

Listing 2-14: Output logged to the console from globals.js

We passed in a value of 5,000,000,000 using our importObject, but our
output shows a value of 705,032,704. The reason is that a 32-bit unsigned
integer has a maximum value of 4,294,967,295. If you add 1 to that num-
ber, the 32-bit integer wraps back around to a value of 0. So if you take
the 5,000,000,000 number we passed in and subtract 4,294,967,296,
the result is 705,032,704. The lesson is, if you’re dealing with numbers
larger than a few billion, you might not be able to work with 32-bit inte-
gers. Unfortunately, as mentioned earlier, you can’t pass 64-bit integers
to JavaScript from WebAssembly. If you want to pass 64-bit integers to
JavaScript as WebAssembly, you’ll need to convert them to 64-bit floats
or pass them as two 32-bit integers.

We passed a value of 123.0123456789 to our WebAssembly module, but
because the 32-bit floating-point number has such limited precision, the
best it can do is approximate that number, and it doesn’t do a great job
of it. A 32-bit floating-point number in JavaScript and WebAssembly uses
23 bits to represent the number and multiplies it by two raised to an 8-bit
exponent value. All floating-point numbers are approximations, but 64-bit
floating-point numbers do a much better job of those approximations. The
performance differences you’ll see using 32-bit versus 64-bit floating-point
numbers vary with your hardware. If you want to use 32-bit floating-point
numbers to improve the performance of your application, it’s a good idea to
know the target hardware. Some mobile devices might see a larger perfor-
mance boost using 32-bit floating-point numbers.

The final message shows the 64-bit floating-point value returned to
JavaScript as f64: 123.0123456789.

As you can see, this is the first number that remains unmodified from
what we passed into the WebAssembly module. That by no means indicates
that you should always use 64-bit floating-point numbers. Addition, subtrac-
tion, and multiplication typically perform three to five times faster with inte-
gers. Dividing by powers of two is also several times faster. However, division
by anything but a power of two can be faster with floating-point numbers.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 29

We’ll explore these data types in more detail in Chapter 4. Now that
you have a better understanding of globals and types, let’s examine local
variables.

Local Variables
In WebAssembly, the values stored in local variables and parameters are
pushed onto the stack with the local.get expression. In Chapter 1, we wrote
a small function that performed the addition of two parameters passed into
the function that looked like Listing 2-15.

AddInt.wat (module
 (func (export "AddInt")
 (param $value_1 i32) (param $value_2 i32)
 (result i32)
 local.get $value_1
 local.get $value_2
 i32.add
)
)

Listing 2-15: WebAssembly module with a 32-bit integer add

Let’s make a few modifications to the code. To demonstrate how we can
use local variables, we’ll square the value of the sum that AddInt returned.
Create a new file named SumSquared.wat and add the code in Listing 2-16.
The changes are called out with numbers.

SumSquared.wat (module
 (func (export 1"SumSquared")
 (param $value_1 i32) (param $value_2 i32)
 (result i32)
 2 (local $sum i32)

 3 (i32.add (local.get $value_1) (local.get $value_2))
 4 local.set $sum

 5 (i32.mul (6local.get $sum) (local.get $sum))
)
)

Listing 2-16: Bit integer parameter and local variable definition

First, we change the name in the export to SumSquared 1. We add a
local variable called $sum 2 that we’ll use to store the result of the call to
i32.add 3. We change i32.add to use the S-Expression syntax. Immediately
after that, we call local.set $sum to pop the value off the stack and set the
new local variable $sum 4. Then we call i32.mul 5 using the S-Expression
syntax, passing in the value of $sum for both parameters. This is done
through a call to local.get 6.

To test this function, create a new JavaScript file named SumSquared.js
and add the code in Listing 2-17.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

30 Chapter 2

const fs = require('fs');
const bytes = fs.readFileSync(__dirname + '/SumSquared.wasm');
const val1 = parseInt(process.argv[2]);
const val2 = parseInt(process.argv[3]);

(async () => {
 const obj =
 await WebAssembly.instantiate(new Uint8Array (bytes));
 let sum_sq =
 obj.instance.exports.SumSquared(val1, val2);
 console.log (
 `(${val1} + ${val2}) * (${val1} + ${val2}) = ${sum_sq}`
);
})();

Listing 2-17: JavaScript that executes the SumSquared WebAssembly module

Once you’ve created your SumSquared.js function, you can run it the
same way you ran the AddInt.js file earlier, making sure to pass in two extra
parameters that represent the values you want to sum and then square. The
following command will add 2 and 3, and then square the result:

node SumSquared.js 2 3

The output of that run looks like this:

(2 + 3) * (2 + 3) = 25

You should now understand how to set a local variable from a value on
the stack and how to add a value to the stack from a global variable. Next,
let’s explore how to unpack the S-Expression syntax.

Unpacking S-Expressions
So far we’ve been mixing the use of S-Expressions with the linear WAT
syntax. However, the browser debugger doesn’t keep your S-Expressions
intact when you’re debugging; instead, it unpacks them. Because you’ll
want to use your knowledge of WAT to decompile and debug WebAssembly,
you’ll need to understand the unpacking process. We’ll walk through the
process the wat2wasm compiler uses to unpack a short piece of WAT code.
The unpacking process evaluates the expressions inside out first and then
in order. It initially dives into each S-Expression looking for su bexpres-
sions. If subexpressions exist, it evaluates the subexpressions first. If two
expressions are at the same depth, it evaluates them in order. Let’s look at
Listing 2-18.

1 (i32.mul ;; executes 7th (last)
2 (i32.add ;; executes 3rd
 3 (i32.const 3) ;; executes 1st
 4 (i32.const 2) ;; executes 2nd
)
5 (i32.sub ;; executes 6th

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 31

 6 (i32.const 9) ;; executes 4th
 7 (i32.const 7) ;; executes 5th
)
)

Listing 2-18: Using the S-Expression syntax

First, we need to go inside our i32.mul expression 1 to see if any subex-
pressions exist. We find two subexpressions, an i32.add expression 2 and an
i32.sub expression 5. We look at the first of these two expressions and go
inside i32.add 2, evaluating (i32.const 3) 3, which pushes a 32-bit integer
3 onto our stack. Because nothing is left to evaluate inside that statement,
we move on to evaluate (i32.const 2) 4, which pushes a 32-bit integer 2 onto
the stack. Then the S-Expression executes i32.add 2. The first three lines
executed in the S-Expression are shown in Listing 2-19.

i32.const 3
i32.const 2
i32.add

Listing 2-19: Code from i32.add after it’s unpacked

Now that i32.add is executed, the next piece to get unpacked is i32.sub.
Similarly, the code first goes inside the S-Expression and executes the
(i32.const 9) expression 6 followed by the (i32.const 7) expression 7.
Once those two constants are pushed onto the stack, the code executes
i32.sub. The unpacked subexpression looks like Listing 2-20.

i32.const 9
i32.const 7
i32.sub

Listing 2-20: Code from i32.sub after the S-Expression is unpacked

After the i32.add and i32.sub S-Expressions have been executed, the
unpacked version executes the i32.mul command.

The fully unpacked version of the S-Expression is shown in Listing 2-21.

i32.const 3 ;; Stack = [3]
i32.const 2 ;; Stack = [2, 3]
i32.add ;; 2 and 3 popped from stack, added sum of 5 pushed onto stack
[5]

i32.const 9 ;; Stack = [9,5]
i32.const 7 ;; Stack = [7,9,5]
i32.sub ;; 7 and 9 popped off stack . 9-7=2 pushed on stack [2,5]

i32.mul ;; 2,5 popped off stack, 2x5=10 is pushed on the stack [10]

Listing 2-21: Example of using the WAT stack

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

32 Chapter 2

How the stack machine works might seem a little daunting at first, but
it will feel more natural once you get accustomed to it. We recommend
using S-Expressions until you’re comfortable with the stack machine. The
S-Expression syntax is an excellent way to ease your way into WAT if you’re
only familiar with higher-level languages.

Indexed Variables
WAT doesn’t require you to name your variables and functions. Instead,
you can use index numbers to reference functions and variables that you
haven’t yet named. From time to time, you might see WAT code that uses
these indexed variables and functions. Sometimes this code comes from
disassembly, although we’ve also seen people write code that looks like this
occasionally.

Code that calls local.get followed by a number is retrieving a local vari-
able based on the order it appears in the WebAssembly code. For example,
we could have written our AddInt.wat file in Listing 2-21 like the code in
Listing 2-22.

(module
 (func (export "AddInt")
 1 (param i32 i32)
 (result i32)
 2 local.get 0
 3 local.get 1
 i32.add
)
)

Listing 2-22: Using variables

As you can see, we don’t name the parameters in the param 1 expres-
sion. A convenient part of this code style is that you can declare multiple
parameters in a single expression by adding more types. When we call
local.get, we need to pass in a zero indexed number to retrieve the proper
parameter. The first call to local.get 2 retrieves the first parameter by pass-
ing in 0 2. The second call to local.get 3 retrieves the second parameter
by passing in 1 3. You can also use this syntax for functions and global
variables. I find this syntax difficult to read, so I won’t use it in this book.
However, I felt it was necessary to introduce because some debuggers use it.

Converting Between Types
JavaScript developers don’t need to deal with converting between different
numeric types. All numbers in JavaScript are 64-bit floating-point numbers.
That simplifies coding for developers but comes at a performance cost. When
you’re working with WebAssembly, you need to be more familiar with your
numeric data. If you need to perform numeric operations between two vari-
ables with different data types, you’ll need to do some conversion. Table 2-1

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 33

provides the conversion functions you can use in WAT to convert between the
different numeric data types.

Table 2-1: Numeric Type Conversion Functions

Function Action

i32.trunc_s/f64
i32.trunc_u/f64

Convert a 64-bit float to a 32-bit integer

i32.trunc_s/f32
i32.trunc_u/f32

Convert a 32-bit float to a 32-bit integer

i32.reinterpret/f32

i32.wrap/i64 Convert a 64-bit integer to a 32-bit integer

i64.trunc_s/f64 Convert a 64-bit float to a 64-bit integer

i64.trunc_u/f64
i64.reinterpret/f64

i64.extend_s/i32
i64.extend_u/i32

Convert a 32-bit integer to a 64-bit integer

i64.trunc_s/f32
i64.trunc_u/f32

Convert a 32-bit float to a 64-bit integer

f32.demote/f64 Convert a 64-bit float to a 32-bit float

f32.convert_s/i32
f32.convert_u/i32
f32.reinterpret/i32

Convert a 32-bit integer to a 32-bit float

f32.convert_s/i64
f32.convert_u/i64

Convert a 64-bit integer to a 32-bit float

f64.promote/f32 Convert a 32-bit float to a 64-bit float

f64.convert_s/i32
f64.convert_u/i32

Convert a 32-bit integer to a 64-bit float

f64.convert_s/i64
f64.convert_u/i64
f64.reinterpret/i64

Convert a 64-bit integer to a 64-bit float

I omitted quite a bit of information from this table to stay focused.
The _u and _s suffixes on expressions, such as convert, trunc, and extend, let
WebAssembly know whether the integers you’re working with are unsigned
(cannot be negative) or signed (can be negative), respectively. A trunc expres-
sion truncates the fractional portion of a floating-point number when it con-
verts it to an integer. Floating-point numbers can be promoted from an f32
to an f64 or demoted from an f64 to an f32. Integers are simply converted to
floating-point numbers. The wrap command puts the lower 32 bits of a 64-bit
integer into an i32. The reinterpret command keeps the bits of an integer

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

34 Chapter 2

or floating-point value the same when it reinterprets them as a different
data type.

if/else Conditional Logic
One way that WAT differs from an assembly language is that it contains
some higher-level control flow statements, such as if and else. WebAssembly
doesn’t have a boolean type; instead, it uses i32 values to represent bool-
eans. An if statement requires an i32 to be on the top of the stack to evalu-
ate control flow. The if statement evaluates any non-zero value as true and
zero as false. The syntax for an if/else statement using S-Expressions looks
like Listing 2-23.

;; This code is for demonstration and not part of a larger app
(if (local.get $bool_i32)
 (then
 ;; do something if $bool_i32 is not 0
 ;; nop is a "no operation" opcode.
 nop ;; I use it to stand in for code that would actually do something.
)
 (else
 ;; do something if $bool_i32 is 0
 nop
)
)

Listing 2-23: The if/else syntax using S-Expressions

Let’s also look at what the unpacked version of the if/else statements
look like. Unpacking an if/else statement might look a little different
than you would expect. There is no (then) expression in the unpacked ver-
sion. Listing 2-24 shows how the code in Listing 2-23 would look after it’s
unpacked.

;; This code is for demonstration and not part of a larger app
local.get $bool_i32

if
 ;; do something if $bool_i32 is not 0
 nop
else
 ;; do something if $bool_i32 is 0
 nop
end

Listing 2-24: The if/else statement using the linear syntax

The S-Expression then expression is pure syntactic sugar and doesn’t
exist in the unpacked version of our code. The unpacked version requires
an end statement that doesn’t exist in the S-Expression syntax.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 35

When you’re writing real programs, you use boolean logic with your
if/else statements. Checking whether a value is zero is very limited. In
JavaScript, you might have an if statement that looks something like this:

if(x > y && y < 6)

To replicate this in WebAssembly, you would need to use expressions
that conditionally return 32-bit integer values. Listing 2-25 shows how we
would do the logic from the JavaScript if example if x and y were both
32-bit integers.

;; This code is for demonstration and not part of a larger app
(if
 (i32.and
 (i32.gt_s (local.get $x) (local.get $y)) ;; signed greater than
 (i32.lt_s (local.get $y) (i32.const 6)) ;; signed less than
)
 (then
 ;; x is greater than y and y is less than 6
 nop
)
)

Listing 2-25: An if expression with an i32.and using S-Expression syntax

It looks a bit complicated in comparison. The i32.and expression per-
forms a bitwise AND operation on 32-bit integers. It ends up working
out because i32.gt_s and i32.lt_s both return 1 if true and 0 if false. In
WebAssembly, you must keep in mind that you’re using bitwise AND/OR
operations; if you use an i32.and on a value of 2 and a value of 1, it will result
in 0 because of the way the binary AND works. You might want a logical
AND instead of a binary AND, but i32.and is a binary AND. If you’re unfa-
miliar with binary AND/OR operations, we discuss them in more detail in
Chapter 4. In some ways, complicated if expressions look better when they’re
unpacked. Listing 2-26 shows the code in Listing 2-25 without the sugar.

;; This code is for demonstration and not part of a larger app
local.get $x
local.get $y
i32.gt_s ;; pushes 1 on the stack $x > $y

local.get $y
i32.const 6
i32.lt_s ;; pushes 1 on the stack if $y < 6

i32.and ;; do a bitwise and on the last two values on the stack

if
 ;; x is greater than y and y is less than 6
 nop
end

Listing 2-26: An if statement with i32.and using stack syntax

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

36 Chapter 2

Listing 2-27 shows there are similar expressions you can use if $x and $y
are 64-bit or 32-bit floating-point numbers.

;; This code is for demonstration and not part of a larger app
(if
 (i32.and
 1 (f32.gt (local.get $x) (local.get $y))
 2 (f32.lt (local.get $y) (f32.const 6))
)
 (then
 ;; x is greater than y and y is less than 6
 nop
)
)

Listing 2-27: Using f32 comparisons but i32.and results

Notice that we changed i32.gt_s and i32.lt_s to f32.gt 1 and f32.lt 2
respectively. Many integer operations must specify whether they support
negative numbers using the _s suffix. You don’t have to do that for floating-
point numbers, because all floating-point numbers are signed and have a
dedicated sign bit.

There are a total of 40 comparison expressions in WebAssembly. Table 2-2
shows expressions that are useful in conjunction with the if/else expressions.
Unless otherwise stated, these functions pop two values off the stack, compare
them, and push 1 on the stack if true and 0 on the stack if false.

Table 2-2: Functions to Use with if/else

Function Action

i32.eq
i64.eq
f32.eq
f64.eq

Test for equality

i32.ne
i64.ne
f32.ne
f64.ne

Not equal

i32.lt_s
i32.lt_u
i64.lt_s
i64.lt_u
f32.lt
f64.lt

Less than test. The _s suffix indicates signed comparison;
_u indicates unsigned.

i32.le_s
i32.le_u
i64.le_s
i64.le_u
f32.le
f64.le

Less than or equal test. The _s suffix indicates signed comparison;
_u indicates unsigned.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 37

Function Action

i32.gt_s
i32.gt_u
f32.gt
f64.gt
i64.gt_s
i64.gt_u

Greater than test. The _s suffix indicates signed comparison; _u
indicates unsigned.

i32.ge_s
i32.ge_u
i64.ge_s
i64.ge_u
f32.ge
f64.ge

Greater than or equal test. The _s suffix indicates signed compari-
son; _u indicates unsigned.

i32.and
i64.and

Bitwise AND

i32.or
i64.or

Bitwise OR

i32.xor
i64.xor

Bitwise exclusive OR

i32.eqz
i64.eqz

Pop one, push 1 if the number is 0, and push 0 if it’s anything else

Loops and Blocks
The branching expressions in WAT are different than branching statements
you might find in an assembly language. The differences prevent the spa-
ghetti code that comes about as the result of jumps to arbitrary locations. If
you want your code to jump backward, you must put your code inside a loop.
If you want your code to jump forward, you must put it inside a block. For
the kind of functionality you would see in a high-level programming lan-
guage, you must use the loop and block statements together. Let’s explore
these structures with some throwaway code examples that won’t be a part of
a larger app.

The block Statement
First, we’ll look at the block expression. The block and loop statements in
WAT work a bit like goto statements in assembly or some low-level program-
ming languages. However, the code can only jump to the end of a block if
it’s inside that block. That prevents the code from arbitrarily branching to
a block label from anywhere within your program. If the code jumps to the
end of a block, the code that performs that jump must exist inside that block.
Listing 2-28 shows an example.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

38 Chapter 2

;; This code is for demonstration and not part of a larger app
1 (block $jump_to_end
2 br $jump_to_end

 ;; code below the branch does not execute. br jumps to the end of the block
3 nop
)

;; This is where the br statement jumps to
4 nop

Listing 2-28: Declaring a block in WAT

The br 2 statement is a branch statement that instructs the program
to jump to a different location in the code. You might expect br to jump
back to the beginning of the block where the label is defined 1. But that
isn’t what happens. If you use a br statement within a block to jump to the
block’s label, it exits that block and begins to execute the code immediately
outside the block 4. That means that the code directly below the br state-
ment 3 never executes. As mentioned earlier, this code isn’t meant to be
used, we only wanted to demonstrate how the block and br statements work.

The way we use the br statement here isn’t useful. Because the br state-
ment always branches to the end of the labeled block, you want it inside an
if or else block.

The br_if conditional branch in Listing 2-29 is used to branch given a
condition, unlike the code in Listing 2-28.

;; This code is for demonstration and not part of a larger app
(block $jump_to_end
1 local.get $should_I_branch
2 br_if $jump_to_end

 ;; code below the branch will execute if $should_I_branch is 0
3 nop
)

4 nop

Listing 2-29: Branching to the end of the block with br_if

The new version of the code pushes a 32-bit integer value $should_I_branch
onto the stack 1. The br_if statement pops the top value off the stack 2,
and if that value isn’t 0, branches to the end of the $jump_to_end block 4.
If $should_I_branch is 0, the code in the block below the br_if statement 3
executes.

The loop Expression
The block expression always jumps to the end of the block on a branch.
If you need to jump to the beginning of a block of code, use the loop

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 39

statement. Listing 2-30 shows how a WAT loop statement works. You might
be mistaken if you think this code executes in an infinite loop.

;; This code is for demonstration and not part of a larger app
(loop $not_gonna_loop
 ;; this code will only execute once
1 nop
)

;; because there is no branch in our loop, it exits the loop block at the end
2 nop

Listing 2-30: A loop expression that doesn’t loop

In fact, a loop expression in WAT doesn’t loop on its own; it needs a
branch statement located inside the loop to branch back to the begin-
ning of the loop expression. A loop block will execute the code inside it 1
just like a block expression and, without a branch, exits at the end of the
block 2.

If for any reason you want to create an infinite loop, you need to exe-
cute a br statement at the end of your loop, as shown in Listing 2-31.

;; This code is for demonstration and not part of a larger app
 (loop $infinite_loop
 ;; this code will execute in an infinite loop
 nop

 1 br $infinite_loop
)

 ;; this code will never execute because the loop above is infinite
2 nop

Listing 2-31: Branching in an infinite loop

The br statement 1 always branches back to the top of the $infinite_
loop block with every iteration. The code below the loop 2 never executes.

N O T E When you write WAT to execute in the browser, you never want to use an infinite loop
because WebAssembly doesn’t do your browser rendering; so you need to relinquish
control back to the browser, or the browser hangs.

Using block and loop Together
To make your loop able to break and continue, you need to use the loop
and the block expressions together. Let’s put together a little WebAssembly
module and JavaScript app that finds factorials. The program will run a
loop until we have the factorial value of the number passed into the func-
tion. That will allow us to test the continue and break functionality of our
loop expression. Our simple loop will calculate the factorial value for each
number up to some parameter value $n that we’ll pass in from JavaScript.
Then the value of $n factorial will be returned to JavaScript.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

40 Chapter 2

Create a new file named loop.wat and add the code in Listing 2-32.

loop.wat (module
1 (import "env" "log" (func $log (param i32 i32)))

 (func $loop_test (export "loop_test") (param $n i32)
 (result i32)

 (local $i i32)
 (local $factorial i32)

 (local.set $factorial (i32.const 1))

 2 (loop $continue (block $break ;; $continue loop and $break block
 3 (local.set $i ;; $i++
 (i32.add (local.get $i) (i32.const 1))
)

 4 ;; value of $i factorial
 (local.set $factorial ;; $factorial = $i * $factorial
 (i32.mul (local.get $i) (local.get $factorial))
)

 ;; call $log passing parameters $i, $factorial
 5 (call $log (local.get $i) (local.get $factorial))

 6 (br_if $break
 (i32.eq (local.get $i) (local.get $n)));;if $i==$n break from loop
 7 br $continue ;; branch to top of loop
))

 8 local.get $factorial ;; return $factorial to calling JavaScript
)
)

Listing 2-32: Branching forward and backward with a loop and a block

The first expression in this module is an import of the $log function 1.
In a moment, we’ll write this function in JavaScript and call it on every pass
through our loop to log the value of $i factorial for each pass. We labeled
the loop $continue 2 and the block $break 2 because branching to $continue
will continue to execute the loop and branching to $break will break out of
the loop. We could have done this without using the $break block, but we
want to demonstrate how the loop can work in conjunction with a block.
This allows your code to work like a break and a continue statement in a high-
level programming language.

The loop increments $i 3 and then calculates a new $factorial value by
multiplying $i by the old $factorial value 4. It then makes a call to log with
$i and $factorial 5. We use a br_if to break out of the loop if $i == $n 6.
If we don’t break out of loop, we branch back to the top of loop 7. When
the loop exits, we push the value of $factorial onto the stack 8 so we can
return that value to the calling JavaScript.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 41

Once you have your WAT file, compile it into a WebAssembly file using
the following command:

wat2wasm loop.wat

Now we’ll create a JavaScript file to execute the WebAssembly. Create a
loop.js file and enter the code in Listing 2-33.

loop.js const fs = require('fs');
const bytes = fs.readFileSync(__dirname + '/loop.wasm');
1 const n = parseInt(process.argv[2] || "1"); // we will loop n times
let loop_test = null;

let importObject = {
 env: {
 2 log: function(n, factorial) { // log n factorial to output tag
 console.log(`${n}! = ${factorial}`);
 }
 }
};

(async() => {
3 let obj = await WebAssembly.instantiate(new Uint8Array(bytes),
 importObject);

4 loop_test = obj.instance.exports.loop_test;

5 const factorial = loop_test(n); // call our loop test
6 console.log(`result ${n}! = ${factorial}`);
7 if (n > 12) {
 console.log(`
 ===
 Factorials greater than 12 are too large for a 32-bit integer.
 ===
 `)
 }
})();

Listing 2-33: Calling the loop_test from JavaScript

The log 2 function, which our WAT code will call, logs a string to the
console with the values of n 1 and n factorial passed from the WAT loop.
When we instantiate the module 3, we pass a value of n to the loop_test 4
function. The loop_test function finds the factorial as a result 5. We then
use a console.log 6 call to display the value of n and n factorial. We have
a check at the end to make sure the number we enter isn’t greater than a
value of 12 7, because signed 32-bit integers only support numbers up to
about 2 billion. Run loop.js using node by executing the following on the
command line:

node loop.js 10

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

42 Chapter 2

Listing 2-34 shows the output you should see on the command line.

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
result 10! = 3628800

Listing 2-34: Output from loop.js

Now that you know how loops work in WAT, let’s look at branch tables.

Branching with br_table
Another way to use the block expression in WAT is in conjunction with a
br_table expression, which allows you to implement a kind of switch state-
ment. It’s meant to provide the kind of jump table performance you get
with a switch statement when there are a large number of branches. The
br_table expression takes a list of blocks and an index into that list of blocks.
It then breaks out of whichever block your index points to. The awkward
thing about using a branch table is that the code can only break out of a
block it’s inside. That means you must declare all of your blocks ahead of
time. Listing 2-35 shows what the WAT code looks like to build a br_table.

;; This code is for demonstration and not part of a larger app
1 (block $block_0
(block $block_1
(block $block_2
(block $block_3
(block $block_4
(block $block_5
2 (br_table $block_0 $block_1 $block_2 $block_3 $block_4 $block_5
 (local.get $val)
)
3) ;; block 5
i32.const 55
return

) ;; block 4
i32.const 44
return

) ;; block 3
i32.const 33
return

) ;; block 2
i32.const 22

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

WebAssembly Text Basics 43

return

) ;; block 1
i32.const 11
return

) ;; block 0
i32.const 0
return

Listing 2-35: Using the br_table syntax from within WAT

We define all the block expressions before the br_table expression 1.
So when the br_table expression is called 2, it’s not always completely clear
where in the code it will jump. This is why we added the comments 3 in the
code indicating which block was ending.

The br_table provides some performance improvement over the use of if
expressions when you have a large number of branches. In our testing, using
the br_table expression wasn’t worthwhile until there were about a dozen
branches. Of course this will depend on the embedding environment and
hardware it runs on. Even at this number of branches, the br_table was still
slower on Chrome than if statements. Firefox with about a dozen branches
was noticeably faster with the br_table expression.

Summary
In this chapter, we covered many of the WAT programming basics. After
learning to create and execute a WebAssembly module in Chapter 1, you
moved on to creating the traditional hello world! application in this chap-
ter. Creating a hello world! application is a bit more advanced in WAT than
in most programming languages.

After completing a few initial programs, we began looking at some of
the basic features of WAT and how they differ from a traditionally high-
level language like JavaScript. We explored variables and constants and how
they can be pushed onto the stack using WAT commands. We discussed
the S-Expression syntax and how to unpack it. We also briefly mentioned
indexed local variables and functions, and introduced you to that syntax.
You learned the basic branching and looping structures, and how to use
them within the WAT syntax. In the next chapter, we’ll explore functions
and function tables in WAT, and how they interact with JavaScript and
other WAT modules.

The Art of WebAssembly (Sample) © 2021 by Rick Battagline

