
Most people associate algorithms with com-
puters. This is not unreasonable; computer 

operating systems use many sophisticated 
algorithms, and programming is well suited to 

implementing all sorts of algorithms precisely. But 
algorithms are more fundamental than the computer 
architecture we implement them on. As mentioned 
in Chapter 1, the word algorithm dates back about a 
millennium, and algorithms have been described in 
ancient records going back much further than that.  
Even outside of written records, there is abundant evidence for the use of 
complex algorithms in the ancient world—in, for example, their construc-
tion methods.

This chapter presents several algorithms of antique provenance. They 
show great ingenuity and insight, especially considering that they had to be 
invented and verified without the aid of computers. We start by discussing 
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Russian peasant multiplication, a method for arithmetic that, despite the 
name, might be Egyptian and might not actually be associated with peas-
ants. We continue by covering Euclid’s algorithm, an important “classic” 
algorithm for finding greatest common divisors. Finally, we cover an algo-
rithm from Japan that generates magic squares.

Russian Peasant Multiplication
Many people remember learning the multiplication table as a particularly 
painful part of their education. Young children ask their parents why learn-
ing the multiplication table is necessary, and parents usually respond that 
they can’t multiply without knowing it. How wrong they are. Russian peasant 
multiplication (RPM) is a method that enables people to multiply large num-
bers without knowing most of the multiplication table.

RPM’s origins are unclear. An ancient Egyptian scroll called the Rhind 
papyrus contains a version of this algorithm, and some historians have pro-
posed (mostly unconvincing) conjectures about how the method could have 
spread from ancient Egyptian scholars to the peasants of the vast Russian 
hinterlands. Regardless of the details of its history, RPM is an interesting 
algorithm.

Doing RPM by Hand
Consider the task of multiplying 89 by 18. Russian peasant multiplication 
proceeds as follows. First, create two columns next to each other. The first 
column is called the halving column and starts with 89. The second column 
is the doubling column and starts with 18 (Table 2-1).

Table 2-1: Halving/Doubling Table, Part 1

Halving Doubling

89 18

We’ll fill out the halving column first. Each row of the halving column 
takes the previous entry and divides it by 2, ignoring the remainder. For 
example, 89 divided by 2 is 44 remainder 1, so we write 44 in the second 
row of the halving column (Table 2-2).

Table 2-2: Halving/Doubling Table, Part 2

Halving Doubling

89 18

44

We continue dividing by 2 until we reach 1, dropping the remainder 
every time and writing the result in the next row. As we continue, we find 
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that 44 divided by 2 is 22, then half of that is 11, then half of that (dropping 
the remainder) is 5, then 2, then 1. After writing these in the halving col-
umn, we have Table 2-3.

Table 2-3: Halving/Doubling Table, Part 3

Halving Doubling

89 18

44

22

11

5

2

1

We’ve completed the halving column. As the name suggests, each entry in 
the doubling column will be double the previous entry. So since 18 × 2 is 36, 
36 is the second entry in the doubling column (Table 2-4).

Table 2-4: Halving/Doubling Table, Part 4

Halving Doubling

89 18

44 36

22

11

5

2

1

We continue to add entries to the doubling column by following the 
same rule: just double the previous entry. We do this until the doubling col-
umn has as many entries as the halving column (Table 2-5).

Table 2-5: Halving/Doubling Table, Part 5

Halving Doubling

89 18

44 36

22 72

11 144

5 288

2 576

1 1,152
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The next step is to cross out or remove every row in which the halving 
column contains an even number. The result is shown in Table 2-6.

Table 2-6: Halving/Doubling Table, Part 6

Halving Doubling

89 18

11 144

5 288

1 1,152

The final step is to take the sum of the remaining entries in the dou-
bling column. The result is 18 + 144 + 288 + 1,152 = 1,602. You can check 
with a calculator that this is correct: 89 × 18 = 1,602. We have accomplished 
multiplication through halving, doubling, and addition, all without needing 
to memorize most of the tedious multiplication table that young children so 
despise.

To see why this method works, try rewriting the doubling column in 
terms of 18, the number we are trying to multiply (Table 2-7).

Table 2-7: Halving/Doubling Table, Part 7

Halving Doubling

89 18 × 1

44 18 × 2

22 18 × 4

11 18 × 8

5 18 × 16

2 18 × 32

1 18 × 64

The doubling column is now written in terms of 1, 2, 4, 8, and so on to 64. 
These are powers of 2, and we can also write them as 20, 21, 22, and so on. 
When we take our final sum (adding together the doubling rows with odd 
entries in the halving column), we’re really finding this sum:

18 × 20 + 18 × 23 + 18 × 24 + 18 × 26 = 18 × (20 + 23 + 24 + 26) = 18 × 89

The fact that RPM works hinges on the fact that

(20 + 23 + 24 + 26) = 89

If you look closely enough at the halving column, you can get a sense 
for why the preceding equation is true. We can also write this column in 
terms of powers of 2 (Table 2-8). When we do so, it’s easier to start at the 
lowest entry and work upward. Remember that 20 is 1 and 21 is 2. In every 
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row, we multiply by 21, and in the rows where the halving number is odd, we 
also add 20. You can see the expression start to resemble our equation more 
and more as you rise through the rows. By the time we reach the top of the 
table, we have an expression that simplifies to exactly 26 + 23 + 23 + 20.

Table 2-8: Halving/Doubling Table, Part 8

Halving Doubling

(25 + 23 + 22) × 21 + 20 = 26 + 24 + 23 + 20 18 × 20

(24 + 22 + 21) × 21 = 25 + 23 + 22 18 × 21

(23 + 21 + 20) × 21 = 24 + 22 + 21 18 × 22

(22 + 20) × 21 + 20 = 23 + 21 + 20 18 × 23

21 × 21 + 20 = 22 + 20 18 × 24

20 × 21 = 21 18 × 25

20 18 × 26

If you number the rows of the halving column starting with the top 
row as row 0, then 1, 2, and all the way to the bottom row as row 6, you can 
see that the rows with odd values in the halving column are rows 0, 3, 4, 
and 6. Now notice the crucial pattern: those row numbers are exactly the 
exponents in the expression for 89 that we found: 26 + 24 + 23 + 20. This is 
not a coincidence; the way we constructed the halving column means that 
the odd entries will always have row numbers that are the exponents in a 
sum of powers of 2 equaling our original number. When we take a sum of 
the doubling entries with those indices, we’re summing up 18 multiplied by 
powers of 2 that sum to exactly 89, so we’ll get 89 × 18 as our result.

The reason this works is that really, RPM is an algorithm within an 
algorithm. The halving column itself is an implementation of an algorithm 
that finds the sum of powers of 2 that equals the number at the top of the 
column. This sum of powers of 2 is also called the binary expansion of 89. 
Binary is an alternative way to write numbers using only 0s and 1s, and it 
has become extremely important in recent decades because computers 
store information in binary. We can write 89 in binary as 1011001, with 1s 
in the zeroth, third, fourth, and sixth places (counting from the right), the 
same as the odd rows of the halving column, and also the same as the expo-
nents in our equation. We can interpret the 1s and 0s in a binary represen-
tation as coefficients in a sum of powers of 2. For example, if we write 100, 
we interpret it in binary as

1 × 22 + 0 × 21 + 0 × 20

or what we would usually write as 4. If we write 1001, we interpret it in 
binary as

1 × 23 + 0 ×22 + 0 × 21 + 1 × 20
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or what we would usually write as 9. After running this mini-algorithm to 
get the binary expansion of 89, we are poised to easily run the full algo-
rithm and complete the multiplication process.

Implementing RPM in Python
It’s relatively simple to implement RPM in Python. Let’s say that we want to 
multiply two numbers that we will call n1 and n2. First, let’s open a Python 
script and define these variables:

n1 = 89
n2 = 18

Next, we’ll start our halving column. Just as described, the halving col-
umn begins with one of the numbers we want to multiply:

halving = [n1]

The next entry will be halving[0]/2, ignoring the remainder. In Python, 
we can use the math.floor() function to accomplish this. This function just 
takes the closest integer less than a given number. For example, the second 
row of the halving column can be calculated as follows:

import math
print(math.floor(halving[0]/2))

If you run this in Python, you’ll see that the answer is 44.
We can loop through each row of the halving column, and in each iter-

ation of our loop, we will find the next entry in the halving column in the 
same way, stopping when we reach 1:

while(min(halving) > 1):
    halving.append(math.floor(min(halving)/2))

This loop uses the append() function for concatenation. At each itera-
tion of the while loop, it concatenates the halving vector with half of its last 
value, using the math.floor() function to ignore the remainder.

For the doubling column, we can do the same: start with 18, and then 
continue through a loop. In each iteration of the loop, we’ll add double the 
previous entry to the doubling column, and we’ll stop after this column is 
the same length as the halving column:

doubling = [n2]
while(len(doubling) < len(halving)):
    doubling.append(max(doubling) * 2)

Finally, let’s put these two columns together in a dataframe called 
half_double:

import pandas as pd
half_double = pd.DataFrame(zip(halving,doubling))
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We imported the Python module called pandas here. This module 
enables us to work with tables easily. In this case, we used the zip com-
mand, which, as suggested by its name, joins halving and doubling together 
like a zipper joins two sides of a garment together. The two sets of num-
bers, halving and doubling, start as independent lists, and after being zipped 
together and converted into a pandas dataframe, are stored in a table as two 
aligned columns, as shown in Table 2-5. Since they’re aligned and zipped 
together, we can refer to any row of Table 2-5, such as the third row, and 
get the full row, including the elements from both halving and doubling (22 
and 72). Being able to refer to and work with these rows will make it easy 
to remove the rows we don’t want, like we did to Table 2-5 to convert it to 
Table 2-6.

Now we need to remove the rows whose entries in the halving column 
are even. We can test for evenness using the % (modulo) operator in Python, 
which returns a remainder after division. If a number x is odd, then x%2 will 
be 1. The following line will keep only the rows of the table whose entry in 
the halving column is odd:

half_double = half_double.loc[half_double[0]%2 == 1,:]

In this case, we use the loc functionality in the pandas module to select 
only the rows we want. When we use loc, we specify which rows and columns 
we want to select in the square brackets ([]) that follow it. Inside the square 
brackets, we specify which rows and columns we want in order, separated by 
a comma: the format is [row, column]. For example, if we wanted the row with 
index 4 and the column with index 1, we could write half_double.loc[4,1]. In 
this case, we will do more than just specify indices. We will express a logical 
pattern for which rows we want: we want all rows where halving is odd. We 
specify the halving column in our logic with half_double[0], since it’s the col-
umn with index 0. We specify oddness with %2 == 1. Finally, we specify that 
we want all columns after the comma by writing a colon, which is a shortcut 
indicating that we want every column.

Finally, we simply take the sum of the remaining doubling entries:

answer = sum(half_double.loc[:,1])

Here, we are using loc again. We specify inside the square brackets 
that we want every row by using the colon shortcut. We specify that we want 
doubling, the column with index 1, after the comma. Note that the 89 × 18 
example we worked through could be done more quickly and easily if we 
instead calculated 18 × 89—that is, if we put 18 in the halving column and 
89 in the doubling column. I encourage you to try this to see the improve-
ment. In general, RPM is faster if the smaller multiplicand is placed in the 
halving column and the larger one in the doubling column.

To someone who has already memorized the multiplication table, RPM 
may seem pointless. But besides its historical charm, RPM is worth learn-
ing for a few reasons. First, it shows that even something as dry as multi-
plying numbers can be done in multiple ways and is amenable to creative 



20   Chapter 2

approaches. Just because you’ve learned one algorithm for something 
doesn’t mean that it’s the only, or the best, algorithm for the purpose—
keep your mind open to new and potentially better ways of doing things.

RPM may be slow, but it requires less memorization up front because it 
doesn’t require knowledge of most of the multiplication table. Sometimes 
it can be very useful to sacrifice a little speed for the sake of low memory 
requirements, and this speed/memory tradeoff is an important con-
sideration in many situations where we’re designing and implementing 
algorithms.

Like many of the best algorithms, RPM also brings into focus relation-
ships between apparently disparate ideas. Binary expansions may seem 
like just a curiosity, of interest to transistor engineers but not useful to a 
layperson or even a professional programmer. But RPM shows a deep con-
nection between the binary expansion of a number and a convenient way to 
multiply with only minimal knowledge of the multiplication table. This is 
another reason to always keep learning: you never know when some appar-
ently useless factoid may form the basis for a powerful algorithm.

Euclid’s Algorithm
The ancient Greeks gave many gifts to humanity. One of their greatest was 
theoretical geometry, which was rigorously compiled by the great Euclid in 
his 13 books called the Elements. Most of Euclid’s mathematical writing is 
in a theorem/proof style, in which a proposition is deduced logically from 
simpler assumptions. Some of his work is also constructive, meaning that it 
provides a method for using simple tools to draw or create a useful figure, 
like a square with a particular area or a tangent to a curve. Though the word 
had not been coined yet, Euclid’s constructive methods were algorithms, and 
some of the ideas behind his algorithms can still be useful today.

Doing Euclid’s Algorithm by Hand
Euclid’s most famous algorithm is commonly known as Euclid’s algorithm, 
though it is only one of many that he wrote about. Euclid’s algorithm is  
a method for finding the greatest common divisor of two numbers. It is 
simple and elegant and takes only a few lines to implement in Python.

We begin with two natural (whole) numbers: let’s call them a and b.  
Let’s say that a is larger than b (if it’s not, just rename a to b and rename b  
to a, and then a will be larger). If we divide a/b, we’ll get an integer quotient 
and an integer remainder. Let’s call the quotient q1, and the remainder c.  
We can write this as follows:

a = q2 × b + c

For example, if we say that a = 105 and b = 33, we find that 105/33 is 3, 
remainder 6. Notice that the remainder c will always be smaller than both  
a and b—that’s how remainders work. The next step of the process is to 



Algorithms in History   21

forget about a, and focus on b and c. Just like before, we say that b is larger 
than c. We then find the quotient and remainder when dividing b/c. If we 
say that b/c is q2, with remainder d, we can write our result as follows:

b = q2 × c + d

Again, d will be smaller than both b and c, since it’s a remainder. If you 
look at our two equations here, you can start to see a pattern: we’re work-
ing our way through the alphabet, shifting terms to the left every time. We 
started with a, b, and c, and then we had b, c, and d. You can see this pattern 
continue in our next step, in which we divide c/d, and call the quotient q3 
and the remainder e.

c = q2 × d + e

We can continue this process, proceeding as far as we need through the 
alphabet, until the remainder is equal to zero. Remember that remainders 
are always smaller than the numbers that were divided to get them, so c is 
smaller than a and b, d is smaller than b and c, e is smaller than c and d, and 
so on. This means that at every step, we’re working with smaller and smaller 
integers, so we must eventually get to zero. When we get a zero remainder, 
we stop the process, and we know that the last nonzero remainder is the 
greatest common divisor. For example, if we find that e is zero, then d is  
the greatest common divisor of our original two numbers.

Implementing Euclid’s Algorithm in Python
We can implement this algorithm in Python quite easily, as shown in 
Listing 2-1.

def gcd(x,y):
    larger = max(x,y)
    smaller = min(x,y)
    
    remainder = larger % smaller
    
    if(remainder == 0):
        return(smaller)
        
    if(remainder != 0):

  1        return(gcd(smaller,remainder))

Listing 2-1: Implementing Euclid’s algorithm using recursion

The first thing to notice is that we don’t need any of the q1, q2, q3 . . . 
quotients. We need only the remainders, the successive letters of the alpha-
bet. Remainders are easy to get in Python: we can use the % operator from 
the previous section. We can write a function that takes the remainder after 
division for any two numbers. If the remainder is zero, then the greatest 
common divisor is the smaller of the two inputs. If the remainder is not 
zero, we use the smaller of the two inputs and the remainder as inputs into 
the same function.



22   Chapter 2

Notice that this function calls itself if the remainder is nonzero 1. The 
act of a function calling itself is known as recursion. Recursion can seem 
intimidating or confusing at first; a function that calls itself may seem 
paradoxical, like a snake that can eat itself or a person trying to fly by pull-
ing on their own bootstraps. But don’t be scared. If you’re unfamiliar with 
recursion, one of the best things to do is start with a concrete example, like 
finding the greatest common divisor of 105 and 33, and follow each step of 
the code as if you are the computer. You will see that in this example, recur-
sion is just a concise way to express the steps we listed in “Doing Euclid’s 
Algorithm by Hand” on page 20. There is always a danger with recursion 
that you create an infinite recursion—that a function calls itself, and while 
calling itself, calls itself again, and nothing ever causes the function to end, 
so it attempts to call itself endlessly, which is a problem because we need the 
program to terminate in order to get the final answer. In this case, we can 
feel safe because at each step we are getting smaller and smaller remainders 
that will eventually go down to zero and enable us to exit the function.

Euclid’s algorithm is short and sweet and useful. I encourage you to cre-
ate an even more concise implementation of it in Python.

Japanese Magic Squares
The history of Japanese mathematics is particularly fascinating. In A History 
of Japanese Mathematics, originally published in 1914, the historians David 
Eugene Smith and Yoshio Mikami wrote that Japanese math had histori-
cally possessed a “genius for taking infinite pains” and “ingenuity in untan-
gling minute knots and thousands of them.” On the one hand, mathematics 
uncovers absolute truths that should not vary between times and cultures. 
On the other hand, the types of problems that distinct groups tend to focus 
on and their idiosyncratic approaches to them, not to mention differences 
in notation and communication, provide great scope for noteworthy cul-
tural differences, even in a field as austere as math.

Creating the Luo Shu Square in Python
Japanese mathematicians had a fondness for geometry, and many of their 
ancient manuscripts pose and solve problems related to finding the areas of 
exotic shapes like circles inscribed within ellipses and Japanese hand fans. 
Another steady area of focus for Japanese mathematicians throughout sev-
eral centuries was the study of magic squares.

A magic square is an array of unique, consecutive natural numbers such 
that all rows, all columns, and both of the main diagonals have the same 
sum. Magic squares can be any size. Table 2-9 shows an example of a 3×3 
magic square.
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Table 2-9: The Luo Shu Square

4 9 2

3 5 7

8 1 6

In this square, each row, each column, and both main diagonals sum 
to 15. This is more than just a random example—it’s the famous Luo Shu 
square. According to an ancient Chinese legend, this magic square was first 
seen inscribed on the back of a magical turtle who came out of a river in 
response to the prayers and sacrifices of a suffering people. In addition 
to the definitional pattern that each row, column, and diagonal sums to 
15, there are a few other patterns. For example, the outer ring of numbers 
alternates between even and odd numbers, and the consecutive numbers 4, 
5, and 6 appear in the main diagonal.

The legend of the sudden appearance of this simple but fascinat-
ing square as a gift from the gods is fitting for the study of algorithms. 
Algorithms are often easy to verify and use, but they can be difficult to 
design from scratch. Especially elegant algorithms, when we have the good 
luck to invent one, seem revelatory, as if they have come out of nowhere as 
a gift from the gods inscribed on the back of a magical turtle. If you doubt 
this, try to create an 11×11 magic square from scratch, or try to discover a 
general-purpose algorithm for generating new magic squares.

Knowledge of this and other magic squares apparently passed from 
China to Japan at least as early as 1673, when a mathematician named 
Sanenobu published a 20×20 magic square in Japan. We can create the Luo 
Shu square in Python with the following command:

luoshu = [[4,9,2],[3,5,7],[8,1,6]]

It will come in handy to have a function that verifies whether a given 
matrix is a magic square. The following function does this by verifying the 
sums across all rows, columns, and diagonals and then checking whether 
they are all the same:

def verifysquare(square):
    sums = []
    rowsums = [sum(square[i]) for i in range(0,len(square))]
    sums.append(rowsums)
    colsums = [sum([row[i] for row in square]) for i in range(0,len(square))]
    sums.append(colsums)
    maindiag = sum([square[i][i] for i in range(0,len(square))])
    sums.append([maindiag])
    antidiag = sum([square[i][len(square) - 1 - i] for i in \ 
range(0,len(square))])
    sums.append([antidiag])
    flattened = [j for i in sums for j in i]
    return(len(list(set(flattened))) == 1)
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Implementing Kurushima's Algorithm in Python
In the previous sections, we discussed how to perform our algorithms of inter-
est “by hand” before providing details of the implementation of the code. In 
the case of Kurushima’s algorithm, we’ll outline the steps and introduce the 
code simultaneously. The reason for this change is the relative complexity of 
the algorithm, and especially the length of the code required to implement it.

One of the most elegant algorithms for generating magic squares, 
Kurushima’s algorithm is named for Kurushima Yoshita, who lived during the 
Edo period. Kurushima’s algorithm works only for magic squares of odd 
dimension, meaning that it works for any n×n square if n is an odd number. It 
begins by filling out the center of the square in a way that matches the Luo 
Shu square. In particular, the central five squares are given by the following 
expressions, with n here referring to the dimension of the square (Table 2-10).

Table 2-10: The Center of Kurushima’s Square

n2

n (n2 + 1)/2 n2 + 1 – n

1

Kurushima’s algorithm for generating an n×n magic square for odd n 
can be described simply as follows:

 1. Fill in the five central squares according to Table 2-10.

 2. Beginning with any entry whose value is known, determine the value 
of an unknown neighboring entry by following one of the three rules 
(described next).

 3. Repeat step 2 until every entry in the full magic square is filled in.

Filling in the Central Squares

We can begin the process of creating a magic square by creating an empty 
square matrix that we’ll fill up. For example, if we want to create a 7×7 matrix, 
we can define n=7 and then create a matrix with n rows and n columns:

n = 7
square = [[float('nan') for i in range(0,n)] for j in range(0,n)]

In this case, we don’t know what numbers to put in the square, so we 
fill it entirely with entries equal to float('nan'). Here, nan stands for not a 
number, which we can use as a placeholder in Python when we want to fill up 
a list before we know what numbers to use. If we run print(square), we find 
that this matrix by default is filled with nan entries:

[[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], 
[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], 
[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], 
[nan, nan, nan, nan, nan, nan, nan]]
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This square is not too pretty as it is output in the Python console, so we 
can write a function that will print it in a more readable way:

def printsquare(square):
    labels = ['['+str(x)+']' for x in range(0,len(square))]
    format_row = "{:>6}" * (len(labels) + 1)
    print(format_row.format("", *labels))
    for label, row in zip(labels, square):
        print(format_row.format(label, *row))

Don’t worry about the details of the printsquare() function, since it’s 
only for pretty printing and not part of our algorithm. We can fill in the 
central five squares with simple commands. First, we can get the indices of 
the central entry as follows:

import math
center_i = math.floor(n/2)
center_j = math.floor(n/2)

The central five squares can be populated according to the expressions 
in Table 2-10 as follows:

square[center_i][center_j] = int((n**2 +1)/2)
square[center_i + 1][center_j] = 1
square[center_i - 1][center_j] = n**2
square[center_i][center_j + 1] = n**2 + 1 - n
square[center_i][center_j - 1] = n

Specifying the Three Rules

The purpose of Kurushima’s algorithm is to fill in the rest of the nan entries 
according to simple rules. We can specify three simple rules that enable us 
to fill out every other entry, no matter how big the magic square is. The first 
rule is expressed in Figure 2-1.

x+n (mod n2)

x

Figure 2-1: Rule 1 of Kurushima’s algorithm

So for any x in the magic square, we can determine the entry that is 
situated in this diagonal relationship to x by simply adding n and taking the 
result mod n2 (mod refers to the modulo operation). Of course, we can also 
go in the opposite direction by reversing the operation: subtracting n and 
taking the result mod n2.
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The second rule is even simpler, and is expressed in Figure 2-2.

x+1 (mod n2)

x

Figure 2-2: Rule 2 of Kurushima’s algorithm

For any x in the magic square, the entry below and to the right of x is 1 
greater than x, mod n2. This is a simple rule, but it has one important excep-
tion: this rule is not followed when we cross from the upper-left half of the 
magic square to the lower-right half of the square. Another way to say this is 
that we do not follow the second rule if we are crossing the magic square’s 
antidiagonal, the bottom-left-to-top-right line shown in Figure 2-3.

Figure 2-3: The antidiagonal of a square matrix

You can see the cells that are on the antidiagonal. The antidiagonal 
line passes fully through them. We can follow our normal two rules when 
we are dealing with these cells. We need the exceptional third rule only 
when starting in a cell that is fully above the antidiagonal and crossing 
to a cell that is fully below it, or vice versa. That final rule is expressed in 
Figure 2-4, which shows an antidiagonal and two cells that would need to 
follow this rule when crossing it.
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x–n+1 (mod n2)

x

Figure 2-4: Rule 3 of Kurushima’s algorithm

This rule is followed when we are crossing the antidiagonal. If we cross 
from the bottom right to the top left, we can follow the inverse of this rule, 
in which x is transformed to x + n – 1, mod n2.

We can write a simple implementation of Rule 1 in Python by defining 
a function that takes x and n as its arguments and returns (x+n)%n**2:

def rule1(x,n):
    return((x + n)%n**2)

We can try this out with the central entry in the Luo Shu square. 
Remember, the Luo Shu square is a 3×3 square matrix, so n = 3. The cen-
tral entry of the Luo Shu square is 5. The entry below and to the left of this 
entry is 8, and if we have implemented our rule1() function correctly we’ll 
get an 8 when we run the following line:

print(rule1(5,3))

You should see an 8 in the Python console. Our rule1() function seems 
to work as intended. However, we could improve it by enabling it to go “in 
reverse,” determining not only the entry on the bottom left of a given entry, 
but also the entry to the top right (that is, being able to go from 8 to 5 in 
addition to going from 5 to 8). We can make this improvement by adding 
one more argument to the function. We’ll call our new argument upright, 
and it will be a True/False indicator of whether we’re looking for the entry 
up and to the right of x. If not, we will by default look for the entry to the 
bottom left of x:

def rule1(x,n,upright):
    return((x + ((-1)**upright) * n)%n**2)

In a mathematical expression, Python will interpret True as 1 and False as 
0. If upright is False, our function will return the same value as before, since 
(–1)0 = 1. If upright is True, then it will subtract n instead of adding n, which will 
enable us to go in the other direction. Let’s check whether it can determine 
the entry above and to the right of 1 in the Luo Shu square:

print(rule1(1,3,True))

It should print 7, the correct value in the Luo Shu square.
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For Rule 2, we can create an analogous function. Our Rule 2 function 
will take x and n as arguments, just like Rule 1. But Rule 2 is by default find-
ing the entry below and to the right of x. So we will add an upleft argument 
that will be True if we want to reverse the rule. The final rule is as follows:

def rule2(x,n,upleft):
    return((x + ((-1)**upleft))%n**2)

You can test this on the Luo Shu square, though there are only two 
pairs of entries for which this doesn’t run into the exception to Rule 2. For 
this exception, we can write the following function:

def rule3(x,n,upleft):
    return((x + ((-1)**upleft * (-n + 1)))%n**2)

This rule needs to be followed only when we’re crossing the magic 
square’s antidiagonal. We’ll see later how to determine whether or not we 
are crossing the antidiagonal.

Now that we know how to fill the five central squares, and we have a 
rule to fill out the remaining squares based on knowledge of those central 
squares, we can fill out the rest of the square.

Filling in the Rest of the Square

One way to fill in the rest of the square is to “walk” randomly through it, 
using known entries to fill in unknown entries. First, we’ll determine the 
indices of our central entry as follows:

center_i = math.floor(n/2)
center_j = math.floor(n/2)

Then, we can randomly select a direction to “walk,” as follows:

import random
entry_i = center_i
entry_j = center_j
where_we_can_go = ['up_left','up_right','down_left','down_right']
where_to_go = random.choice(where_we_can_go)

Here, we’ve used Python’s random.choice() function, which does random 
selection from lists. It takes an element from the set we specified (where_we_
can_go), but it chooses at random (or as close to random as it can get).

After we’ve decided a direction to travel, we can follow whichever rule 
corresponds to our direction of travel. If we have chosen to go down_left or 
up_right, we’ll follow Rule 1, choosing the right arguments and indices as 
follows:

if(where_to_go == 'up_right'):
    new_entry_i = entry_i - 1
    new_entry_j = entry_j + 1
    square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,True)
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if(where_to_go == 'down_left'):
    new_entry_i = entry_i + 1
    new_entry_j = entry_j - 1
    square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,False)

Similarly, we’ll follow Rule 2 if we have chosen to travel up_left or 
down_right:

if(where_to_go == 'up_left'):
    new_entry_i = entry_i - 1
    new_entry_j = entry_j - 1
    square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,True)

if(where_to_go == 'down_right'):
    new_entry_i = entry_i + 1
    new_entry_j = entry_j + 1
    square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,False)

This code is for going up-left and down-right, but we should follow it only 
if we’re not crossing the antidiagonal. We’ll have to make sure that we follow 
Rule 3 in the case where we are crossing the antidiagonal. There is a simple 
way to know if we are in an entry that is near the antidiagonal: the entries  
just above the antidiagonal will have indices that sum to n-2, and the entries just 
below the antidiagonal will have indices that sum to n. We’ll want to implement 
Rule 3 in these exceptional cases:

if(where_to_go == 'up_left' and (entry_i + entry_j) == (n)):
    new_entry_i = entry_i - 1
    new_entry_j = entry_j - 1
    square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,True)

if(where_to_go == 'down_right' and (entry_i + entry_j) == (n-2)):
    new_entry_i = entry_i + 1
    new_entry_j = entry_j + 1
    square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,False)

Keep in mind that our magic square is finite, so we cannot, for exam-
ple, travel up/left from the top row or leftmost column. By creating our list 
of where it’s possible to travel based on our current location, we can add 
some simple logic to ensure that we travel only in allowed directions:

where_we_can_go = []

if(entry_i < (n - 1) and entry_j < (n - 1)):
    where_we_can_go.append('down_right')

if(entry_i < (n - 1) and entry_j > 0):
    where_we_can_go.append('down_left')
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if(entry_i > 0 and entry_j < (n - 1)):
    where_we_can_go.append('up_right')

if(entry_i > 0 and entry_j > 0):
    where_we_can_go.append('up_left')

We have all the elements we need to write Python code that implements 
Kurushima’s algorithm.

Putting It All Together

We can put everything together in a function that takes a starting square 
with some nan entries and travels through it using our three rules to fill 
them in. Listing 2-2 contains the whole function.

import random
def fillsquare(square,entry_i,entry_j,howfull):
     while(sum(math.isnan(i) for row in square for i in row) > howfull):
        where_we_can_go = []

        if(entry_i < (n - 1) and entry_j < (n - 1)):
            where_we_can_go.append('down_right')
        if(entry_i < (n - 1) and entry_j > 0):
            where_we_can_go.append('down_left')
        if(entry_i > 0 and entry_j < (n - 1)):
            where_we_can_go.append('up_right')
        if(entry_i > 0 and entry_j > 0):
            where_we_can_go.append('up_left')

        where_to_go = random.choice(where_we_can_go)
        if(where_to_go == 'up_right'):
            new_entry_i = entry_i - 1
            new_entry_j = entry_j + 1
            square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,True)

        if(where_to_go == 'down_left'):
            new_entry_i = entry_i + 1
            new_entry_j = entry_j - 1
            square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,False)

        if(where_to_go == 'up_left' and (entry_i + entry_j) != (n)):
            new_entry_i = entry_i - 1
            new_entry_j = entry_j - 1
            square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,True)

        if(where_to_go == 'down_right' and (entry_i + entry_j) != (n-2)):
            new_entry_i = entry_i + 1
            new_entry_j = entry_j + 1
            square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,False)

        if(where_to_go == 'up_left' and (entry_i + entry_j) == (n)):
            new_entry_i = entry_i - 1
            new_entry_j = entry_j - 1
            square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,True)
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        if(where_to_go == 'down_right' and (entry_i + entry_j) == (n-2)):
            new_entry_i = entry_i + 1
            new_entry_j = entry_j + 1
            square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,False)

     1 entry_i = new_entry_i
        entry_j = new_entry_j

    return(square)

Listing 2-2: A function that enables an implementation of Kurushima’s algorithm

This function will take four arguments: first, a starting square that has 
some nan entries; second and third, the indices of the entry that we want to 
start with; and fourth, how much we want to fill up the square (measured by 
the number of nan entries we are willing to tolerate). The function consists 
of a while loop that writes a number to an entry in the square at every itera-
tion by following one of our three rules. It continues until it has as many nan 
entries as we have specified in the function’s fourth argument. After it writes 
to a particular entry, it “travels” to that entry by changing its indices 1, and 
then it repeats again.

Now that we have this function, all that remains is to call it in the right way.

Using the Right Arguments

Let’s start with the central entry and fill up the magic square from there. 
For our howfull argument, we’ll specify (n**2)/2-4. The reason for using this 
value for howfull will become clear after we see our results:

entry_i = math.floor(n/2)
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,(n**2)/2 - 4)

In this case, we call the fillsquare() function using the existing square 
variable that we defined previously. Remember we defined it to be full of nan 
entries except for five central elements that we specified. After we run the 
fillsquare() function with that square as its input, the fillsquare() function 
fills in many of the remaining entries. Let’s print out the resulting square 
and see what it looks like afterward:

printsquare(square)

The result is as follows:

         [0]   [1]   [2]   [3]   [4]   [5]   [6]
   [0]    22   nan    16   nan    10   nan     4
   [1]   nan    23   nan    17   nan    11   nan
   [2]    30   nan    24    49    18   nan    12
   [3]   nan    31     7    25    43    19   nan
   [4]    38   nan    32     1    26   nan    20
   [5]   nan    39   nan    33   nan    27   nan
   [6]    46   nan    40   nan    34   nan    28
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You’ll notice that the nans occupy alternating entries, like a checker-
board. The reason for this is that the rules we have for moving diagonally 
give us access to only about half of the total entries, depending on which 
entry we started with. The valid moves are the same as in checkers: a piece 
that starts on a dark square can move diagonally to other dark squares, but 
its diagonal moving pattern will never allow it to move to any of the light 
squares. The nan entries we see are inaccessible if we start on the central 
entry. We specified (n**2)/2 - 4 for our howfull argument instead of zero 
because we know that we wouldn’t be able to fill the matrix completely by 
calling our function only once. But if we start again on one of the central 
entry’s neighbors, we will be able to access the rest of the nan entries in our 
“checkerboard.” Let’s call the fillsquare() function again, this time starting 
on a different entry and specifying our fourth argument as zero, indicating 
that we want to completely fill our square:

entry_i = math.floor(n/2) + 1
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,0)

If we print our square now, we can see that it is completely full:

>>> printsquare(square)
         [0]   [1]   [2]   [3]   [4]   [5]   [6]
   [0]    22    47    16    41    10    35     4
   [1]     5    23    48    17    42    11    29
   [2]    30     6    24     0    18    36    12
   [3]    13    31     7    25    43    19    37
   [4]    38    14    32     1    26    44    20
   [5]    21    39     8    33     2    27    45
   [6]    46    15    40     9    34     3    28

There is just one final change we need to make. Because of the rules 
of the % operator, our square contains consecutive integers between 0 and 
48, but Kurushima’s algorithm is meant to fill our square with the integers 
from 1 to 49. We can add one line that replaces 0 with 49 in our square:

square=[[n**2 if x == 0 else x for x in row] for row in square]

Now our square is complete. We can verify that it is indeed a magic 
square by using the verifysquare() function we created earlier:

verifysquare(square)

This should return True, indicating that we’ve succeeded.
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We just created a 7×7 magic square by following Kurushima’s algorithm. 
Let’s test our code and see if it can create a larger magic square. If we 
change n to 11 or any other odd number, we can run exactly the same code 
and get a magic square of any size:

n = 11
square=[[float('nan') for i in range(0,n)] for j in range(0,n)]

center_i = math.floor(n/2)
center_j = math.floor(n/2)

square[center_i][center_j] = int((n**2 + 1)/2)
square[center_i + 1][center_j] = 1
square[center_i - 1][center_j] = n**2
square[center_i][center_j + 1] = n**2 + 1 - n
square[center_i][center_j - 1] = n

entry_i = center_i
entry_j = center_j

square = fillsquare(square,entry_i,entry_j,(n**2)/2 - 4)

entry_i = math.floor(n/2) + 1
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,0)

square = [[n**2 if x == 0 else x for x in row] for row in square]

Our 11×11 square looks as follows:

>>> printsquare(square)
         [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]   [8]   [9]  [10]
   [0]    56   117    46   107    36    97    26    87    16    77     6
   [1]     7    57   118    47   108    37    98    27    88    17    67
   [2]    68     8    58   119    48   109    38    99    28    78    18
   [3]    19    69     9    59   120    49   110    39    89    29    79
   [4]    80    20    70    10    60   121    50   100    40    90    30
   [5]    31    81    21    71    11    61   111    51   101    41    91
   [6]    92    32    82    22    72     1    62   112    52   102    42
   [7]    43    93    33    83    12    73     2    63   113    53   103
   [8]   104    44    94    23    84    13    74     3    64   114    54
   [9]    55   105    34    95    24    85    14    75     4    65   115
  [10]   116    45   106    35    96    25    86    15    76     5    66

We can verify, either manually or with our verifysquare() function, that 
this is indeed a magic square. You can do the same with any odd n and mar-
vel at the results.
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Magic squares don’t have much practical significance, but it’s fun to 
observe their patterns anyway. If you’re interested, you might spend some 
time thinking about the following questions:

•	 Do the larger magic squares we created follow the odd/even alternat-
ing pattern seen in the outer edge of the Luo Shu square? Do you think 
every possible magic square follows this pattern? What reason, if any, 
would there be for this pattern?

•	 Do you see any other patterns in the magic squares we’ve created that 
haven’t been mentioned yet?

•	 Can you find another set of rules that create Kurushima’s squares? For 
example, are there rules that enable one to travel up and down through 
Kurushima’s square instead of diagonally?

•	 Are there other types of magic squares that satisfy the definition of a 
magic square but don’t follow Kurushima’s rules at all?

•	 Is there a more efficient way to write code to implement Kurushima’s 
algorithm?

Magic squares occupied the attention of great Japanese mathemati-
cians for several centuries, and they’ve found a significant place in cultures 
around the world. We can count ourselves lucky that the great mathemati-
cians of the past gave us algorithms for generating and analyzing magic 
squares that we can easily implement on today’s powerful computers. At the 
same time, we can admire the patience and insight that was required for 
them to investigate magic squares with only pen, paper, and their wits (and 
the occasional magical turtle) to guide them.

Summary
In this chapter, we discussed some historical algorithms that range from a 
few centuries to a few millenia old. Readers who are interested in histori-
cal algorithms can find many more to study. These algorithms may not be 
of great practical utility today, but it can be worthwhile to study them—
first because they give us a sense of history, and second because they help 
broaden our horizons and may provide the inspiration for writing our own 
innovative algorithms.

The algorithms in the next chapter enable us to do some commonly 
needed and useful tasks with mathematical functions: maximize and 
minimize them. Now that we have discussed algorithms in general and 
algorithms in history, you should be comfortable with what an algorithm is 
and how one works, and you should be ready to dive into serious algorithms 
used in the most cutting-edge software being developed today.


