
Arduino Workshop
©2013, John Boxall

4
B u i l d i n g B l o c k s

In this chapter you will

•	 Learn how to read schematic diagrams, the language of electronic
circuits

•	 Be introduced to the capacitor

•	 Work with input pins

•	 Use arithmetic and test values

•	 Make decisions with if-then-else statements

•	 Learn the difference between analog and digital

•	 Measure analog voltage sources at different levels of precision

•	 Be introduced to variable resistors, piezoelectric buzzers, and tempera-
ture sensors

•	 Consolidate your knowledge by creating traffic lights, a battery tester,
and a thermometer

56 Chapter 4
Arduino Workshop
©2013, John Boxall

The information in this chapter will help you understand an Arduino’s
potential. We’ll continue to learn more about electronics, including infor-
mation about new components, how to read schematic diagrams (the “road
maps” of electronic circuits), and the types of signals that can be measured.
Then, we’ll discuss additional Arduino functions—such as storing values,
performing mathematical operations, and making decisions. Finally, we’ll
examine some more components and then put them to use in some useful
projects.

Using Schematic Diagrams
Chapter 3 described how to build a circuit using physical layout diagrams to
represent the breadboard and components mounted on it. Although such
physical layout diagrams may seem like the easiest way to diagram a circuit,
you’ll find that as more components are added, direct representations can
make physical diagrams a real mess. Because our circuits are about to get
more complicated, we’ll start using schematic diagrams (also known as circuit
diagrams) to illustrate them, such as the one shown in Figure 4-1.

Figure 4-1: Example of a schematic diagram

Schematics are simply circuit “road maps” that show the path of electrical
current flowing through various components. Instead of showing compo-
nents and wires, a schematic uses symbols and lines.

Identifying Components
Once you know what the symbols mean, reading a schematic is easy. To
begin, let’s examine the symbols for the components we’ve already used.

The Arduino

Figure 4-2 shows a symbol for the Arduino itself. As you can see, all of the
Arduino’s connections are displayed and neatly labeled.

Building Blocks 57
Arduino Workshop
©2013, John Boxall

N
/C

IO
 REF

SC
L

SD
A

RST

A
REF

A
0

A
1

A
2

A
3

A
4

A
5

3V3
5V

V
in

Analog Input

D
11

D
10

D
9

D
8

D
7

D
6

D
5

D
4

D
3

PW
M

TXRX

PW
M

PW
M

PW
M

PW
M

PW
M

D
2

D
1

D
13

D
12

D
0

Digital Input/Output

Pow
er

A
rduino

G
N

D

Figure 4-2: Arduino Uno symbol

The Resistor

The resistor symbol is shown in Figure 4-3.
It’s good practice to display the resistor value

and part designator along with the resistor sym-
bol (220 W and R1 in this case). This makes life
a lot easier for everyone trying to make sense of
the schematic (including you). Often you may see
ohms written as R instead—for example, 220 R.

The Rectifier Diode

The rectifier diode is shown in Figure 4-4.
Recall from Chapter 3 that rectifier diodes are

polarized, and current flows from the anode to the
cathode. On the symbol shown in Figure 4-4, the
anode is on the left and the cathode is on the
right. An easy way to remember this is to think of
current flowing toward the point of the triangle
only. Current cannot flow the other way, because
the vertical bar “stops” it.

The LED

The LED symbol is shown in Figure 4-5.
All members of the diode family share a

common symbol: the triangle and vertical line.
However, LED symbols show two parallel arrows
pointing away from the triangle to indicate that
light is being emitted.

R1
220Ω

Figure 4-3: Resistor
symbol

−
cathode

+
anode

D1
1N4004

current flow

Figure 4-4: Rectifier
diode symbol

−
cathode

+
anode

LED1
Red (633nm)

current flow

Figure 4-5: LED symbol

58 Chapter 4
Arduino Workshop
©2013, John Boxall

The Transistor

The transistor symbol is shown in Figure 4-6.
We’ll use this to represent our BC548.

The vertical line at the top of the symbol
(labeled C) represents the collector, the horizon-
tal line at the left represents the base (labeled
B), and the bottom line represents the emitter
(labeled E). The arrow inside the symbol, point-
ing down and to the right, tells us that this is an
NPN -type transistor, because NPN transistors
allow current to flow from the collector to the
emitter. (PNP -type transistors allow current to
flow from the emitter to collector.)

When numbering transistors, we use the let-
ter Q , just as we use R to number resistors.

The Relay

The relay symbol is shown in Figure 4-7.
Relay symbols can vary in many ways

and may have more than one set of con-
tacts, but all relay symbols share certain
elements in common. The first is the
coil, which is the curvy vertical line at
the left. The second element is the relay
contacts. The COM (for common) contact
is often used as an input, and the contacts
marked NO (normally open) and NC (nor-
mally closed) are often used as outputs.

The relay symbol is always shown with
the relay in the off state and the coil not
energized—that is, with the COM and NC
pins connected. When the relay coil is
energized, the COM and NO pins will be
connected in the symbol.

Wires in Schematics
When wires cross or connect in schematics, they are drawn in particular
ways, as shown in the following examples.

current
flow

E

C

B

Q1

Figure 4-6: Transistor
symbol

NO NC

COM

coil contacts

Figure 4-7: Relay symbol

Building Blocks 59
Arduino Workshop
©2013, John Boxall

Crossing but Not Connected Wires

When two wires cross but are not connected, the crossing can be repre-
sented in one of two ways, as shown in Figure 4-8. There is no one right
way; it’s a matter of preference.

Figure 4-8: Nonconnecting crossed wires

Connected Wires

When wires are meant to be physically connected, a
junction dot is drawn at the point of connection, as shown
in Figure 4-9.

Wire Connected to Ground

When a wire is connected back to ground (GND),
the standard method is to use the symbol shown in
Figure 4-10.

The GND symbol at the end of a line in a schematic
tells you that the wire is physically connected to the
Arduino GND pin.

Dissecting a Schematic
Now that you know the symbols for various components and their connec-
tions, let’s dissect the schematic we would draw for Project 1. Recall that you
made five LEDs blink backward and forward.

Compare the schematic shown in Figure 4-11 with Figure 3-13 on
page 45, and you’ll probably agree that using a schematic is a much eas-
ier way to describe a circuit.

From now on, we’ll use schematics to describe circuits, and we’ll show
the symbols for new components as they’re introduced.

n o T E If you’d like to create your own computer-drawn schematics, try the Fritzing applica-
tion, available for free from http://www.fritzing.org/.

Figure 4-9:
Two wires that
are connected

Figure 4-10:
The GND
symbol

Arduino Workshop
©2013, John Boxall60 Chapter 4

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
nalog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

ita
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R5
560Ω

R3
560Ω

R4
560Ω

R2
560Ω

R1
560Ω

LED5 LED4 LED1LED2LED3

Figure 4-11: Schematic for Project 1

The Capacitor
A capacitor is a device that holds an electric charge. It consists of two metal
plates with an insulating layer that allows an electric charge to build up
between the plates. Once the current is stopped, the charge remains and
can flow out of the capacitor (called discharging the capacitor) as soon as
the charge voltage stored in the capacitor is presented with a new path
for the current to take.

Measuring the Capacity of a Capacitor
The amount of charge that a capacitor can store is measured in farads,
and one farad is actually a very large amount. Therefore, you will gener-
ally find capacitors with values measured in picofarads or microfarads.

Building Blocks 61
Arduino Workshop
©2013, John Boxall

One picofarad (pF) is 0.000000000001 of a farad, and one microfarad (μF)
is 0.000001 of a farad. Capacitors are also manufactured to accept certain
voltage maximums. In this book, we’ll be working with low voltages only, so
we won’t be using capacitors rated at greater than 10 V or so; it’s generally
fine, however, to use higher-voltage specification capacitors in lower-voltage
circuits. Common voltage ratings are 10, 16, 25, and 50 V.

Reading Capacitor Values
Reading the value of a ceramic capacitor
takes some practice, because the value
is printed in a sort of code. The first two
digits represent the value in picofarads,
and the third digit is the multiplier in
tens. For example, the capacitor shown in
Figure 4-12 is labeled 104. This equates to
10, followed by four zeros, which equals
100,000 picofarads/pF (100 nanofarads
[nF], or 0.1 microfarads [μF]).

n o T E The conversions between units of measure can
be a little confusing, but you can print an
excellent conversion chart from http://www
.justradios.com/uFnFpF.html.

Types of Capacitors
Our projects will use two types of capacitors: ceramic and electrolytic.

Ceramic Capacitors

Ceramic capacitors, such as the one shown
in Figure 4-12, are very small and there-
fore hold a small amount of charge. They
are not polarized and can be used for
current flowing in either direction. The
schematic symbol for a nonpolarized
capacitor is shown in Figure 4-13.

Ceramic capacitors work beautifully
in high-frequency circuits because they
can charge and discharge very quickly
due to their small capacitance.

100nF

Figure 4-13: A nonpolarized
capacitor schematic symbol,
with the capacitor’s value
shown at the upper right

Figure 4-12: A 0.1 µF ceramic
capacitor

62 Chapter 4
Arduino Workshop
©2013, John Boxall

Electrolytic Capacitors

Electrolytic capacitors, like the one shown in Figure 4-14, are physically larger
than ceramic types, offer increased capacitance, and are polarized. A mark-
ing on the cover shows either the positive (+) side or negative side (–). In
Figure 4-14, you can see the stripe and the small negative (–) symbol that
identifies the negative side. Like resistors, capacitors also have a level of
tolerance with their values. The capacitor in Figure 4-14 has a tolerance of
20 percent and a capacitance of 100 μF.

Figure 4-14: Electrolytic capacitor

The schematic symbol for electrolytic capacitors, shown in Figure 4-15,
includes the + symbol to indicate the capacitor’s polarity.

1µF

Figure 4-15: Polarized capacitor
schematic symbol

Electrolytic capacitors are often used to store larger electric charges
and to smooth power supply voltages. Like a small temporary battery, they
can provide power-supply smoothing and stability near circuits or parts
that draw high currents quickly from the supply. This prevents unwanted
dropouts and noise in your circuits. Luckily, the values of the electrolytic
capacitor are printed clearly on the outside and don’t require decoding or
interpretation.

Now that you have experience generating basic forms of output using
LEDs with your Arduino, it’s time to learn how to send input from the out-
side world into your Arduino using digital inputs and to make decisions
based on that input.

Building Blocks 63
Arduino Workshop
©2013, John Boxall

Digital Inputs
In Chapter 3, we used digital I/O pins as outputs to turn LEDs on and off.
We can use these same pins to accept input from users—such as detecting
whether a push button has been pressed by a user.

Like digital outputs, digital inputs have two states: high and low.
The simplest form of digital input is a push button, like those shown in
Figure 4-16. You can insert these directly into your solderless breadboard.
A push button allows a voltage or current to pass when the button is pressed,
and digital input pins are used to detect the presence of the voltage and to
determine whether a button is pressed.

Figure 4-16: Basic push buttons on a breadboard

Notice how the button at the bottom of the figure is inserted into the
breadboard, bridging rows 23 and 25. When the button is pressed, it con-
nects the two rows. The schematic symbol for this particular push button
is shown in Figure 4-17. The symbol represents the two sides of the button,
which are numbered with the prefix S. When the button is pressed, the line
bridges the two halves and allows voltage or current through.

S1

Figure 4-17: Push-button schematic symbol

64 Chapter 4
Arduino Workshop
©2013, John Boxall

ME a sur ing s w i Tch BouncE

w i T h a digi Ta l s Tor agE oscil loscopE

Push buttons exhibit a phenomenon called switch bounce, or bouncing,
which refers to a button’s tendency to turn on and off several times after being
pressed only once by the user. This phenomenon occurs because the metal con-
tacts inside a push button are so small that they can vibrate after a button has
been released, thereby switching on and off again very quickly.

Switch bounce can be demonstrated with a digital storage oscilloscope
(DSO), a device that displays the change in a voltage over a period of time.
For example, consider Figure 4-18, a DSO displaying a switch bounce.

Figure 4-18: Measuring switch bounce

The top half of the display in Figure 4-18 shows the results of pressing a
button several times. When the voltage line indicated by the arrows is at the
higher horizontal position (5 V), the button is in the on state and the voltage
is connected through it. Underneath the word Stop is a slice of time just after
the button was switched off, as shown by two vertical lines. The button voltage
during this time is magnified in the bottom half of the screen. At A, the button is
released by the user and the line drops down to 0 V. However, as you can see,
due to physical vibration, the button is again at the higher 5 V position until B,
where it vibrates off and then on again until C, where it settles at the low (off)
state. In effect, instead of relaying one button press to our Arduino, in this case,
we have unwittingly sent three.

Building Blocks 65
Arduino Workshop
©2013, John Boxall

Project #4: Demonstrating a Digital Input

Our goal in this project is to create a button that turns on an LED for half a
second when pressed.

The Algorithm
Here is our algorithm:

1. Test to see if the button has been pressed.

2. If the button has been pressed, then turn on the LED for half a second,
and then turn it off.

3. If the button has not been pressed, then do nothing.

4. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

•	 One push button

•	 One LED

•	 One 560 W resistor

•	 One 10 kW resistor

•	 One 100 nF capacitor

•	 Various connecting wires

•	 One breadboard

•	 Arduino and USB cable

The Schematic
First we create the circuit on the breadboard with the schematic shown in
Figure 4-19. Notice how the 10 kW resistor is connected between GND and
digital pin seven. We call this a pull-down resistor, because it pulls the voltage
at the digital pin almost to zero. Furthermore, by adding a 100 nF capacitor
across the 10 kW resistor, we create a simple debounce circuit to help filter
out the switch bounce. When the button is pressed, the digital pin goes
immediately to high. But when the button is released, digital pin seven is
pulled down to GND via the 10 kW resistor, and the 100 nF capacitor cre-
ates a small delay. This effectively covers up the bouncing pulses by slow-
ing down the voltage falling to GND, thereby eliminating most of the false
readings due to floating voltage and erratic button behavior.

66 Chapter 4
Arduino Workshop
©2013, John Boxall

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
nalog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

ita
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R1
560Ω

LED1
C1
100nFR2

10kΩ

S1

Figure 4-19: Schematic for Project 4

Because this is the first time you’re
building a circuit with a schematic, fol-
low these step-by-step instructions as you
walk through the schematic; this should
help you understand how the compo-
nents connect:

1. Insert the push button into the
breadboard, as shown in Figure 4-20.

2. Turn the breadboard 90 degrees
counterclockwise and insert the
10 kW resistor, a short link wire,
and the capacitor, as shown in
Figure 4-21.

Figure 4-20: Push button inserted
into breadboard

Building Blocks 67
Arduino Workshop
©2013, John Boxall

Figure 4-21: 10 kΩ resistor, capacitor, and push button

3. Connect one wire from the Arduino 5 V pin to the leftmost vertical col-
umn on the breadboard, and connect another wire from the Arduino
GND pin to the vertical row to the right of the 5 V column, as shown in
Figure 4-22.

Figure 4-22: The 5 V (red) and GND (black) wires

10 kΩ resistor

capacitor

push button

GND wire

5 V wire

68 Chapter 4
Arduino Workshop
©2013, John Boxall

4. Run a wire from Arduino digital pin 7 to the breadboard near the top-
right corner of the button, as shown in Figure 4-23.

Figure 4-23: Connecting the button to the digital input

5. Insert the LED into the breadboard with the short leg (the cathode)
connected to the GND column, and the long leg (the anode) in a row
to the right. Next, connect the 560 W resistor to the right of the LED,
as shown in Figure 4-24.

Figure 4-24: Inserting the LED and 560 Ω resistor

LED

560 Ω
resistor

anode

Building Blocks 69
Arduino Workshop
©2013, John Boxall

6. Connect a wire from the right side of the 560 W resistor to Arduino
digital pin 12, as shown in Figure 4-25.

Figure 4-25: Connecting the LED branch to the Arduino

Before continuing, review the schematic for this circuit and check that
your components are wired correctly. Compare the schematic against the
actual wiring of the circuit.

The Sketch
For the sketch, enter and upload Listing 4-1:

// Project 4 - Demonstrating a Digital Input
u #define LED 12

#define BUTTON 7

void setup()
{

v pinMode(LED, OUTPUT); // output for the LED
 pinMode(BUTTON, INPUT); // input for the button
}

void loop()
{
 if (digitalRead(BUTTON) == HIGH)
 {

70 Chapter 4
Arduino Workshop
©2013, John Boxall

 digitalWrite(LED, HIGH); // turn on the LED
 delay(500); // wait for 0.5 seconds
 digitalWrite(LED, LOW); // turn off the LED
 }
}

Listing 4-1: Digital input

After you’ve uploaded your sketch, tap the push button briefly and your
LED should stay on for half a second.

Modifying Your Sketch
Once you’ve had some success, try modifying your sketch by changing the
length of time that the light stays on or by adding a push button control to
Project 3. (Don’t disassemble this circuit, though; we’ll use it again in the
next example.)

Understanding the Sketch
Let’s examine the new items in the sketch for Project 4—specifically, #define,
digital input pins, and the if-then function.

Creating Constants with #define
Before void setup(), we use #define statements at u to create fixed variables:
When the sketch is compiled, the IDE replaces any instance of the defined
word with the number that follows it. For example, when the IDE sees LED in
the line at v, it replaces it with the number 12.

We’re basically using the #define command to label the digital pins for
the LED and button in the sketch. Also notice that we do not use a semi-
colon after a #define value. It’s a good idea to label pin numbers and other
fixed values (such as a time delay) in this way, because if the value is used
repeatedly in the sketch, then you won’t have to edit the same item more
than once. In this example, LED is used three times in the sketch; to edit this
value, we’d simply have to change its definition once in its #define statement.

Reading Digital Input Pins
To read the status of a button, we first define a digital I/O pin as an input
in void setup() using the following:

 pinMode(BUTTON, INPUT); // input for button

Next, to discover whether the button is connecting a voltage through to
the digital input (that is, it’s being pressed), we use digitalRead(pin), where
pin is the digital pin number to read. The function returns either HIGH (volt-
age is close to 5 V at the pin) or LOW (voltage is close to 0 V at the pin).

Building Blocks 71
Arduino Workshop
©2013, John Boxall

Making Decisions with if
Using if, we can make decisions in our sketch and tell the Arduino to run
different code, depending on the decision. For example, in the sketch for
Project 4, we used Listing 4-2:

// Listing 4-2
if (digitalRead(BUTTON) == HIGH)
{
 digitalWrite(LED, HIGH); // turn on the LED
 delay(500); // wait for 0.5 seconds
 digitalWrite(LED, LOW); // turn off the LED
}

Listing 4-2: A simple if-then example

The first line in the code begins with if tests for a condition. If the condi-
tion is true (that is, voltage is HIGH), then it means that the button is pressed
and the code that follows inside the curly brackets will run.

To determine whether the button is pressed (digitalRead(BUTTON) is set
to HIGH), we use a comparison operator, a double equal sign (==). If we were to
replace == with != (not equal to) in the sketch, then the LED would turn off
when the button is pressed instead. Try it and see.

n o T E A common mistake is to use a single equal sign (=), which means “make equal to,” in
a test statement instead of a double equal sign (==), which says “test if it is equal to.”
You may not get an error message, but your if statement may not work!

Making More Decisions with if-then-else
You can add another action to an if statement by using else. For example, if
we rewrite Listing 4-1 by adding else as shown in Listing 4-3, then the LED
will turn on if the button is pressed, or else it will be off. Using else forces
the Arduino to run another section of code if the test in the if statement is
not true.

// Listing 4-3
#define LED 12
#define BUTTON 7

void setup()
{
 pinMode(LED, OUTPUT); // output for the LED
 pinMode(BUTTON, INPUT); // input for the button
}

void loop()
{

72 Chapter 4
Arduino Workshop
©2013, John Boxall

 if (digitalRead(BUTTON) == HIGH)
 {
 digitalWrite(LED, HIGH);
 }
 else
 {
 digitalWrite(LED, LOW);
 }
}

Listing 4-3: Adding else

Boolean Variables
Sometimes you need to record whether something is in either of only two
states, such as on or off, or hot or cold. A Boolean variable is the legendary
computer “bit” whose value can be only a zero (0, false) or one (1, true).
This is where the Boolean variable is useful: It can only be true or false.
Like any other variable, we need to declare it in order to use it:

boolean raining = true; // create the variable "raining" and first make it true

Within the sketch, you can change the state of a Boolean with a simple
reassignment, such as this:

raining = false;

It’s simple to use Boolean variables to make decisions using an if test
structure. Because Boolean comparisons can either be true or false, they
work well with the comparison operators != and ==. Here’s an example:

if (raining == true)
{
 if (summer != true)
 {
 // it is raining and not summer
 }
}

Comparison Operators
We can use various operators to make decisions about two or more Boolean
variables or other states. These include the operators not (!), and (&&), and
or (||).

Building Blocks 73
Arduino Workshop
©2013, John Boxall

The not Operator

The not operator is denoted by the use of an exclamation mark (!). This
operator is used as an abbreviation for checking whether something is not
true. Here’s an example:

if (!raining)
{
 // it is not raining (raining == false)
}

The and Operator

The logical and operator is denoted by && . Using and helps reduce the
number of separate if tests. Here’s an example:

if ((raining == true) && (!summer))
{
 // it is raining and not summer (raining == true and summer == false)
}

The or Operator

The logical or operator is denoted by ||. Using or is very simple; here’s an
example:

if ((raining == true) || (summer == true))
{
 // it is either raining or summer
}

Making Two or More Comparisons
You can also use two or more comparisons in the same if. Here’s an example:

if (snow == true && rain == true && !hot)
{
 // it is snowing and raining and not hot
}

And you can use parentheses to set the orders of operation. In the next
example, the comparison in the parentheses is checked first, given a true or
false state, and then compared with the rest in the if-then statement.

if ((snow == true || rain == true) && hot == false))
{
 // it is either snowing or raining and not hot
}

74 Chapter 4
Arduino Workshop
©2013, John Boxall

Lastly, just like the examples of the not (!) operator before a value,
simple tests of true or false can be performed without requiring == true or
== false in each test. The following code works out the same as in the pre-
ceding example:

if ((snow || rain) && !hot)
{
 // it is either snowing or raining and not hot
 // (snow is true OR rain is true) AND it is not hot
}

As you can see, it’s possible to have the Arduino make a multitude of
decisions using Boolean variables and comparison operators. Once you
move on to more complex projects, this will become very useful.

Project #5: Controlling Traffic

Now let’s put your newfound knowledge to use by solving a hypothetical
problem. As the town planner for a rural shire, you have a problem with a
single-lane bridge that crosses the river. Every week, one or two accidents
occur at night, when tired drivers rush across the bridge without first stop-
ping to see if the road is clear. You have suggested that traffic lights be
installed, but the mayor wants to see them demonstrated before signing
off on the purchase. You could rent temporary lights, but they’re expensive.
Instead, you’ve decided to build a model of the bridge with working traffic
lights using LEDs and an Arduino.

The Goal
Our goal is to install three-color traffic lights at each end of the single-lane
bridge. The lights allow traffic to flow only in one direction at a time. When
sensors located at either end of the bridge detect a car waiting at a red light,
the lights will change and allow the traffic to flow in the opposite direction.

The Algorithm
We’ll use two buttons to simulate the vehicle sensors at each end of the
bridge. Each set of lights will have red, yellow, and green LEDs. Initially, the
system will allow traffic to flow from west to east, so the west-facing lights
will be set to green and the east-facing lights will be set to red.

When a vehicle approaches the bridge (modeled by pressing the button)
and the light is red, the system will turn the light on the opposite side
from green to yellow to red, and then wait a set period of time to allow any
vehicles already on the bridge to finish crossing. Next, the yellow light on
the waiting vehicle’s side will blink as a “get ready” notice for the driver, and
finally the light will change to green. The light will remain green until a
vehicle approaches the other side, at which point the process repeats.

Building Blocks 75
Arduino Workshop
©2013, John Boxall

The Hardware
Here’s what you’ll need to create this project:

•	 Two red LEDs (LED1 and LED2)

•	 Two yellow LEDs (LED3 and LED4)

•	 Two green LEDs (LED5 and LED6)

•	 Six 560 W resistors (R1 to R6)

•	 Two 10 kW resistor (R7 and R8)

•	 Two 100 nF capacitors (C1 and C2)

•	 Two push buttons (S1 and S2)

•	 One medium-sized breadboard

•	 One Arduino and USB cable

•	 Various connecting wires

The Schematic
Because we’re controlling only six LEDs and receiving input from two but-
tons, the design will not be too difficult. Figure 4-26 shows the schematic
for our project.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
nalog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

ita
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

S2

S1

R5
560Ω

R4
560Ω

R6
560Ω

R3
560Ω

R2
560Ω

R1
560Ω

R8
10kΩ

R7
10kΩ

C2
100nF

C1
100nF

LED2
Red

LED1
Red

LED4
Yellow

LED3
Yellow

LED6
Green

LED5
Green

Figure 4-26: Schematic for Project 5

76 Chapter 4
Arduino Workshop
©2013, John Boxall

This circuit is basically a more elaborate version of the button and LED
circuit in Project 4, with resistors, more LEDs, and another button.

Be sure that the LEDs are inserted in the correct direction: the resistors
connect to LED anodes, and the LED cathodes connect to the Arduino
GND pin, as shown in Figure 4-27.

Figure 4-27: Completed circuit

The Sketch
And now for the sketch. Can you see how it matches our algorithm?

// Project 5 - Controlling Traffic

// define the pins that the buttons and lights are connected to:
u #define westButton 3

#define eastButton 13
#define westRed 2
#define westYellow 1
#define westGreen 0
#define eastRed 12
#define eastYellow 11
#define eastGreen 10

#define yellowBlinkTime 500 // 0.5 seconds for yellow light blink

Building Blocks 77
Arduino Workshop
©2013, John Boxall

v boolean trafficWest = true; // west = true, east = false
w int flowTime = 10000; // amount of time to let traffic flow
x int changeDelay = 2000; // amount of time between color changes

void setup()
{
 // setup digital I/O pins
 pinMode(westButton, INPUT);
 pinMode(eastButton, INPUT);
 pinMode(westRed, OUTPUT);
 pinMode(westYellow, OUTPUT);
 pinMode(westGreen, OUTPUT);
 pinMode(eastRed, OUTPUT);
 pinMode(eastYellow, OUTPUT);
 pinMode(eastGreen, OUTPUT);

 // set initial state for lights - west side is green first
 digitalWrite(westRed, LOW);
 digitalWrite(westYellow, LOW);
 digitalWrite(westGreen, HIGH);
 digitalWrite(eastRed, HIGH);
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastGreen, LOW);
}

void loop()
{
 if (digitalRead(westButton) == HIGH) // request west>east traffic flow
 {
 if (trafficWest != true)
// only continue if traffic flowing in the opposite (east) direction
 {
 trafficWest = true; // change traffic flow flag to west>east
 delay(flowTime); // give time for traffic to flow
 digitalWrite(eastGreen, LOW); // change east-facing lights from green
 // to yellow to red
 digitalWrite(eastYellow, HIGH);
 delay(changeDelay);
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastRed, HIGH);
 delay(changeDelay);
 for (int a = 0; a < 5; a++) // blink yellow light
 {
 digitalWrite(westYellow, LOW);
 delay(yellowBlinkTime);
 digitalWrite(westYellow, HIGH);
 delay(yellowBlinkTime);
 }
 digitalWrite(westYellow, LOW);
 digitalWrite(westRed, LOW); // change west-facing lights from red to green
 digitalWrite(westGreen, HIGH);
 }
 }

78 Chapter 4
Arduino Workshop
©2013, John Boxall

 if (digitalRead(eastButton) == HIGH) // request east>west traffic flow
 {
 if (trafficWest == true)
// only continue if traffic flow is in the opposite (west) direction
 {
 trafficWest = false; // change traffic flow flag to east>west
 delay(flowTime); // give time for traffic to flow
 digitalWrite(westGreen, LOW);
// change west lights from green to yellow to red
 digitalWrite(westYellow, HIGH);
 delay(changeDelay);
 digitalWrite(westYellow, LOW);
 digitalWrite(westRed, HIGH);
 delay(changeDelay);
 for (int a = 0 ; a < 5 ; a++) // blink yellow light
 {
 digitalWrite(eastYellow, LOW);
 delay(yellowBlinkTime);
 digitalWrite(eastYellow, HIGH);
 delay(yellowBlinkTime);
 }
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastRed, LOW); // change east-facing lights from red to green
 digitalWrite(eastGreen, HIGH);
 }
 }
}

Our sketch starts by using #define at u to associate digital pin
numbers with labels for all the LEDs used, as well as the two buttons.
We have red, yellow, and green LEDs and a button each for the west and
east sides of the bridge. The Boolean variable trafficWest at v is used to
keep track of which way the traffic is flowing—true is west to east, and
false is east to west.

n o T E Notice that trafficWest is a single Boolean variable with the traffic direction set as
either true or false. Having a single variable like this instead of two (one for east
and one for west) ensures that both directions cannot accidentally be true at the same
time, which helps avoid a crash!

The integer variable flowTime at w is the minimum period of time that
vehicles have to cross the bridge. When a vehicle pulls up at a red light,
the system delays this period to give the opposing traffic time to cross the
bridge. The integer variable changeDelay at x is the period of time between
the traffic lights switching from green to yellow to red.

Before the sketch enters the void loop() section, it is set for traffic to
flow from west to east in void setup().

Building Blocks 79
Arduino Workshop
©2013, John Boxall

Running the Sketch
Once it’s running, the sketch does nothing until one of the buttons is
pressed. When the east button is pressed, the line

if (trafficWest == true)

ensures that the lights change only if the traffic is heading in the opposite
direction. The rest of the code section is composed of a simple sequence of
waiting and then of turning on and off various LEDs to simulate the traffic-
light operation.

Analog vs. Digital Signals
In this section, you’ll learn the difference between digital and analog
signals, and you’ll learn how to measure analog signals with the analog
input pins.

Until now, our sketches have been using digital electrical signals, with
just two discrete levels. Specifically, we used digitalWrite(pin, HIGH) and
digitalWrite(pin, LOW) to blink an LED and digitalRead() to measure whether
a digital pin had a voltage applied to it (HIGH) or not (LOW). Figure 4-28 is a
visual representation of a digital signal that alternates between high and low.

Figure 4-28: A digital signal, with HIGHs appearing as horizontal lines at the top,
and LOWs appearing at the bottom

Unlike digital signals, analog signals can vary with an indefinite num-
ber of steps between high and low. For example, Figure 4-29 shows an ana-
log signal of a sine wave. Notice in the figure that as time progresses, the
voltage moves fluidly between high and low levels.

80 Chapter 4
Arduino Workshop
©2013, John Boxall

Figure 4-29: An analog signal of a sine wave

With our Arduino, high is closer to 5 V and
low is closer to 0 V, or GND. We can measure
the voltage values of an analog signal with our
Arduino using the six analog inputs shown in
Figure 4-30. These analog inputs can safely mea-
sure voltages from 0 (GND) to no more than 5 V.

If you use the function analogRead(), then
the Arduino will return a number between 0
and 1,023 in proportion to the voltage applied
to the analog pin. For example, you might use
analogRead() to store the value of analog pin zero
in the integer variable a:

 a = analogRead(0); // read analog input pin 0 (A0)
 // returns 0 to 1023 which is usually 0.000 to 4.995
volts

Project #6: Creating a Single-Cell Battery Tester

Although the popularity and use of cell batteries has declined, most people
still have a few devices around the house that use AA, AAA, C, or D cell
batteries, such as remote controls, clocks, or children’s toys. These batteries
carry much less than 5 V, so we can measure a cell’s voltage with our Arduino
to determine the state of the cell. In this project we’ll create a battery tester.

Figure 4-30: Analog
inputs on the Arduino Uno

Building Blocks 81
Arduino Workshop
©2013, John Boxall

The Goal
Single-cell batteries such as AAs usually begin at about 1.6 V when new and
then decrease with use. We will measure the voltage and express the battery
condition visually with LEDs. We’ll use the reading from analogRead() and
then convert the reading to volts. The maximum voltage that can be read
is 5 V, so we divide 5 by 1,024 (the number of possible values), which equals
0.0048. Therefore, if analogRead() returns 512, then we multiply that reading
by 0.0048, which equals 2.4576 V.

The Algorithm
Here’s the algorithm for our battery tester operation:

1. Read from analog pin zero.

2. Multiply the reading by 0.0048 to create a voltage value.

3. If the voltage is greater than or equal to 1.6 V, then briefly turn on a
green LED.

4. If the voltage is greater than 1.4 V and less than 1.6 V, then briefly turn
on a yellow LED.

5. If the voltage is less than 1.4 V, then briefly turn on a red LED.

6. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

•	 Three 560 W resistors (R1 to R3)

•	 One 2.2 kW resistor (R4)

•	 One green LED (LED1)

•	 One yellow LED (LED2)

•	 One red LED (LED3)

•	 One breadboard

•	 Various connecting wires

•	 One Arduino and USB cable

The Schematic
The schematic for the single-cell battery tester circuit is shown in Figure 4-31.
On the left side, notice the two terminals, labeled + and –. Connect the
matching sides of the single-cell battery to be tested at those points. Positive
should connect to positive, and negative should connect to negative.

82 Chapter 4
Arduino Workshop
©2013, John Boxall

w a r n i n g Under no circumstances should you measure anything larger than 5 V, nor should
you connect positive to negative, or vice versa. Doing these things will damage your
Arduino board.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
nalog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

ita
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R3
560Ω

R2
560Ω

R1
560Ω

R4
2k2

LED1
Green

LED2
Yellow

LED3
Red

+

−

Figure 4-31: Schematic for Project 6

The Sketch
Now for the sketch:

// Project 6 - Creating a Single-Cell Battery Tester
#define newLED 2 // green LED 'new'
#define okLED 4 // yellow LED 'ok'
#define oldLED 6 // red LED 'old'

int analogValue = 0;
u float voltage = 0;

int ledDelay = 2000;

Building Blocks 83
Arduino Workshop
©2013, John Boxall

void setup()
{
 pinMode(newLED, OUTPUT);
 pinMode(okLED, OUTPUT);
 pinMode(oldLED, OUTPUT);
}

void loop()
{

v analogValue = analogRead(0);
w voltage = 0.0048*analogValue;
x if (voltage >= 1.6)

 {
 digitalWrite(newLED, HIGH);
 delay(ledDelay);
 digitalWrite(newLED, LOW);
 }

 else if (voltage < 1.6 && voltage > 1.4)
 {
 digitalWrite(okLED, HIGH);
 delay(ledDelay);
 digitalWrite(okLED, LOW);
 }

 else if (voltage <= 1.4)
 {
 digitalWrite(oldLED, HIGH);
 delay(ledDelay);
 digitalWrite(oldLED, LOW);
 }
}

In the sketch for Project 6, the Arduino takes the value measured by
analog pin 0 at v and converts this to a voltage at w. You’ll learn about a
new type of variable, float at u, in the next section. You’ll also see some
familiar code, such as the if-else functions, and some new topics, such as
doing arithmetic and using comparison operators to compare numbers,
which are all discussed in the sections that follow.

Doing Arithmetic with an Arduino
Like a pocket calculator, the Arduino can perform calculations for us, such as
multiplication, division, addition, and subtraction. Here are some examples:

a = 100;
b = a + 20;
c = b - 200;
d = c + 80; // d will equal 0

84 Chapter 4
Arduino Workshop
©2013, John Boxall

Float Variables
When you need to deal with numbers with a decimal point, you can use
the variable type float. The values that can be stored in a float fall between
3.4028235 × 1038 and −3.4028235 × 1038, and are generally limited to six or
seven decimal places of precision. And you can mix integers and float num-
bers in your calculations. For example, you could add the float number f to
the integer a then store it as the float variable g:

int a = 100;
float f;
float g;

 f = a / 3; // f = 33.333333
 g = a + f; // g = 133.333333

Comparison Operators for Calculations
We used comparison operators such as == and != with if statements and digi-
tal input signals in Project 5. In addition to these operators, we can also use
the following to compare numbers or numerical variables:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

We’ve used these comparison operators to compare numbers in lines x,
, and in the sketch for Project 6 described earlier.

Improving Analog Measurement Precision with a
Reference Voltage

As demonstrated in Project 6, the analogRead() function returns a value
proportional to a voltage between 0 and 5 V. The upper value (5 V) is the
reference voltage, the maximum voltage that the Arduino analog inputs will
accept and return the highest value for (1,023).

To increase precision while reading even lower voltages, we can use
a lower reference voltage. For example, when the reference voltage is 5 V,
analogRead() represents this with a value from 0 to 1,023. However, if we need
to measure only a voltage with a maximum of (for example) 2 V, then we
can alter the Arduino output to represent 2 V using the 0–1,023 value range
to allow for more precise measurement. You can do this with either an
external or internal reference voltage, as discussed next.

Building Blocks 85
Arduino Workshop
©2013, John Boxall

Using an External Reference Voltage
The first method of using a reference voltage is
with the AREF (analog reference) pin, as shown in
Figure 4-32.

We can introduce a new reference voltage by
connecting the voltage into the AREF pin and the
matching GND to the Arduino’s GND. Note that
this can lower the reference voltage but will not raise
it, because the reference voltage connected to an Arduino Uno must not
exceed 5 V. A simple way to set a lower reference voltage is by creating a
voltage divider with two resistors, as shown in Figure 4-33.

N
/C

IO
 REF

SC
L

SD
A

RST

A
REF

A
0

A
1

A
2

A
3

A
4

A
5

3V3
5V

V
in

Analog Input

D
11

D
10

D
9

D
8

D
7

D
6

D
5

D
4

D
3

PW
M

TXRX

PW
M

PW
M

PW
M

PW
M

PW
M

D
2

D
1

D
13

D
12

D
0

Digital Input/Output

Pow
er

A
rduino

G
N

D

100nF

R2R1

Figure 4-33: Voltage divider circuit

The values of R1 and R2 will determine the reference voltage according
to the following formula:

V V
R2

R1+R2out in=

Vout is the reference voltage, and Vin is the input voltage—in this case
5 V. R1 and R2 are the resistor values in ohms.

The simplest way to divide the voltage is to split Vin in half by setting R1
and R2 to the same value—for example, 10 kW each. When you’re doing
this, it’s best to use the lowest-tolerance resistors you can find, such as 1 per-
cent; confirm their true resistance values with a multimeter, and use those
confirmed values in the calculation. Furthermore, it’s also a very good idea
to place a 100 nF capacitor between AREF and GND to avoid a noisy AREF
and prevent unstable analog readings.

Figure 4-32: The
Arduino Uno AREF pin

86 Chapter 4
Arduino Workshop
©2013, John Boxall

When using an external reference voltage, insert the following line in
the void setup() section of your sketch:

 analogReference(EXTERNAL); // select AREF pin for reference voltage

Using the Internal Reference Voltage
The Arduino Uno also has an internal 1.1 V reference voltage. If this
meets your needs, no hardware changes are required. Just add this line to
void setup():

 analogReference(INTERNAL); // select internal 1.1 V reference voltage

The Variable Resistor
Variable resistors, also known as potentiometers, can generally be adjusted
from 0 W up to their rated value. Their schematic symbol is shown in
Figure 4-34.

Variable resistors have three pin connections: one in the center pin
and one on each side. As the shaft of a variable resistor turns, it increases
the resistance between one side and the center and decreases the resistance
between the center and the opposite side.

Variable resistors are available as linear and logarithmic. The resistance
of linear models changes at a constant rate when turning, while the resis-
tance of logarithmic models changes slowly at first and then increases rap-
idly. Logarithmic potentiometers are used more often in audio amplifier
circuits, because they model the human hearing response. Most Arduino
projects use linear variable resistors such as the one shown in Figure 4-35.

Figure 4-34: Variable resistor
(potentiometer) symbol

Figure 4-35: A typical linear variable
resistor

Building Blocks 87
Arduino Workshop
©2013, John Boxall

You can also get miniature versions of variable resistors, known as
trimpots or trimmers (see Figure 4-36). Because of their size, trimpots are
more useful for making adjustments in circuits, but they’re also very useful
for breadboard work because they can be slotted in.

Figure 4-36: Various trimpots

n o T E When shopping for trimpots, take note of the type. Often you will want one that is
easy to adjust with a screwdriver that you have on hand, and the enclosed types, as
pictured in Figure 4-36, last longer than the cheaper, open contact types.

Piezoelectric Buzzers
A piezoelectric element (piezo for short), or buzzer, is a small, round device
that can be used to generate loud and annoying noises that are perfect
for alarms—or for having fun. Figure 4-37 shows a common example, the
TDK PS1240, next to an American quarter, to give you an idea of its size.

Figure 4-37: TDK PS1240 Piezo

Piezos contain a very thin plate inside the housing that moves when an
electrical current is applied. When alternating current is applied (such as
on . . . off . . . on . . . off), the plate vibrates and generates sound waves.

It’s simple to use piezos with Arduino because they can be turned on
and off just like an LED. The piezo elements are not polarized and can be
connected in either direction.

88 Chapter 4
Arduino Workshop
©2013, John Boxall

Piezo Schematic
The schematic symbol for the piezo looks like a loudspeaker (Figure 4-38),
which makes it easy to recognize.

Figure 4-38: Piezo schematic

n o T E When shopping for a piezo for this project, be sure to get the piezo element only
type; some buzzer types look like Figure 4-38 but include a tone-generating circuit
built into the case. We don’t want those because we’re going to drive our tone directly
from the Arduino.

Project #7: Trying Out a Piezo Buzzer

If you have a piezo handy and want to try it out, upload the following dem-
onstration sketch to your Arduino:

// Project 7 - Trying Out a Piezo Buzzer
#define PIEZO 3 // pin 3 is capable of PWM output to drive tones
int del = 500;
void setup()
{
 pinMode(PIEZO, OUTPUT);
}

void loop()
{

u analogWrite(PIEZO, 128); // 50 percent duty cycle tone to the piezo
 delay(del);
 digitalWrite(PIEZO, LOW); // turn the piezo off
 delay(del);
}

This sketch uses pulse-width modulation on digital pin three. If
you change the duty cycle in the analogWrite() function (currently it’s
128, which is 50 percent on) at u, then you can alter the volume of the
buzzer.

Building Blocks 89
Arduino Workshop
©2013, John Boxall

To increase the volume of your piezo, increase the voltage applied to
it. The voltage is currently limited to 5 V, but the buzzer would be much
louder at 9 or 12 V. Because higher voltages can’t be sourced from the
Arduino, you would need to use an external power source for the buzzer,
such as a 9 V battery, and then switch the power into the buzzer using a
transistor as an electronic switch. You can use the same sketch with the
schematic shown in Figure 4-39.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
nalog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

ita
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

12V

Q1R1
1kΩ

R2
1kΩ

Figure 4-39: Schematic for Project 7

The part of the schematic labeled 12 V will be the positive side of
the higher-power supply, whose negative side will connect to the Arduino
GND pin.

90 Chapter 4
Arduino Workshop
©2013, John Boxall

Project #8: Creating a Quick-Read Thermometer

Temperature can be represented by an analog signal.
We can measure temperature using the TMP36 voltage
output temperature sensor made by Analog Devices
(http://www.analog.com/tmp36/), shown in Figure 4-40.

Notice that the TMP36 looks just like the BC548
transistor we worked with in the relay control circuit
in Chapter 3. The TMP36 outputs a voltage that is pro-
portional to the temperature, so you can determine
the current temperature using a simple conversion.
For example, at 25 degrees Celsius, the output voltage
is 750 mV, and each change in temperature of 1 degree
results in a change of 10 mV. The TMP36 can measure
temperatures between −40 and 125 degrees Celsius.

The function analogRead() will return a value between 0 and 1,023,
which corresponds to a voltage between 0 and just under 5,000 mV (5 V).
If we multiply the output of analogRead() by (5,000/1,024), then we will get
the actual voltage returned by the sensor. Next, we subtract 500 (an offset
used by the TMP36 to allow for temperatures below zero) and then divide
by 10, which leaves us with the temperature in degrees Celsius. If you work in
Fahrenheit, then multiply the Celsius value by 1.8 and add 32 to the result.

The Goal
In this project, we’ll use the TMP36 to create a quick-read thermometer.
When the temperature falls below 20 degrees Celsius, a blue LED turns
on. When the temperature is between 20 and 26 degrees, a green LED
turns on, and when the temperature is above 26 degrees, a red LED turns on.

The Hardware
Here’s what you’ll need to create this project:

•	 Three 560 W resistors (R1 to R3)

•	 One red LED (LED1)

•	 One green LED (LED2)

•	 One blue LED (LED3)

•	 One TMP36 temperature sensor

•	 One breadboard

•	 Various connecting wires

•	 Arduino and USB cable

Figure 4-40:
TMP36 tempera-
ture sensor

Building Blocks 91
Arduino Workshop
©2013, John Boxall

The Schematic
The circuit is simple. When you’re looking at the labeled side of the TMP36,
the pin on the left connects to the 5 V input, the center pin is the voltage
output, and the pin on the right connects to GND as shown in Figure 4-41.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

A
nalog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

D
ig

ita
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

TMP
36

+Vs

Vout

GND R3
560Ω

R2
560Ω

R1
560Ω

LED3

LED2

LED1

Figure 4-41: Schematic for Project 8

The Sketch
And now for the sketch:

// Project 8 - Creating a Quick-Read Thermometer

// define the pins that the LEDs are connected to:
#define HOT 6
#define NORMAL 4
#define COLD 2

float voltage = 0;
float celsius = 0;

92 Chapter 4
Arduino Workshop
©2013, John Boxall

float hotTemp = 26;
float coldTemp = 20;
float sensor = 0;

void setup()
{
 pinMode(HOT, OUTPUT);
 pinMode(NORMAL, OUTPUT);
 pinMode(COLD, OUTPUT);
}

void loop()
{
 // read the temperature sensor and convert the result to degrees Celsius

u sensor = analogRead(0);
 voltage = (sensor*5000)/1024; // convert raw sensor value to millivolts
 voltage = voltage-500; // remove voltage offset
 celsius = voltage/10; // convert millivolts to Celsius

 // act on temperature range

v if (celsius < coldTemp)
 {
 digitalWrite(COLD, HIGH);
 delay(1000);
 digitalWrite(COLD, LOW);
 }

w else if (celsius > coldTemp && celsius <= hotTemp)
 {
 digitalWrite(NORMAL, HIGH);
 delay(1000);
 digitalWrite(NORMAL, LOW);
 }
 else
 {
 // celsius is > hotTemp
 digitalWrite(HOT, HIGH);
 delay(1000);
 digitalWrite(HOT, LOW);
 }
}

The sketch first reads the voltage from the TMP36 and converts it to
temperature in degrees Celsius at u. Next, using the if-else functions at v
and w, the code compares the current temperature against the values for
hot and cold and turns on the appropriate LED. The delay(1000) statements
are used to prevent the lights from flashing on and off too quickly if the
temperature fluctuates rapidly between two ranges.

Building Blocks 93
Arduino Workshop
©2013, John Boxall

Hacking the Sketch
Although this sketch was rather simple, you could use it as the basis for tak-
ing other sorts of readings. You might add a PowerSwitch Tail, for example,
as shown in Figure 4-42.

Figure 4-42: A PowerSwitch Tail that switches up to 120 V AC

With a PowerSwitch Tail, you can safely control an appliance that
runs from the wall socket, such as a heater, lamp, or another device with
a digital output from your Arduino. (For more information, visit http://
www.adafruit.com/products/268/.) For example, you could use a PowerSwitch
Tail to build a temperature-controlled heater or fan, control a garage light
so it runs for a time and then switches off, or remotely control outdoor
Christmas lights.

Looking Ahead
And Chapter 4 comes to a close. You now have a lot more tools to work with,
including digital inputs and outputs, new types of variables, and various
mathematical functions. In the next chapter, you will have a lot more fun
with LEDs, learn to create your own functions, build a computer game and
electronic dice, and much more.

	__DdeLink__233_1462067759

